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The problem

Consider heterotic string theory compactified on T6.

– an N = 4 supersymmetric string theory with 28 U(1)
gauge fields at a generic point in the moduli space.

A general state in this theory is characterized by a 28
dimensional electric charge vector Q and a 28
dimensional magnetic charge vector P.

Our object of study will be quarter BPS states in this
theory carrying (electric, magnetic) charge vectors
(Q, P).

We shall normalize the charges so that each element
is an integer.



T-duality symmetry

Q→W Q, P→W P, W ∈ SO(6,22;ZZ)

S-duality symmetry

Q→ aQ + bP, P→ cQ + dP,
(

a b
c d

)
∈ SL(2,ZZ)

Q2,P2,Q · P: T-duality invariant bilinears

S and T-duality invariant ‘discriminant’

D(Q,P) = Q2P2 − (Q · P)2

Bekenstein-Hawking entropy of a quarter BPS black
hole carrying charges (Q,P) is

π
√

D(Q,P)



Microscopic results

Exact microscopic results for the index counting
quarter BPS states has been derived from first
principles for all (Q,P) for which

gcd{QiPj −QjPi, 1 ≤ i, j ≤ 28} = 1

at all points in the moduli space.
Dijkgraaf, Verlinde, Verlinde; Cardoso, de Wit, Kappeli, Mohaupt; Shih, Strominger, Yin; Jatkar, A.S; David,
A.S.; A.S.; Dabholkar, Gaiotto, Nampuri; Cheng, Verlinde; · · ·

A long term goal is to account for these microscopic
results from the macroscopic viewpoint where these
states are described as supersymmetric black hole
solutions.



Problem with negative discriminant states

These microscopic results show that in some region
of the moduli space we get non-vanishing result for
the index for states with

D(Q,P) < 0

i.e. states with negative discriminant.

However there are no classical BPS black hole
solution of charge (Q,P) if D(Q,P) < 0.

What accounts for these states in the macroscopic
description?



One can take two opposite viewpoints:

1. (Black hole) solutions in four dimensional effective
field theory need not account for all possible
microstates of the theory.

2. Gravity has a clever way of accounting for all
possible microstates, even those which may not, at
first sight, appear to have black hole counterpart.



First attempt Dabholkar, Gaiotto, Nampuri

Considered a special class of states carrying charges
(Q,P) with

Q2 = −2, P2 = −2, Q.P = n

D(Q,P) = 4− n2 < 0 for n > 2

Microscopic results: In certain region of the moduli
space the index carried by such states is given by

(−1)n+1|n|

DGN showed that in the same region of the moduli
space there is a 2-centered black hole configuration
with charges (Q,0) and (0, P) carrying the same index.



Problem

In the same region of the moduli space there are
other 2-centered configuration carrying same total
charge and the same index, e.g.

(Q + uP,0) and (−uP,P), u ≡ Q · P

This will spoil the agreement between the
microscopic and the macroscopic result.

Before we describe the resolution we shall examine
the most general situation.



Consider a general negative discriminant state
carrying charges (Q̂, P̂) at some point in the moduli
space.

From the microscopic counting formula we have an
exact formula for the index of this state.

Goal: Identify all multi-centered black hole solutions
which could contribute to the index of this state,
calculate the index of each of them, and see if the
sum agrees with the microscopic result.



General result: The only contributions come from
2-centered configurations, with charges

(aQ,cQ) and (bP,dP),
(

a b
c d

)
∈ SL(2,ZZ)

aQ + bP = Q̂, cQ + dP = P̂

The index carried by this configuration Denef; Denef, Moore

(−1)Q·P+1|Q · P|dh(Q2/2)dh(P2/2)

where ∑
n

dh(n)e2πinτ = e−2πiτ
∞∏

n=1

(
1− e2πinτ)−24

Note: dh(Q2/2) vanishes unless Q2 ≥ −2



At any given point in the moduli space, which of
these two centered contributions exist can be found
using Denef’s rules.

Add up all the contributions.

Does this agree with the microscopic result?

It does, provided we use some additional rules.



The additional rules are needed when either Q2 = −2
or P2 = −2 or both.

Suppose P2 = −2.

Consider a different 2-centered configuration
carrying same total charge

(a′Q′,c′Q′) and (b′P′,d′P′)(
a′ b′
c′ d′

)
=

(
a b− au
c d− au

)
, Q′ ≡ Q + uP, P′ ≡ P, u ≡ Q · P

Then

Q′2 = Q2, P′2 = P2, Q′ · P′ = −Q · P

Thus this has the same index as the earlier
2-centered configuration.



Summary: We have identified a pair of 2-centered
configurations each carrying the same index I (say).

Suppose the first configuration exists in the subspace
R1 of the moduli space and the second configurations
exists in the subspace R2 of the moduli space.

Naive expectation:

The contribution to the index from this pair of
configurations is 2 I in R1 ∩ R2, and I in the rest of
R1 ∪ R2.

However what we need for agreement with the
microscopic result is that the index is I in R1 ∩ R2 and
vanishes outside this region!

Similar effects are present in gauge theories. Narayan



The situation is best described by using S-duality to
map the pair of configurations to

(Q,0) and (0,P), P2 = −2

and
(Q + uP,0) and (−uP,P), u ≡ Q.P

Both have index

I = (−1)u+1 |u|dh(−1)dh(Q2/2)

We shall now describe the region of existence of
these pair of solutions in the axion-dilaton moduli (τ )
space for fixed values of the other moduli.



τ = τ1 + iτ2 - plane

0 −u −u 0

R1 R2

R ≡ R1 ∩ R2

L1 L2 L2 L1

R1: The subspace of the UHP in which the first
configuration (Q,0) + (0,P) exists

R2: The subspace of the UHP in which the second
configuration (Q + u P,0)+ (-u P, P) exists



A pictorial representation of what we need for
agreement with the microscopic result

−u 0

R′1R′2

τ − planeLL2 L1

L: A hypothetical line such that the region of
existence of the first configuration is restricted to the
right of L, and the region of existence of the second
configuration is restricted to the left of L

The first configuration metamorphoses into the
second configuration across L.

Question: What is the physical origin of the boundary
L?



The solution Chowdhury, Lal, Saha, A.S., arXiv:1210.4385

τ = τ1 + iτ2 is the value of the axion-dilaton modulus
far away from both centers.

We work in the limit of large τ2, i.e. weak coupling, so
that magnetic charges are much heavier than the
electric charges.

– we can treat the (Q,0) center of the first
configuration and the (Q+uP,0) center of the second
configuration as probe, which does not affect the
background.

The background is produced by the charge (0,P) for
the first configuration and the charge (−uP,P) for the
second configuration, but we can replace (−uP,P) by
(0,P) since the effect of the electric charges on the
background is being ignored.



−u 0

R′1R′2

τ − planeLL2 L1

Question: In the presence of a background produced
by the charge (0,P) how does a test charge (Q,0)
metamorphose into a test charge (Q + uP,0) across
the boundary L?

Strategy: Find the restriction on the moduli by
requiring the existence of an equilibrium
configuration of the test charge in the presence of the
background.



The fake story

We represent the field produced by the charge (0,P)
as a single centered black hole solution. Bates, Denef; Denef

The equilibrium position of the test charge is
obtained by balancing the gravitational force against
the electrostatic force on the charge.

Note: Even though the charge (0,P) is purely
magnetic, in the presence of non-zero τ1 (theta-angle)
the system actually represents a dyon, and for large
enough τ1 the induced electric charge cannot be
ignored.



The players in the force balance condition

Gravitational force: g00 and the scalar fields (which
determine the mass of the test charge)

Electrostatic force: The electric potential produced by
the background.

By solving the force balance condition we can find
the equilibrium postion of the test charges for the two
systems:

r1 = f(Q; τ1, τ2, · · · ), r2 = f(Q + uP; τ1, τ2, · · · )

· · · : other moduli at infinity Denef



r1 = f(Q; τ1, τ2, · · · ), r2 = f(Q + uP; τ1, τ2, · · · )
Requiring r1 to be positive gives the region R1 and
requiring r2 to be postive gives the region R2.

0 −u −u 0

R1 R2

R ≡ R1 ∩ R2L1 L2 L2 L1

On L1 and L2, r1 and r2 go to infinity.

– walls of marginal stability.

Are there other restrictions on r1, r2 which could produce a left
boundary of R1 and right boundary of R2?



By examining the solution we find that in the
background produced by (0,P), a test charge (P,0)
becomes massless at a radius

re = g(τ1, τ2, · · · )

– known as the enhancon Johnson, Peet, Polchinski

Thus the background should not be trusted for r < re.

Requiring r1 > re and r2 > re we can further restrict the
allowed range of τ .



r1 > re ⇒ f(Q; τ1, τ2, · · · ) > re

r2 > re ⇒ f(Q + uP; τ1, τ2, · · · ) > re

These can be translated into restrictions on τ .

−u 0

R′1R′2

τ − planeLL2 L1

The r1 = re and r2 = re equations give identical
conditions on τ .



The real story

Vanishing of the mass of the test charge (P,0)

⇒ enhanced SU(2) gauge symmetry at r = re

This suggests that the correct description of the
magnetically charged center with charge (0,P) is not
as a black hole but as a BPS monopole of the SU(2)
gauge theory. Wijnholt, Zhukov

Of course we have to gravitationally dress this but
exact solution in supergravity is known. Harvey, Liu

Thus we replace the original solution by the new
solution (in ‘string gauge’) and repeat the analysis of
the equilibrium configuration of the test charge.



We need to analyze how the background value of the
players in force balance – g00, the scalar fields and
the electric potential – differ from the earlier solution.

Result: For all these fields the effect is to replace r by
r̂ where

1
r̂
=

1
r
− 1

re
coth

r
re

+
1
re

Thus the equilibrium position of the test charge is
given by the same function of the moduli and charges
as before if we replace r by r̂.

r̂1= f(Q; τ1, τ2, · · · ), r̂2 = f(Q + uP; τ1, τ2, · · · )

f: the same function that appeared in the fake story.



1
r̂
=

1
r
− 1

re
coth

r
re

+
1
re

Since the new solution is smooth everywhere we
need to require that the location of the test charges
are in the range

0 < r1, r2 <∞

This is equivalent to

re <r̂1, r̂2 <∞

This translates to a restriction on the moduli using

r̂1= f(Q; τ1, τ2, · · · ), r̂2 = f(Q + uP; τ1, τ2, · · · )

– exactly the same restriction which appeared in the
fake story.



Summary: The result of the true story is the same as
that of the fake story.

−u 0

R′1R′2

τ − planeLL2 L1

New feature: On the boundary L, both test charges
reach the origin of the smooth solution.

Since at the origin the SU(2) symmetry is restored
and the electric field vanishes, the test charge can flip
its SU(2) electric charge from Q to Q+uP at no cost in
energy, and hence metamorphose to each other.



Conclusion

In the test charge approximation we have a first
principle explanation of black hole bound state
metamorphosis.

This shows that the macroscopic and microscopic
results for the index carried by negative discriminant
states are in complete agreement without any ad hoc
assumption.


