

Benasque workshop on Gravity (stringy and hi-d)

July 14-26 2013

Black Brane Fluid Flows

Roberto Emparan ICREA & U. Barcelona

w/ M. Martínez 1205.5646 w/ V. Hubeny + M. Rangamani, in progress

Black Hole dynamics

- Black holes are not passive sinks, but highly dynamical objects
- Concepts and techniques from other areas of physics apply to them:
 - -Effective field theories of dynamics
 - -Thermodynamics
 - -Hydrodynamics
 - -Elasticity theory

Black Hole dynamics

- Full dynamics of bhs is very complicated
- Effective theory for long-wavelength fluctuations
- In D>4 black holes exhibit both
 - hydrodynamical behavior (fluid)
 - elastic behavior (solid)

- Take spacetime w/ horizon H
- Choose some timelike surface Σ outside horizon
 - 1st, 2nd fundamental forms on Σ
 - $h_{\mu\nu}$: induced metric
 - $\Theta_{\mu\nu}$: extrinsic curvature

•
$$h_{\mu
u,}\Theta_{\mu
u}$$

• Stress tensor: Brown-York quasilocal

$$8\pi G T_{\mu\nu} = \Theta_{\mu\nu} - \Theta h_{\mu\nu}$$

• Automatically conserved:

Gauss-Codacci = 'momentum constraints'

$$R^{\nu} = 0 \rightarrow \nabla_{\mu} T^{\mu\nu} = 0$$

•
$$h_{\mu
u,}\Theta_{\mu
u}$$

• Stress tensor: Brown-York quasilocal

$$8\pi G T_{\mu\nu} = \Theta_{\mu\nu} - \Theta h_{\mu\nu}$$

• Automatically conserved:

Gauss-Codacci = 'momentum constraints'

$$R^{\nu} = 0 \rightarrow \nabla_{\mu} T^{\mu\nu} = 0$$

• Is this already the hydrodynamic theory?

- Not yet: must specify long-wavelength regime
- $\lambda \gg 1/T$ (*T* measured on Σ)

This can exclude horizon fluctuations in some directions λ

- Not yet: must specify long-wavelength regime
- $\lambda \gg 1/T$ (*T* measured on Σ)

This can exclude horizon fluctuations in some directions λ

• Is this now the hydrodynamic theory?

- Not necessarily: <u>it is</u> a long-wavelength effective theory, but maybe not only hydro
- E.g., a worldvolume may have elastic dynamics

this is *extrinsic* dynamics, orthogonal to worldvolume: $X^{\mu}(\sigma)$

- Hydro: long-wavelength fluctuations parallel to horizon
- characterized by velocity u^a

$$- |u|^2 = -1$$
 on Σ , $|u|^2 = 0$ on H

• Expand in worldvol derivatives of u^a

- $\nabla_{\mu}T^{\mu\nu}=0$: constraint eqs
- Remaining Einstein eqs then uniquely solved in 'inside region' (bulk) with fixed $h_{\mu\nu}$ (Dirichlet bc) and regularity at horizon

- Have integrated inside d.o.f.'s
- Fluid theory is the effective theory, in terms of collective dof's, for the dynamics of inside

• Could use this eff theory to couple to outside (*if any*) via effective $T_{\mu\nu}$

– must let metric on Σ fluctuate

- This is then similar to membrane paradigm
 but in the latter no dof's are integrated
 - no equations solved, only bdry data

- Very general:
 - timelike surface $\boldsymbol{\Sigma}$
 - long-wavelength, intrinsic fluctuations
- Examples
 - AdS black branes (fluid/gravity corresp)
 - near-horizon (Rindler dual fluids)
 - Asympflat vacuum black branes

Camps+RE+Haddad 2010

- Very general:
 - timelike surface $\boldsymbol{\Sigma}$
 - long-wavelength, intrinsic fluctuations
- Examples
 - AdS black branes (fluid/gravity corresp)
 - near-horizon (Rindler dual fluids)
 - Asympflat vacuum black branes…

Camps+RE+Haddad 2010

Changing surface, changing fluid

- Given a black object, each surface Σ gives a different fluid
- Reminiscent of RG flow
 - but we integrate dof's from horizon (IR) to surface, not from asymptopia (UV) to surface
- Related work:
 - Bredberg et al, Compere et al, Eling+Oz...
 - Brattan et al (AdS black brane)

Changing surface, changing fluid

- For AF black branes, as we move Σ we can observe interesting phenomena:
- 1. Black brane instability On/Off
- 2. Nested fluids:

Blackfold > Fluid/gravity > Rindler fluid

Gregory-Laflamme instability

 $\delta r_0 \sim e^{\Omega t + ikz}$

Gregory-Laflamme instability

Gregory-Laflamme instability

RE+Harmark+Niarchos+Obers

Black string effective 1+1 fluid

• Black string in D=4+n

$$ds^{2} = -\left(1 - \frac{r_{0}^{n}}{r^{n}}\right)dt^{2} + dx^{2} + \frac{dr^{2}}{1 - \frac{r_{0}^{n}}{r^{n}}} + r^{2}d\Omega_{n+1}$$

• Stress-energy at asymp infty

 $\varepsilon = -(n+1)P$

$$P = -r_0^n$$

 $T_{\mu
u}$ ∞

Gregory-Laflamme from fluid dynamics

• Effective fluid $\begin{cases} \varepsilon = -(n+1)P \\ P = -r_0^n \end{cases} \quad (n = D-4) \end{cases}$ Pressure waves: $\delta P \rightarrow \delta r_0$ $\lambda \gg r_0$

Gregory-Laflamme from fluid dynamics

- Effective fluid $\begin{cases} \varepsilon = -(n+1)P \\ P = -r_0^n \\ \end{cases} (n = D-4) \end{cases}$ Pressure waves: $\delta P \rightarrow \delta r_0$ $\lambda \gg r_0$
- Sound velocity $v_s^2 = dP/d\varepsilon = -1/(n+1) < 0$ Unstable

Gregory-Laflamme from fluid dynamics

- Effective fluid $\begin{cases} \varepsilon = -(n+1)P \\ P = -r_0^n \end{cases} \quad (n = D-4) \end{cases}$ Pressure waves: $\delta P \rightarrow \delta r_0$ $\lambda \gg r_0$
- Sound velocity $v_s^2 = dP/d\varepsilon = -1/(n+1) < 0$

$$\Omega = \sqrt{-v_s^2} \, k + O(k^2)$$

Almost effortless

Viscous damping of sound

• Viscosity allows to compute next order, k^2

Viscous 1+1 fluid

Numerical Gregory-Laflamme

Viscous damping of sound

Agreement is impressively good for large n

Framing the ghost

Cavity: fix the metric on a cylinder at finite R

 $\varepsilon(R), P(R), T(R)$

Framing the ghost

Cavity: fix the metric on a cylinder at finite R

Thermo instability disappears at critical $R = R_c$

 $C_v(R{<}R_c)>0$

 $\varepsilon(R), P(R), T(R)$

Framing the ghost

Cavity: fix the metric on a cylinder at finite R

Thermo instability disappears at critical $R = R_c$

 $C_v(R{<}R_c)>0$

Zero-mode tachyon does disappear at $R=R_c$

Gregory+Ross

Framing the ghost: hydro view

• Solve for fluctuating black brane in cavity, in hydro regime

 $\varepsilon(R), P(R), T(R), \eta(R), \zeta(R)$

Framing the ghost: hydro view

• Solve for fluctuating black brane in cavity, in hydro regime

Sound speed v_s² grows as R shrinks
 → rigidity increases (redshift on wall hindered)

Framing the ghost: hydro view

 Solve for fluctuating black brane in cavity – hydro regime

- Sound speed v_s^2 grows as R shrinks
 - \rightarrow rigidity increases (redshift on wall hindered)
 - \rightarrow instability weakens and disappears at R_c

Correlated stability (aka Gubser-Mitra)

Transparent in this approach:
 local thermo instability
 Image: Image:

hydrodynamic instability

(ghost, not tachyon)

– Simple proof:

$$v_s^2 = dP/d\varepsilon = s dT/d\varepsilon = s/C_v$$

Can argue ghost ⇒ tachyon (but not ⇐)

Viscosity: no running with ${\cal R}$

• Compute stress tensor at finite R for fluctuating p-brane & extract viscosities

$$\eta(R) = \frac{s}{4\pi}$$
$$\zeta(R) = \frac{s}{2\pi} \left(\frac{1}{p} - \frac{v_s^2(\infty)}{p}\right)$$

no dependence on R

Black fingers

'Confining/deconfining' equilibrium

Stable solution in vacuum gravity (w/ wall)

Nested fluids

- Non-extremal D3 branes
- Flow from asymptotic infty down to horizon

Sound from the throat

Sound from the throat

Sound from the throat

To the horizon

- Near-extremality approx breaks down: hydro effective theory *does run*
- Go over to Rindler fluid descriptions:
 - sound speed diverges
 - effective fluid is incompressible
- Throat to horizon: done by
 Brattan+Camps+Loganayagam+Rangamani
- Blackfold > Fluid/gravity > Rindler fluid

