Quantum phase transitions in charged holographic matter

Benjamin Withers

Durham

with Aristomenis Donos, Jerome Gauntlett, Julian Sonner

The Holographic Way, Nordita, October 2012

Preliminaries

- Holography is a powerful tool for examining strongly coupled quantum field theories. Can we apply it to learn about strongly coupled systems in condensed matter?
- ► A focus: place a field theory at some temperature T and chemical potential µ for global U(1)
- What kinds of phases (& transitions) are possible?
- What is the phase diagram (*T*, μ, B, etc.)?
- Construct all AAdS black brane solutions at T, μ, ..., and find lowest free energy

'Universal' normal phase

• Minimal bulk ingredients for finite T and μ for global U(1):

$$S_{\text{bulk}} = rac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(R + 24 - rac{1}{4}F^2
ight)$$

Admits RN black brane solutions

$$ds^{2} = -g(r)dt^{2} + \frac{dr^{2}}{g(r)} + r^{2}(dx^{2} + dy^{2}), \qquad F = -\phi'(r)dt \wedge dr$$
$$g(r) = 4r^{2} - \left(4r_{+}^{2} + \frac{\mu^{2}}{4}\right)\frac{r_{+}}{r} + \frac{\mu^{2}r_{+}^{2}}{4r^{2}}, \qquad \phi = \mu\left(1 - \frac{r_{+}}{r}\right)$$

- ► Field theory charge given by boundary electric flux ⟨Q⟩ = ∫_{ℝ²} *F
- ► Here all flux comes from horizon. Gauss' law d * F = 0 $\implies \langle Q \rangle = \int_{\mathcal{H}} *F = \mu r_+ vol_2.$

'Universal' normal phase: T = 0

- ▶ At T = 0 RN-AdS₄ becomes AdS₂ × \mathbb{R}^2 →AdS₄ domain wall
- Residual entropy density, $s \neq 0$
- Provides a diagnostic for instabilities, through the violation of the AdS₂ BF-bound, e.g.
 - Superconductivity / superfluidity m²_{eff} for linearised charged scalar in AdS₂ [Gubser][Hartnoll, Herzog, Horowitz]
 - ▶ Spatial modulation where lightest m_{eff}^2 occurs at wavenumber $k \neq 0$ for Fourier decomp. in \mathbb{R}^2 . Spatially modulated UV CFT [Nakamura, Ooguri, Park] [Donos, Gauntlett] [Bergman, Jokela, Lifschytz, Lippert]
- Heated up: new branch of black brane solutions emerging at some T_c (here with reduced symmetry)
- Nonlinearly construct the branch to check the free energy

Comments on theories

- But instabilities can depend on the ingredients
- 'Top-down' supergravity approach
 - know the field theory
 - ▶ lots of fields ↔ lots of new phases (problem?)
 - truncations can miss things
- 'Bottom-up' phenomenological approach
 - tailor a theory to examine a particular phenomenon
 - some phases still hard to access (e.g. spatial modulation)

- may not have a field theory dual
- lots of freedom (e.g. superfluid at low temperatures)

Back to RN:

- RN-AdS is not robust at low T. In many holographic settings the T = 0 limit will be cloaked by e.g. superconducting phase.
- ► But, geometries with ∫_H *F represent physically distinct bulk source of flux... physically distinct field theory features?
- ► Natural association of geometries with \$\int_{\mathcal{H}} *F\$ with to 'fractionalised' phases of matter [Sachdev]
- What physically distinct ways in the bulk of producing finite charge density? Do they give distinct field theory features?

A taxonomy of charge

• Model with pseudo-scalar σ , charged scalar χ , single U(1).

$$\begin{split} S &= \int d^4 x \sqrt{-g} \left(R - \frac{1}{2} (\partial \sigma)^2 - \frac{\tau(\sigma)}{4} F^2 - h(\sigma, |\chi|) \left| D\chi \right|^2 - V(\sigma, |\chi|) \right) \\ &+ \frac{1}{2} \int \vartheta(\sigma) F \wedge F \,, \end{split}$$

- Distinct contributions to charge density.
 d(τ * F) = *j_x + d(ϑF)
 - 1. IR electric flux (fractionalised, as in RN AdS example)
 - 2. Bulk charged matter. e.g.
 - ▶ bosons $j_{\chi} \neq 0$ (U(1)-breaking) [Hartnoll, Herzog, Horowitz],
 - fermions e.g. in fluid approximation [Hartnoll, Tavanfar]
 - 3. IR magnetic $\vartheta F \wedge F$ -contributions
 - Applied magnetic field e.g. [D'Hoker, Kraus]
 - Spontaneous IR contributions, e.g. spatially modulated phases e.g. [Donos, Gauntlett]

M-theory

- Example of a model which has all these types of phases and competition between them. IR flux will not contribute to the physics.
- Model of this form consistent truncation of M-theory on an arbitrary SE₇. Every solution in D = 4 can be lifted to infinite class of solutions in D = 11. [Gauntlett, Kim, Varela,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Waldram][Gauntlett, Sonner, Wiseman]

 Apply magnetic field B as an external dial, construct grand-canonical phase diagram

Dyonic pseudo-scalar $AdS_2 \times \mathbb{R}^2$ families

•
$$AdS_2 \times \mathbb{R}^2$$
 families, with $\sigma = \sigma_0$

$$\begin{split} ds^2 &= L^2 ds^2 \left(A dS_2 \right) + ds^2 (\mathbb{R}^2) \,, \\ F &= -EL^2 \mathrm{Vol}(A dS_2) + B \mathrm{Vol}(\mathbb{R}^2) \,, \end{split}$$

Solutions defined by algebraic conditions

$$E^{2} + B^{2} = -\frac{2V}{\tau}, \qquad \frac{\tau'}{2}(E^{2} - B^{2}) - \vartheta' EB - V' = 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with the AdS_2 radius given by $L^{-2} = -V$.

Dyonic pseudo-scalar $AdS_2 \times \mathbb{R}^2$ families

Electric-family and Magnetic-family

 \blacktriangleright These will form the IR end of $AdS_2 \times \mathbb{R}^2 \to AdS_4$ domain walls

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Correspond to the IR of T = 0 limit of dyonic black holes with σ-hair

Dyonic black holes at fixed $\frac{B}{\mu^2}$

- Construct branches of black hole solutions at some fixed $\frac{B}{\mu^2}$ which connect with the dyonic $AdS_2 \times \mathbb{R}^2 \rightarrow AdS_4$'s at T = 0.
- Can be more than one...

General $\frac{B}{\mu^2}$ at T = 0

▶ — UV flux sourced only through $\vartheta F \wedge F$ (in fact, q = B)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Metamagnetism at T = 0

• Magnetisation at T = 0, $m \equiv -\frac{\partial w}{\partial B}\Big|_{\mu,T}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへで

First order 'metamagnetic' transition

Other examples [D'Hoker, Kraus], [Lifschytz, Lippert]

Metamagnetism at $T \neq 0$

- Phase structure observed in a variety of strongly correlated metals
 - Line of first order transitions terminating at some $T^*(B^*)$

- Magnetisation jumps
- No broken symmetries
- Here: consequence of $\vartheta(\sigma)F \wedge F$ term

What about symmetry breaking? – AdS₂ stability

- \blacktriangleright Look at fluctuation spectrum in each $AdS_2\times \mathbb{R}^2$ as indicator of instability.
- Spatially modulated phases:
 - Look at finite k plane wave instabilities
 - All fluctuations couple (metric, σ , A) except χ
 - ▶ The spectrum of scaling dimensions for CFT dual to AdS₂ is independent of σ_0 , up to the rescaling $k \rightarrow \sqrt{\cosh(\sigma_0/\sqrt{3})}k$
 - BF bound violated for approx $k \in (5.94, 6.48)$
- Superconductors
 - \blacktriangleright Perturbative formation of superfluid droplets in $AdS_2\times \mathbb{R}^2$
 - Only the low B/μ^2 domain walls are unstable
- Expect a competition between these phases requires solving pde's

Putting it all together : a phase diagram

- We can construct the line of critical temperatures for the superfluid droplets
- Striped instabilities at finite T technically out of reach

Ground state entropy avoided

Summary

- Considered 'gravitationally distinct' ways of sourcing charge density.
- ► In part motivated by basic idea that distinct sources of flux (bulk) → distinct phases of CFT (c.f. IR flux and fractionalised phases)
- Competing phases in M-theory: superfluids, spatial modulation
- Avoidance of ground state entropy
- Metamagnetic transition from parity-violating term (generic?)