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Information paradox: (Why go beyond extremal BHs, 
AdS/CFT)

Black hole complementarity

Fuzzballs

Firewalls

Unitarity, qubit models & black holes/ fuzzballs

Fuzzball Complementarity



Firewalls: 
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Fuzzballs
Mathur et. al., BDC et. al.

Black hole 
complementarity

Susskind

Observer
Complementarity

Bousso, Harlow, 
Nomura et. el.

Holographic
Spacetime

Banks et. al.

Brings the debate back in focus

Remnants
Ori

Please no chairs!



A history lesson: Information paradox
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Semiclassical Gravity

Entanglement RemnantsCoarse Graining
Bekenstein, Zurek, 

Sen, Strominger- Vafa

Tracing inside part of Unruh vacuum 
gives thermal state

Horizon Area measures 

Entropy





 

 



 



|0iin

Initial state: Shell + Unruh vacuum

Shell falls in making black hole
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A history lesson: Black Hole Complementarity

Free fall for infalling observer

Note that 1and 4 are in tension

Black hole S-matrix unitary

Semi-classical physics outside stretched horizon

Membrane for outside observer

Postulates

Idea
The observations of asymptotic and infalling 
observer do not commute

Its not clear how to see Hawking radiation in the first place
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Figure 1. A wave packet far away from the horizon evolves semi-classically.

two complementary descriptions: one where it passes through and then hits the singularity

(figure 2) and another where it hits a “membrane”, scrambles, and with its information

being finally re-emitted unitarily, escapes to infinity (figure 3).

(a) (b)

Figure 2. One of the complementary descriptions is the wave packet passes through the horizon
and hits a singularity.

(a) (b)

Figure 3. The other complementary description is that the wave packet gets mapped onto the
degrees of freedom on a membrane. This wave packet is now scrambled, looses any semblance of
itself, but the information leaks out of the membrane unitarily.

While discussing in a non-observer centric language we realize that the crucial feature

in black hole complementarity is that when the wave packet reaches the stretched horizon

it evolves in two distinct ways. In some sense, its state gets mapped onto two copies in
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Stop gap procedure to reconcile GR and QM

A history lesson: Black Hole Complementarity



Entropy in radiation from burning bodies
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For purity of final state entropy 
vanishing

For typical state entropy rises 
and falls

Page:
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Horizon cannot be information free

Entropy in radiation from burning bodies
Mathur:

Strong subadditivity

SAB + SBC � SB + SABC

SAB  SB + SA

Subadditivity

SAB > SA

Small corrections do not fix this
(Mathur, Avery)

Traditional picture SBC=0

Nice Slices



Fuzzballs
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True states of quantum gravity?

Fuzzballs have no horizon or singularity

All 2-charge fuzzballs
Lunin+Mathur, Lunin+Maldacena, Skenderis+Taylor

Many 3-charge
Bena,Warner, Gimon, Giusto, Saxena, Levi, JMaRT

A large resistance to fuzzballs because black holes look good
do they really?



Possibility of complementarity
                                  Mathur

Infalling shell tunnels into fuzzball solutions

Hawking radiation from JMaRT
BDC+Mathur

No information paradox; just like a piece of coal



Fuzzballs Before I go further, what is the conjecture?

In fact, one should be careful and distinguish two variants of this conjecture. The weak variant is that the black hole microstates are horizon-sized 
stringy configurations that have unitary scattering, but cannot be described accurately using the supergravity approximation. These 
configurations are also sometimes called “fuzzballs.” If the weak Mathur conjecture were true then the typical bulk microstates would be 
configurations where the curvature is Planck scale, and hence cannot be described in supergravity. The strong form of Mathur’s conjecture, which is 
better defined and easier to prove or disprove, is that among the typical black hole microstates there are smooth solutions that can be described 
using supergravity.

Black Holes, Black Rings and their Microstates; Bena, Warner; 2007

Note that in the 3-charge case (unlike the 2-charge case) we do not expect the generic state to be well-described by a classical geometry; 
quantum fluctuations can be large. But there would still be special cases that are in fact well described by a classical metric, and we can 
gain insight by constructing these explicitly.

Dual geometries for a set of 3-charge microstates; Giusto, Mathur, Saxena; 2004 

If we consider extremal holes, and look at states where in the dual CFT we have many component strings in the same state, then we can 
have a good description of the geometry in classical supergravity.

3-charge geometries and their CFT duals; Giusto, Mathur, Saxena; 2005 

....the geometries of [13] have an ‘ergoregion instability’ ..... these decay modes are exactly the ‘Hawking radiation’ from these special microstates.

....such a result may seem surprising, because the instability of [14] is a classical instability, while one normally thinks of Hawking radiation as a 
weak, quantum process. But we will see that this difference arises simply because in the microstates under study we have a ‘large number of CFT 
excitations in the same state’. Consider the radiation emitted by a gas of atoms. Each atom radiates independently, and if there are several different 
excited levels

Radiation from the non-extremal fuzzball; BDC, Mathur; 2008

It is possible that the generic state is not well approximated by a classical configuration; what we do expect though on the basis of all that was 
said above is that the region where the different states depart from each other will be of the order the horizon size and not just a planck sized 
region near the singularity.

Constructing ‘hair’ for the three charge hole; Mathur, Saxena, Srivastava; 2003

10

The last paper is the first paper to appear on 3-charge fuzzballs



The conjecture says there are O(1) corrections to the horizon.

Fuzzballs Before I go further, what is the conjecture?

Does not say anything about actual states being describable by SUGRA

SUGRA was used because thats all we knew

Recent results of de Boer et. al. should be seen as critique of some techniques but 
one must not loose sight of the big picture.

11



AMPS: Two main arguments
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2. Blue shifted quanta B
SBC 6= 0 } Alice burns

1. Horizon cannot be pure state: not Unruh vacuum
after Page time

SAB < SA ) SBC 6= 0

Should fuzzballers be happy or sad about this?
Entire argument in infalling frame



AMPS: Review of assumptions
Assumptions:

Black hole S-matrix unitary

Semi-classical physics outside stretched horizon

Membrane for outside observer

Free fall for infalling observer

Further conjecture: 
        maybe before Page time also

13



Some responses

Bousso, Nomura (Harlow): Weaken postulate two - Observer 
complementarity

Susskind: Firewall behind true horizon, cannot be before Page 
time, extension of singularity (no mechanism)

Figure 3: The region behind the firewall does not exist. The firewall is an extension of the
singularity.

Figure 4: The same as Figure 3 but with the singularity smoothed and spacelike.

evolution of the singularity.

9

Mathur+Turton: Approx. Complementarity from fuzzballs

14



My response: Back to basics

Requirements for Unitarity
1. Purity of final state
2. Invertibility

Previous discussion focussed only on point 1.

15

3. Linearity
4. Preservation of norm

| iiIntroduce ‘D’ for 

Do not need any slices for this 
argument

D

C1

C2



EPR

Invertible | ii ! | f i

B should know about D

Hawking pair is like EPR:

| "Li| #Ri+ | #Li| "Ri⇢L ⇢R| "Li | #Ri

Alice
 cannot communicate to 

Bob
16

ρR does not know about Alice

D

C1

C2

One might
think fuzzballs

non-local effects
but bleaching 

necessary



No Bleaching, No information

Invertible | ii ! | f i

B should know about D

More formally

17

B should be a unitary map of a subsystem of D

Lack of quantum cloning means the said subsystem must be 
bleached

BC cannot be in a special state in general

D

C1

C2



Qubit models: “moving bit” model 1

Simplest evaporation model: move qubits from x to y

Page time (early radiation) are denoted by A, while an outgoing quantum after Page time

(late radiation) is denoted by B. The Hawking-like infalling partner of B is called C. While

AMPS do not specifically refer to the remaining black hole we will denote it by D. Since

we restrict our considerations to the evaporation process su�ciently long before the black

hole reaches Planck size, the systems A and D are large systems in contrast to B and C

which are single quanta. [| AP: in some places we use B as single quantum, in

others as quantA...] [| BDC: In this version A,B,C are being used earlier so

we need to move the definitions to some early place].

While before Page time an outgoing quantum (one quantum of the system A) can

be maximally entangled with its infalling Hawking-like partner, after Page time every

subsequent quantum B has to be entangled with the early radiation A. Thus, a quantum

B cannot be maximally entangled with a quantum C and therefore the BC system cannot

be pure. In particular it cannot be the vacuum state for an infalling observer. We di↵er

the discussion of whether this burns the infalling observer or not to the section ?? [|
AP:make quantum/quanta B, C consistent everywhere].

We would like to argue within the context of qubit models that while the BC system

can definitely not be pure after the Page time it cannot be pure even before the Page time

if unitarity has to be preserved! Before jumping into the details of more complicated qubit

models we consider a very simple intuitive model. Consider a simple unitary evolution

where a system is moved, bit by bit, from location x to location y.[| AP:this model uses

a discrete evolution, comment on no loss of generality or so. BDC: Hawking

quanta also come out in intervals ⇠ M .] We start with a system of n bits in the initial

state

| 0i = |Dx
ni ⌦ · · · ⌦ |Dx

1 i =
1

Y

j=n

|Dx
j i , (2.5)

where each Dj is a qubit (either 0 or 1) and the superscript x denotes the location of a

bit. At the first step of the evolution the first bit gets moved from location x to location

y, |Dx
1 i U1�! |Dy

1i, so that at the ith step the intermediate state is

| ii =
i�1
Y

j=n

|Dx
j i ⌦

1
Y

k=i

|Dy
ki . (2.6)

The final state after n steps,

| ni = Un| 0i =
1

Y

j=n

Uj | 0i =
1

Y

j=n

|Dy
j i , (2.7)

is thus just a relocation of the system in its inital state.

We can use this simple language to model the evaporation process of a system. As

one of the authors has argued in [5] we can introduce auxiliary variables to the system to

view it evaporating via pair production. By adding two bits, say B and C to the system,

we need to “bleach” or “zero” two bits in order to guarantee unitary evolution. Which

qubits are auxiliary and which ones are bleached go in determining the model. Note that
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Where are B and C? 

Turns out it is possible to introduce auxiliary variables at each step

Have to trace over those in the end Avery

18

think of typical states: Dj maximally entangled with D!=j
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not all models are unitary. In the case we are considering the model of evaporation after

introducing two auxiliary qubits at each step is given as follows. The first step of the

evaporation process of (2.5) is thus given by

U 0
1| 0i =

2
Y

j=n

|Dx
j i ⌦ |dx

1i ⌦ |cx
1i ⌦ |Bx

1 i , (2.8)

where |dx
1i and |cx

1i indicate the auxiliary bits1, while for unitarity we must have |Dx
1 i

U 0
1�! |Bx

1 i.
In order to be able to collect the first bit of outcoming radiation away from the surface of

emission at x, we have to relocate the bit |Bx
1 i just as in (2.6) via |Bx

1 i
U 00

1�! |By
1 i. Hence

the state after emission of one bit is

| 1i = U1| 0i = U 00
1 U 0

1| 0i =
2

Y

j=n

|Dx
j i ⌦ |dx
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1i ⌦ |By

1 i . (2.9)

While for illustration we kept the auxiliary states explicitly, unitarity requires them to be

bleached, i.e. set to a fiducial value [| AP: check whether it is possible to set d and

c to two di↵erent fiducial values]

|dx
1i ⌦ |cx

1i = |�i ⌦ |�i . (2.10)

In fact in [5] one of the authors has argued that for such a qubit model to be unitary the

auxiliary state needs to be bleached at each step [| AP:Check if one can bleach to

di↵erent values in di↵erent emission steps]

|dx
i i ⌦ |cx

i i = |�i ⌦ |�i . (2.11)

After the ith emission step we find the intermediate state
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After tracing out the auxiliary state (2.13) is just the relocated intial state (2.5). We

see that we e↵ectively recover our simple “moving bits“ model introduced above. In this

simple model of evaporation using auxiliary bits we can easily see that information leaves

the system in every step of the evaporation process. Moreover, for a generic initial state

(2.5) any small subsystem will be close to being maximally entangled with the remaining

1
Note that instead of taking |Cx

1 i ! |cx1i to be the auxiliary bit we could also choose to map |Dx

2 i onto
|Cx

1 i and then take |Dx

2 i ! |dx2i. This amounts to reshu↵eling the information within the DC system.
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Qubit models: “moving bit” model 2

where each Dj is a qubit (either 0 or 1) and the superscript x denotes the location of a bit.

We have simplified the notation by taking a direction product of the qubits but taking a

state with entanglements between them does not change our results. At the first step of

the evolution the first bit gets moved from location x to location y, |Dx
1 i

U1�! |Dy
1i, so that

at the ith step the intermediate state is

| ii =
i�1
Y

j=n

|Dx
j i ⌦

1
Y

k=i

|Dy
ki . (2.6)

The final state after n steps,

| ni = Un| 0i =
1
Y

j=n

Uj | 0i =
1
Y

j=n

|Dy
j i , (2.7)

is thus just a relocation of the original state. We can use view this “moving bit” model as

a simple evaporation process of a system.

As one of the authors has argued in [8] we can introduce auxiliary variables to the

system to view it evaporating via pair production. In general which qubits are auxiliary

go in determining the model and not all models are unitary. More details can be found in

subsection 2.2. The model we give below is manifestly unitary. In “moving bit” model we

are considering two auxiliary qubits are introduced at each step as follows. The first step

of the “evaporation” process of (2.5) is given by

U 0
1| 0i =

2
Y

j=n

|Dx
j i ⌦ |dx1i ⌦ |cx1i ⌦ |Bx

1 i , (2.8)

where |dx1i and |cx1i indicate the auxiliary bits. This is followed by relocating the qubit

|Bx
1 i to location y via |Bx

1 i
U 00
1�! |By

1 i. Hence, the state after emission of one qubit is

| 1i = U1| 0i = U 00
1 U

0
1| 0i =

2
Y

j=n

|Dx
j i ⌦ |dx1i ⌦ |cx1i ⌦ |By

1 i . (2.9)

To match our “moving bit” model we have |By
1 i = |Dy

1i. Similarly, the state at the ith step

is

| ii =
i+1
Y

j=n

|Dx
j i ⌦

i
Y

k=1

⇣

|dxi i ⌦ |cxi i
⌘

⌦
1
Y

m=1

|By
mi , (2.10)

and the final state is

| ni =
n
Y

j=1

⇣

|dxi i ⌦ |cxi i
⌘

⌦
n
Y

m=1

|By
mi. (2.11)

To match our “moving bits” model we have |By
i i = |Dy

i i. Thus we immediately see that

we never have the system Bici in a pure state. Furthermore, one of the authors has argued

in [8] that to preserve unitarity the auxiliary qubits at the final step must be in a fiducial

form
n
Y

j=1

⇣

|dxi i ⌦ |cxi i
⌘

=
2n
Y

j=1

|�i. (2.12)
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For unitarity auxiliary states have to be in fiducial form

In subsection 2.3 we make this result stronger by arguing that at each step the auxiliary

qubits have to be put in a fiducial form

|dxi i ⌦ |cxi i = |�i ⌦ |�i 8 i (2.13)

After tracing out the auxiliary state (2.11) and recalling that for our simple model

|By
i i = |Di

yi we see that the final state is just the relocated initial state (2.5). In this

simple model of evaporation using auxiliary bits we can easily see that information leaves

the system in every step of the evaporation process. Moreover, for a generic initial state

(2.5) any small subsystem will be close to being maximally entangled with the remaining

(larger) subsystem. Since the map |Dii
U 0

�! |Bii is one to one and onto the outgoing bit

|Bii will be almost maximally entangled with the rest of the non-auxilliary part of BDC.

From our simple model we can observe some important points. Since we set the newly

created quanta Ci to a fiducial form, the BiCi system was never in a pure state. Bleaching

C implies that the BC pair cannot be maximally entangled and thus SBC 6= 0. Even

if, instead of bleaching C, we had bleached qubits in D the outgoing quanta B have to

be entangled with the system D to carry its information. This is not allowed if we have

SBC = 0. This can also be seen using strong subadditivity. For this purpose we essentially

repeat the steps (2.1- 2.4) while replacing system A by system D. Then we get

SBD = SB + SD. (2.14)

if SBC = 0 showing that systems B and D are not correlated. Thus whenever BC is in a

pure state, B cannot carry away information of D. This will be shown in more details in

subsections 2.2 and 2.3.

2.2 Qubit models of evaporation and some specific models in detail

Now let us look a few more models of evaporation within the qubit models. We give a brief

review of the models. For more details and more models the reader is referred to [8]. See

also [? ]. The initial matter is modeled as a set of n “matter qubits”:

⇢0 = | 0ih 0| | 0i 2 span{|q̂1 · · · q̂ni} (2.15)

where each q̂ is a qubit. After a sequence of intermediate steps, the end state consists

entirely of radiation, modeled as a (possibly mixed) density matrix acting on n radiation

qubits, ⇢f . Throughout the evolution we keep the dimension of the physical Hilbert space

fixed.

Let us pause to comment on the last point. First of all, let us note that unitary trans-

formations by definition leave the dimension of the Hilbert space fixed; norm-preserving

transformations that do not keep the dimension fixed are isometries. We expect that a fun-

damental description of any physical quantum system entails a fixed dimensional Hilbert

space; however, there may be situations when it is natural to consider a Hilbert space whose

dimension is not fixed. For instance, if one attempts to model particle creation within mul-

tiparticle quantum mechanics, or an open system where degrees of freedom can enter or
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Information in “moving bit” model

Using this simple “moving bit” model we see

For ‘typical’ D, each bit B is maximally entangled with non-auxiliary 
part of BCD

| ii ! | f i invertible

Information leaves at every step, not just after Page time

|By

i

i = |Dx

i

i

SBC is not zero for any step

|cx
i

i = |�i

Final state is pure
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(larger) subsystem. Since the map |Dii
U 0

�! |Bii is one to one and onto the outgoing bit

|Bii will be almost maximally entangled with the rest of the non-auxilliary part of BDC.

From our simple model we can observe some important points. Since we set the newly

created quant C to a fiducial form, the BC system was never in a pure state. Bleaching

C implies that the BC pair cannot be maximally entangled and thus SBC 6= 0. Even

if, instead of bleaching C, we had bleached qubits in D the outgoing quanta B have to

be entangled with the system D to carry its information. This is not allowed if we have

SBC = 0. This can also be seen using strong subadditivity. We essentially repeat the steps

(2.1- 2.3) while replacing system A by system D. Then we get

SBD = SB + SD. (2.14)

if SBC = 0 showing that systems B and D are not correlated. Thus whenever BC is in a

pure state, B cannot carry away information of D.

Now let us look a few more models of evaporation within the qubit models. We give a

brief review of the models. For more details and more models the reader is referred to [5].

See also [? ]. The initial matter is modeled as a set of n ”matter qubits“:

⇢0 = | 0ih 0| | 0i 2 span{|q̂1 · · · q̂ni} (2.15)

where each q̂ is a qubit. After a sequence of intermediate steps, the end state consists

entirely of radiation, modeled as a (possibly mixed) density matrix acting on n radiation

qubits, ⇢f . Throughout the evolution we keep the dimension of the Hilbert space fixed2.

Following [], we use hats to distinguish the internal black hole qubits from the external

radiation qubits. The hatted qubits represent all degrees of freedom that are inaccessible

outside the black hole; unlike [], we do not distinguish between degrees of freedom from

the initial matter, from gravitational interactions, or any that arise during the evaporation

process. [| Its probably reference 10 in Avery which talks about extra entropy

from gravitation interactions?]. While we keep the dimension of the Hilbert space

fixed, at each step of emission we introduce two auxiliary qubits. Thus in the end we will

end up with 2n hatted auxiliary qubits and the final state will be given by tracing over

them

⇢n = traux[U(⇢aux ⌦ ⇢0)U
†], (2.16)

for some unitary transformation U acting on some auxiliary degrees of freedom as well as

physical degrees of freedom.

We model the evolution in two steps: a creation step e↵ected by operators Ci; and

an internal evolution step e↵ected by Ûi acting on the hatted qubits and Ui acting on the

unhatted radiation qubits. Basis vectors at each step look like

{|q̂1q̂2 · · · q̂n+ii|qiqi�1 · · · q1i}
C

i�! {|q̂1q̂2 · · · q̂n+iq̂n+i+1i|qi+1qiqi�1 · · · q1i}
Û
i

⌦U
i����!

n

Û |q̂1q̂2 · · · q̂n+iq̂n+i+1iU |qi+1qiqi�1 · · · q1i
o

. (2.17)

2
This is not necessarily true for gravitational systems as additional states can be created at lower energies

and even ones at negative energies as should be clear from negative energy states on nice slices. We thank

S. Mathur for pointing this out to us. [| BDC: Need to understand this better.]
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S. Mathur for pointing this out to us. [| BDC: Need to understand this better.]
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1. A set of ˆP s at each step i that satisfy the completeness relation (2.19).
2. The unitary operators ˆUi and Ui for each i.
3. A clear delineation of the auxillary subspace at each step i.

The last item is frequently omitted in our discussion; it should be clear for unitary models, and it
does not make significant differences for the nonunitary models. If one wants to acquire the fixed-
dimensional Hilbert space description, however, then one must trace out the auxillary degrees of
freedom at each step. This gives a very general model space that makes it easy to compare and
contrast different models of evolution.

II.4. Physical Motivations

At this point, the class of models introduced above may seem fairly abstract with little contact
with the original black hole problem. Let us review the physical motivations for this type of model
as laid out in [10] and in [12].

We consider an initial configuration of spherically symmetric matter that forms a black hole,
which we expect should be well described by the Schwarzschild solution. The model is based
on the semiclassical evolution of fields in the background of such a Schwarzschild black hole. In
order to give a Hilbert space description of evolution, it is necessary to specify a spacelike slicing
of the geometry so that we can specify the quantum state of fields on each slice. It is important to
the arguments advanced in [10] that there exists a “nice slicing” of the black hole geometry [22].
This slicing avoids the geometry’s strong curvature, has sub-Planck scale extrinsic and intrinsic
curvature, and yet cuts through the initial matter, horizon, and outgoing Hawking radiation in a
smooth way [10, 22]. Thus, all quantum gravity effects seem to be under control.

Our model should be considered an effective description of the dynamics on the slicing. As is
well known, in the presence of curved backgrounds the quantum field theory notion of particle
becomes observer dependent. If we expand our fields on the slice into modes inside the horizon
and outside the horizon, then one finds that pairs of particles are created inside and outside of the
horizon. More explicitly there is a Bogoliubov transformation such that the in vacuum evolves to
a state of the form exp(�a†insidea

†
outside) acting on the out vacuum. We reduce our problem to an

essentially two-dimensional one by expanding the modes in spherical harmonics. From a two-
dimensional perspective, each harmonic corresponds to a different field. Then following [1, 23],
as emphasized in this context in [12], we can use a set of modes that are localized wavepackets so
that we can talk about locality. This is implicit in the discussion of [10]. Moreover, we can truncate
the Fock space to occupation numbers zero or one. We then are effectively left with a discussion
of qubits, with |0i representing no excitation and |1i representing an excitation.

In this description, a pair of particles are created roughly every M in Planck units, with the
outgoing particles traveling freely outward on the slices and the ingoing particles traveling freely
inward toward the initial matter that is very far away on each slice. The pair of particles are
created entangled, as should be clear from the above exponential. This all suggests an effective,
discrete time evolution with [10, 12–15]

ˆP1 =
ˆI ˆP2,3,4 = 0

ˆU = U = I. (2.20)

Because the particles are well-separated on the slice, we do not expect interparticle interactions to
be significant which is represented by the choice ˆU = U = I . We call this point in model space,
the Hawking model. Location of the particles on the slice can then be read in the following way
from the states. Consider, for illustrative purposes, n = 3 with a state of the form

|q̂1q̂2q̂3iinitial |ˆ14ˆ05iinfalling |0211ioutgoing . (2.21)

Physical motivation



(larger) subsystem. Since the map |Dii
U 0

�! |Bii is one to one and onto the outgoing bit

|Bii will be almost maximally entangled with the rest of the non-auxilliary part of BDC.

From our simple model we can observe some important points. Since we set the newly

created quant C to a fiducial form, the BC system was never in a pure state. Bleaching

C implies that the BC pair cannot be maximally entangled and thus SBC 6= 0. Even

if, instead of bleaching C, we had bleached qubits in D the outgoing quanta B have to

be entangled with the system D to carry its information. This is not allowed if we have

SBC = 0. This can also be seen using strong subadditivity. We essentially repeat the steps

(2.1- 2.3) while replacing system A by system D. Then we get

SBD = SB + SD. (2.14)

if SBC = 0 showing that systems B and D are not correlated. Thus whenever BC is in a

pure state, B cannot carry away information of D.

Now let us look a few more models of evaporation within the qubit models. We give a

brief review of the models. For more details and more models the reader is referred to [5].

See also [? ]. The initial matter is modeled as a set of n ”matter qubits“:

⇢0 = | 0ih 0| | 0i 2 span{|q̂1 · · · q̂ni} (2.15)

where each q̂ is a qubit. After a sequence of intermediate steps, the end state consists

entirely of radiation, modeled as a (possibly mixed) density matrix acting on n radiation

qubits, ⇢f . Throughout the evolution we keep the dimension of the Hilbert space fixed2.

Following [], we use hats to distinguish the internal black hole qubits from the external

radiation qubits. The hatted qubits represent all degrees of freedom that are inaccessible

outside the black hole; unlike [], we do not distinguish between degrees of freedom from

the initial matter, from gravitational interactions, or any that arise during the evaporation

process. [| Its probably reference 10 in Avery which talks about extra entropy

from gravitation interactions?]. While we keep the dimension of the Hilbert space

fixed, at each step of emission we introduce two auxiliary qubits. Thus in the end we will

end up with 2n hatted auxiliary qubits and the final state will be given by tracing over

them

⇢n = traux[U(⇢aux ⌦ ⇢0)U
†], (2.16)

for some unitary transformation U acting on some auxiliary degrees of freedom as well as

physical degrees of freedom.

We model the evolution in two steps: a creation step e↵ected by operators Ci; and

an internal evolution step e↵ected by Ûi acting on the hatted qubits and Ui acting on the

unhatted radiation qubits. Basis vectors at each step look like

{|q̂1q̂2 · · · q̂n+ii|qiqi�1 · · · q1i}
C

i�! {|q̂1q̂2 · · · q̂n+iq̂n+i+1i|qi+1qiqi�1 · · · q1i}
Û
i

⌦U
i����!

n

Û |q̂1q̂2 · · · q̂n+iq̂n+i+1iU |qi+1qiqi�1 · · · q1i
o

. (2.17)

2
This is not necessarily true for gravitational systems as additional states can be created at lower energies

and even ones at negative energies as should be clear from negative energy states on nice slices. We thank

S. Mathur for pointing this out to us. [| BDC: Need to understand this better.]
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step no. BH qubits no. rad. qubits total no. qubits no. aux. qubits state
0 n 0 n 0 | 0i
1 n+ 1 1 n+ 2 2 | 1i
2 n+ 2 2 n+ 4 4 | 2i
...

...
...

...
...

...
i n+ i i n+ 2i 2i | ii
...

...
...

...
...

...
n 2n n 3n 2n | ni

TABLE I. Here we outline the discrete steps in our models. At the 0th or initial step there are n black hole
(BH) qubits and no radiation qubits. At each step in the evolution, the state is given by the ket | ii in an
enlarging Hilbert space.

Of course, one can combine Ci and ˆUi ⌦ Ui into a single operator, but it is useful to break up the
evolution in this way. Also, there is some physical motivation for thinking about the evolution in
this way, since the pair creation time scale is roughly ⇠ M , the black hole mass, while there are
some conjectures that the internal dynamics of the black hole should be as fast [20, 21]. (For a 3+1
dimensional Schwarzschild black hole, the scrambling time is speculated to be ⇠ M logM , but
the evolution time step is ⇠ M .)

For the majority of the discussion, we focus on the Ci and are content to set ˆUi = Ui = I . What
properties should the Ci satisfy? We want Ci to preserve the norm and be linear, which means
that we should require

(Ci)
†Ci = I, (2.16)

where there is no sum on i. Note that this is not the same as Ci(Ci)
† since the Ci have nonsquare

matrix representations; the above requirement makes Ci an isometric, but nonunitary mapping.
We also assume that the Ci act only on the hatted black hole qubits and not on the unhatted
radiation qubits which are far away from the pair creation site.

We can write the Ci in the following form

Ci = |'1i ⌦ ˆP1 + |'2i ⌦ ˆP2 + |'3i ⌦ ˆP3 + |'4i ⌦ ˆP4, (2.17)

where |'ji are an orthonormal basis for the created pair qubits, and the ˆP ’s are linear operators
which act on the hatted qubits (with implicit i dependence). Following [12, 13], we use the basis

|'i
1i =

1p
2

�

|ˆ0n+i+1i |0i+1i+ |ˆ1n+i+1i |1i+1i
�

|'i
2i =

1p
2

�

|ˆ0n+i+1i |0i+1i � |ˆ1n+i+1i |1i+1i
�

|'i
3i = |ˆ0n+i+1i |1i+1i

|'i
4i = |ˆ1n+i+1i |0i+1i ,

(2.18)

for the newly created pair. The constraint in Equation (2.16) implies the following condition on
the ˆP s:

(Ci)
†Ci =

ˆP †
1
ˆP1 +

ˆP †
2
ˆP2 +

ˆP †
3
ˆP3 +

ˆP †
4
ˆP4 =

ˆI. (2.19)

Note that this defines the ˆP s as a set of generalized measurement operators acting on the black
hole Hilbert space.

A fully specified model, then, entails

eĉ
†b† |0̂0i
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Hawking model:

9

The first three hatted qubits represent the initial infalling matter. Note that in the Hawking model
this matter plays no role in the evolution. In general, we imagine that we find some qubit descrip-
tion of the initial matter, the details of which are irrelevant to our concerns here. The next two
hatted qubits represent the infalling Hawking radiation as it travels inward on the slices. We see
that on the first time step, a particle was emitted but not on the second time step. The two unhat-
ted bits represent the outgoing radiation, so the above implies an outgoing particle was emitted
on the first time step and then no particle on the second time step. We have written the qubits
in the above order so that reading from left to right loosely corresponds to traveling outward on
the slice. This allows us to talk about a coarse form of locality [10, 12]. Note that in the Hawking
model the above state would be superposed with several other direct product states.

As discussed in the Introduction and for this context in [10, 12, 14, 15], the above semiclassical
description of Hawking evaporation is incomplete. In particular, one expects quantum gravity
effects, backreaction, and interactions to play a role. Because of the nature of the nice slicing
and the low curvature at the horizon, however, one generally expects all of these corrections to
be small. That is to say, on the pair creation time scale, one expects from naive estimates that
the dynamics be ✏ away from the above. This expectation is in considerable tension with the
expectation that the dynamics are unitary. For instance, we might introduce a set of ˆP s that act
on the last emitted ingoing particle. This would suggest that the horizon is not effectively the
vacuum and still “remembers” the previous emission. One might also allow some mild nonlocal
interactions inside the black hole via some nearest neighbor ˆUis. Or, motivated by holography and
fast scrambling [20, 21, 24], one might consider general ˆUis, in which case one gives up all notions
of locality on the slice inside the black hole. The distinction between the initial matter and the
infalling particles is also lost. Allowing general internal dynamics does not affect the argument
of [10] and its generalization in Section IV, which only relies on the pair creation, ˆPis, being close
to the Hawking model. We will always use U = I , since there is no physical motivation to consider
strong interactions among the outgoing radiation. (Such corrections would also be irrelevant to
Mathur’s bound on the entanglement entropy.) This should become clear after we examine some
examples.

III. EXAMPLES

In this section, we highlight some special points in model space that may be of interest and/or
were discussed in the recent literature. One of the main results of this paper is the one-parameter
family of models presented in Section VI that continuously deforms the Hawking pair production
in Section III.1 into the unitary evolution in Section III.3; however, it is also useful to write the
various models in a common form, so that the similarities and differences are manifest. This is
especially true when one wants to compare unitary models to nonunitary models. We start with
the canonical Hawking evaporation model. This should be thought of as the baseline model to
which all other models should be compared.

III.1. The Hawking Model

The standard Hawking evaporation corresponds to creating a new pair in the state |'1i irre-
spective of the state of the system, as discussed at length in Section II.4. Thus, it can be written
as

CH
i = |'1i ⌦ ˆI ˆU = U = I, (3.1)

n log 2

10

and so we can write the ˆP s as

ˆP1 =
ˆI ˆP2,3,4 = 0. (3.2)

In [10], Mathur showed that if the created pair is at most ✏ away from |'1i, then the entanglement
entropy of the radiation continues to grow with each step and thus the final state is mixed and
unitarity is lost. In this language, the bound shows that if the ˆP s are small deformations from the
above, then the final state will be mixed and the evolution will not be unitary. In the sequel, we
demonstrate this quite explicitly.

III.2. A Burning Paper Model

Here, we present a unitary “burning paper” model that is equivalent to the one given in [13]:8

ˆP1 =
ˆP2 =



1p
2

|ˆ0ˆ0i hˆ0ˆ0|+ 1

2

|ˆ1ˆ0i hˆ1ˆ0|� 1

2

|ˆ1ˆ0i hˆ0ˆ1|
�

n+i�1,n+i

ˆP3 =



|ˆ1ˆ0i hˆ1ˆ1|+ 1p
2

|ˆ0ˆ0i hˆ1ˆ0|+ 1p
2

|ˆ0ˆ0i hˆ0ˆ1|
�

n+i�1,n+i

ˆP4 = 0,

(3.3)

where the subscript on the brackets indicates that the qubits referred to are the (n + i � 1)th and
the (n+ i)th qubits. It should be clear that this model is quite far from the Hawking model. This
models the creation step as

Ci = |ˆ0n+i+1i |1ii ⌦


|ˆ1ˆ0i hˆ1ˆ1|+ 1p
2

|ˆ0ˆ0i hˆ1ˆ0|+ 1p
2

|ˆ0ˆ0i hˆ0ˆ1|
�

n+i�1,n+i

+ |ˆ0n+i+1i |0ii ⌦


|ˆ0ˆ0i hˆ0ˆ0|+ 1p
2

|ˆ1ˆ0i hˆ1ˆ0|� 1p
2

|ˆ1ˆ0i hˆ0ˆ1|
�

n+i�1,n+i

. (3.4)

The important property of the evolution to note is that the (n+ i+1)th black hole qubit is always
ˆ

0, as is the (n + i)th qubit. Thus these two qubits are “zeroed,” and effectively deactivated. We
use the word zeroed in this sense, even if the qubit under discussion is deactivated to a different
value. (It could even be something like imod2. In this situation, the information is sometimes
said to be “bleached” out of the state.) It is clear, then, that these two qubits should be thought of
as the auxillary qubits at intermediate steps. We’ll discuss this a bit more in Section V.

We also introduce some interesting internal dynamics. First, we need to move the auxillary
qubits out of the way, so that they don’t affect the next radiation step. So we first cyclically shift
all of the qubits 2 positions to the right, thus shoving the two ˆ

0s to the two leftmost positions, 1
and 2. Then, we introduce some dynamics for the physical degrees of freedom. We cyclically shift
only the nonauxillary qubits to the right by one unit. This defines ˆU so that the model agrees with
the burning paper model studied in [13]. If we chop off the zeroed qubits, we recover the model
exactly.

The first model in [12] is in the same class of models. It too zeroes two qubits, one of which is
the newly created black hole qubit. The main difference being that instead of the radiation being

8 Throughout the discussion, the reader may assume that the identity acts on any subspaces which are not explicitly
shown.

Burning Paper:

Moving bit:

For simplicity, let us take n even. Then, for the first n/2 timesteps let the pair creation be

governed by exactly the Hawking pair creation process

Ci = |'Hawkingi ⌦ Î i <
n

2
. (2.23)

Then, on subsequent steps we want to begin bleaching and emitting the information out

of the n/2 newly created black hole qubits. We can do this with the operator

Ci = |0̂0ipair ⌦ |0̂ih0̂|n
2 +i + |0̂1ipair ⌦ |0̂ih1̂|n

2 +i. (2.24)

This e↵ectively bleaches two qubits: the brand new ingoing qubit and the n
2 + ith qubit.

The new radiation qubit carries the information of the n
2 + ith qubit, which is the ith

ingoing qubit. Let us work through an 4 qubit example of the evolution to illustrate the

dynamics.
|q̂1 · · · q̂4i

�! 1p
2
|q̂1 · · · q̂4i(|0̂0i + |1̂1i)

�!1

2
|q̂1 · · · q̂4i(|0̂0̂00i + |0̂1̂10i + |1̂0̂01i + |1̂1̂11i)

�!1

2
|q̂1 · · · q̂40̂i(|0̂0̂000i + |1̂0̂010i + |0̂0̂101i + |1̂0̂111i)

�!1

2
|q̂1 · · · q̂40̂0̂0̂0̂i(|0000i + |1010i + |0101i + |1111i).

(2.25)

The radiation process is entirely independent of the initial state, and we see that the

radiation in the final state is in a pure state once we trace out the hatted space. [|
The language needs to be cleared up and there needs to be more exposi-

tion/explanation, but this is the model. SA]

3 Fuzzballs and approximate complementarity

In this section we will work entirely within the context of AdS/CFT but we expect the

results to be more general. Let us start with an atypical state in a CFT which is dual to an

infalling shell in global AdS. We expect the final CFT state (at the end of the collapse of the

shell[| , after a time M log M ,]) to be a typical state, denoted by | i. For the questions

we are interested in we can approximate this typical state by a thermal density matrix ⇢ by

using the standard technique of going from the micro-canonical to the canonical ensemble.

The temperature used is fixed by the dynamics of the system and the energy of the state

| i. The expectation values of operators Ô acting on the typical state get approximated

by a thermal average over the energy eigenvalues Ek

h |Ô| i ⇡ Tr(⇢Ô) =
1
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Interestingly, any density matrix may be “purified” by enlarging the Hilbert space.

For example, a density matrix of the form

⇢ = a|AihA| + b|BihB| (3.2)
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tion of the initial matter, the details of which are irrelevant to our concerns here. The next two
hatted qubits represent the infalling Hawking radiation as it travels inward on the slices. We see
that on the first time step, a particle was emitted but not on the second time step. The two unhat-
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2
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2 + ith qubit.

The new radiation qubit carries the information of the n
2 + ith qubit, which is the ith

ingoing qubit. Let us work through an 4 qubit example of the evolution to illustrate the

dynamics.
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�!1

2
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�!1
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|q̂1 · · · q̂40̂0̂0̂0̂i(|0000i + |1010i + |0101i + |1111i).
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In this section we will work entirely within the context of AdS/CFT but we expect the

results to be more general. Let us start with an atypical state in a CFT which is dual to an

infalling shell in global AdS. We expect the final CFT state (at the end of the collapse of the

shell[| , after a time M log M ,]) to be a typical state, denoted by | i. For the questions

we are interested in we can approximate this typical state by a thermal density matrix ⇢ by

using the standard technique of going from the micro-canonical to the canonical ensemble.

The temperature used is fixed by the dynamics of the system and the energy of the state
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by a thermal average over the energy eigenvalues Ek
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1

P

i e
� E

i

kT

X

k

e�E

k
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Interestingly, any density matrix may be “purified” by enlarging the Hilbert space.
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n

2
. (2.23)

Then, on subsequent steps we want to begin bleaching and emitting the information out

of the n/2 newly created black hole qubits. We can do this with the operator

Ci = |0̂0ipair ⌦ |0̂ih0̂|n
2 +i + |0̂1ipair ⌦ |0̂ih1̂|n

2 +i. (2.24)

This e↵ectively bleaches two qubits: the brand new ingoing qubit and the n
2 + ith qubit.

The new radiation qubit carries the information of the n
2 + ith qubit, which is the ith

ingoing qubit. Let us work through an 4 qubit example of the evolution to illustrate the

dynamics.
|q̂1 · · · q̂4i

�! 1p
2
|q̂1 · · · q̂4i(|0̂0i + |1̂1i)

�!1

2
|q̂1 · · · q̂4i(|0̂0̂00i + |0̂1̂10i + |1̂0̂01i + |1̂1̂11i)

�!1

2
|q̂1 · · · q̂40̂i(|0̂0̂000i + |1̂0̂010i + |0̂0̂101i + |1̂0̂111i)

�!1

2
|q̂1 · · · q̂40̂0̂0̂0̂i(|0000i + |1010i + |0101i + |1111i).

(2.25)

The radiation process is entirely independent of the initial state, and we see that the

radiation in the final state is in a pure state once we trace out the hatted space. [|
The language needs to be cleared up and there needs to be more exposi-

tion/explanation, but this is the model. SA]

3 Fuzzballs and approximate complementarity

In this section we will work entirely within the context of AdS/CFT but we expect the

results to be more general. Let us start with an atypical state in a CFT which is dual to an

infalling shell in global AdS. We expect the final CFT state (at the end of the collapse of the

shell[| , after a time M log M ,]) to be a typical state, denoted by | i. For the questions

we are interested in we can approximate this typical state by a thermal density matrix ⇢ by

using the standard technique of going from the micro-canonical to the canonical ensemble.

The temperature used is fixed by the dynamics of the system and the energy of the state
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3
SBHZurek showed that irreversible black hole radiation 

reversible black hole radiation Srad = SBH

Do not expect black hole properties to depend on how they form or 
evaporate.

In any case, effects of irreversibility should be spread out

Unitarity requires horizon to not be in Unruh 
vacuum



escapes to infinity. There are no incoming quanta outside the potential barrier. We refer

to the region between the fuzz and the potential barrier as “near-fuzz” region in analogy

with the “near-horizon” region.

Figure 4. To answer the infall question we have to discuss the interaction of the infalling observer
with the full system: radiation quanta emitted from the fuzzball either cross the potential barrier at
r⇤ or get reflected back into the fuzz. An infalling observer thus encounters single radiation quanta
outside the barrier but a lot of quanta “bouncing” between the barrier and the fuzz. Further
they encounter the fuzz itself. We refer to this region as “near-fuzz” instead of “near-horizon” to
emphasize the lack of a horizon in the fuzzball picture.

In arguing for a firewall, AMPS discussed the experience of an infalling observer with

quantum B. However, in order to do so, it has to be possible to talk about interaction with

B in isolation. This can indeed be done outside of the potential barrier located at r⇤. We

can repeat the argument of AMPS: after Page time, and even before it based on our analysis

in Section 2, quantum B cannot generically be maximally entangled with any quantum in

the near-fuzz region. However, since the quanta B is not su�ciently blue shifted and close

to the horizon, one cannot argue for a firewall. However, if we then allow the infalling

observer to cross into the near-fuzz region then her experience is not just with quantum

B but with many more such quanta. To look at the complete experience of an observer

falling into a fuzzball one must deal with her encountering all the quanta in the near-fuzz

region and more importantly the “fuzz” itself. Both of these are missing in the analysis

of AMPS. While this might seem a daunting task, fortunately after scrambling time it is

possible to make an insightful approximation which we elaborate on in the remainder of

this section.

In [58] Maldacena and Strominger made a very interesting observation. They found

that the radiation from a black hole that comes out filtered through the potential barriers

is reproduced by emission from D-brane bound states. These ideas lead to AdS/CFT [59]

which essentially stated that for certain black holes the near-horizon region, including the

potential barriers, is dual to a conformal field theory. While strict AdS/CFT is in the low

energy limit where the potential barriers become infinite and nothing leaks out, we use it in

the near decoupling limit as was done in [58, 60–62]. Then one can imagine the following

scenario. Infalling matter, described by closed strings in flat spacetime, hits a stack of

D-branes and becomes a non-typical state in the CFT. In time it becomes typical. Such

a state can be approximated by a thermal state which can then be purified by entangling
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Lots of experience with atypical: Ergoregion instability is Bose 
enhanced Hawking radiation (BDC,Mathur)

What about typical fuzzballs?

AMPS’ argument in the near fuzz region: cannot talk about 
isolated quantum DAUNTING TASK! But only then can one talk 
about firewalls!



shown in Figure 8. How can this miraculous thing happen? How can in one description a

quanta smash into a fuzzy mess and yet in another description it sails through unharmed?

We would like to observe that something like this already happens in AdS/CFT. A

closed string hitting a stack of D-branes has a dual description in terms of a closed string

moving into an AdS region. To show how this happens there would be tantamount to

proving AdS/CFT which, as is well known, is no easy task. We do not attempt to do so

in this paper and we also do not attempt to explain how fuzzball complementarity arises

either, but note that actually proving it is expected to be hard.

3.3 No firewalls

What we argued for above is that for appropriate coarse grained operators typical asymp-

totically AdS fuzzballs can be approximate by the eternal AdS Schwarzschild black hole.

If infall is captured by such operators then infalling observer would have a drama free

experience. How does this relate to asymptotically flat black holes which evaporate away?

According to the arguments in [58] the CFT captures the physics inside the potential

barriers. Thus the arguments of the preceding subsection suggest that the region r <

r⇤ ⇠ GM in Figure 4 may be approximated by an eternal Schwarzschild black hole in

the Hartle Hawking state as shown in Figure 9. Furthermore by arguments of Section 2

this approximate picture is also limited in time to be valid for t < t
em

⇠ GM to avoid

information loss.

Figure 9. The region inside r⇤ of Figure 4 can be approximated by a black hole geometry in
the Hartle-Hawking state. Unitairty requires that such an approximation be valid only for times
less that ⇠ GM . In other words it is not consistent to patch such geometries together in time for
times larger than ⇠ GM . A high energy (E � (GM)�1 ⇠ kT ) infalling quantum experiences
the black hole geometry. Since the time for infall is ⇠ GM it is consistent with the limits on the
approximation. However, a low energy quantum (E ⇠ kT ) does not experience a universal infall.

Thus we see that a high energy quantum (E � (GM)�1 ⇠ kT ) experiences the

fuzzball as a black hole and has the possibility of a drama free infall10 . However, a low

energy quantum (E ⇠ kT ) has a wavelength of the order of the size of the region being

approximated. Thus the approximation is not valid for such a quantum. It does not “see”

the approximated black hole geometry and thus cannot have a drama free infall. Indeed,

10Exact details will depend on whether the observer is modeled by a simple Unruh-de Witt detector or

something more complicated. This will decide how fine-grained the operator is.
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region and more importantly the “fuzz” itself. Both of these are missing in the analysis

of AMPS. While this might seem a daunting task, fortunately after scrambling time it is

possible to make an insightful approximation which we elaborate on in the remainder of

this section.

In [58] Maldacena and Strominger made a very interesting observation. They found

that the radiation from a black hole that comes out filtered through the potential barriers

is reproduced by emission from D-brane bound states. These ideas lead to AdS/CFT [59]

which essentially stated that for certain black holes the near-horizon region, including the

potential barriers, is dual to a conformal field theory. While strict AdS/CFT is in the low

energy limit where the potential barriers become infinite and nothing leaks out, we use it in

the near decoupling limit as was done in [58, 60–62]. Then one can imagine the following

scenario. Infalling matter, described by closed strings in flat spacetime, hits a stack of

D-branes and becomes a non-typical state in the CFT. In time it becomes typical. Such

a state can be approximated by a thermal state which can then be purified by entangling
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Fuzzballs: Fuzzball Complimentarity (conjecture)the original CFT with a second auxiliary one. Based on Israel’s description of eternal

black holes [63], Maldacena showed that such a state of two copies of the CFT is dual to an

eternal AdS-Schwarzschild black hole in the Hartle-Hawking state [64]. In this sense typical

fuzzball states, which are dual to states in a single copy of the CFT, can be approximated

by a black hole. While we use AdS/CFT in the argument for better control we expect

the basic principle to hold generally. For typical fuzzballs the region inside the potential

barriers (r < r⇤) may be approximated by an eternal black hole in the Hartle-Hawking

state. It is well known that infall in such a geometry is drama-free. We discuss this in

much more detail in the rest of the section.

Let us focus on the limits that are imposed on this approximation. The approxi-

mation of the fuzz and surrounding region by the eternal black hole is restricted to the

region between the fuzz and the potential barriers. This region has a size of the order

of Schwarzschild radius (⇠ GM). Furthermore, we argued in Section 2 that to preserve

unitarity every emerging quanta carries information. As the time between emitted quanta

is ⇠ GM the approximation cannot be valid for time scales longer than ⇠ GM . Together

these imply that the approximation of typical fuzzballs by black holes is valid only inside

a ball of radius ⇠ GM and only for times less than ⇠ GM .

A high energy incoming quantum (E � (GM)�1 ⇠ kT ) “sees” a black hole geom-

etry and has a universal infall through typical fuzzballs while an incoming quantum of

typical energy (E ⇠ (GM)�1) does not see the black hole geometry. This is the idea of

fuzzball complementarity and it di↵ers from BHC which certifies a free infall for all quanta,

irrespective of their energy.

For the rest of the section we make the idea of fuzzball complementarity clearer using

AdS/CFT. Throughout this it should be kept in mind that the approximation giving an

AdS Schwarzschild geometry in the Hartle-Hawking state is valid inside a spacetime ball

of size ⇠ GM .

3.2 Fuzzball complementarity

We now argue how fuzzball complementarity may be obtained within the AdS/CFT con-

text. Two things must be kept in mind: (a) while we expect the lessons to be more general

than AdS/CFT, we use it to make things precise, and (b) this approximation is only valid

for the region inside the potential barrier surrounding the fuzzball and only for times less

than the time between successive emitted quanta.

Let us start with an atypical state in a CFT which is dual to an infalling shell in global

AdS. We expect the state to become typical after scrambling time. The time taken for this

process is important in that it is only after this time that fuzzball complementarity will be

valid.

For many questions we can approximate a typical state by a thermal density matrix

⇢ by using the standard technique of going from the micro-canonical to the canonical

ensemble. The temperature of the approximated thermal density matrix is fixed by the

dynamics of the system and the energy of the typical state | i. The expectation values

of coarse grained operators Ô in the typical state get approximated by a thermal average
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Figure 9. The region inside r⇤ of Figure 4 can be approximated by a black hole geometry in
the Hartle-Hawking state. Unitairty requires that such an approximation be valid only for times
less that ⇠ GM . In other words it is not consistent to patch such geometries together in time for
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the black hole geometry. Since the time for infall is ⇠ GM it is consistent with the limits on the
approximation. However, a low energy quantum (E ⇠ kT ) does not experience a universal infall.

Thus we see that a high energy quantum (E � (GM)�1 ⇠ kT ) experiences the

fuzzball as a black hole and has the possibility of a drama free infall10 . However, a low

energy quantum (E ⇠ kT ) has a wavelength of the order of the size of the region being

approximated. Thus the approximation is not valid for such a quantum. It does not “see”

the approximated black hole geometry and thus cannot have a drama free infall. Indeed,

10Exact details will depend on whether the observer is modeled by a simple Unruh-de Witt detector or

something more complicated. This will decide how fine-grained the operator is.
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Fuzzballs: Possibility of complementarity

(a) (b)

(c) (d)

Figure 4. The D-brane description of a closed string scattering is given in (a) and (b). The closed
string hits a D-brane and the strong interaction breaks it into two open strings. The dual description
of this process is shown in (c) and (d) where the closed string falls into an AdS like region. In this
description it looks like nothing drastic happened to the closed string. Strong interactions of the
D-branes with the closed string are not enough to preclude a description where the closed string
just falls into some space-time.

to an infalling shell in global AdS. We expect the final CFT state to be a typical state,

denoted by | i. The time taken for this process is important in that its only after this

time the approximate complementarity of fuzzballs will be valid. We expect this time to

be the scrambling time which for Schwarzschild black hole is conjectured to be M logM

so is very quick.

For the many questions we can approximate this typical state by a thermal density

matrix ⇢ by using the standard technique of going from the micro-canonical to the canonical

ensemble. We can make this approximate for processes which probe scales larger than the

temperature E � kT . The temperature of the approximated thermal density matrix is

fixed by the dynamics of the system and the energy of the state | i. The expectation

values of operators Ô acting on the typical state get approximated by a thermal average

over the energy eigenvalues Ek

h |Ô| i ⇡ Tr(⇢Ô) =
1P

i e
� Ei

kT

X
k

e�
Ek
kT hEk|Ô|Eki . (3.2)

Interestingly, any density matrix may be “purified” by enlarging the Hilbert space.

For example, a density matrix of the form

⇢ = a|AihA|+ b|BihB| (3.3)

with orthonormal {|Ai, |Bi} can be purified by introducing an auxiliary set of orthonormal
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We already have an example: AdS/CFT 
Das+Mathur, Madlacena+Strominger, Lunin-Mathur, BDC+Mathur
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For this part we use AdS/CFT but expect lessons more general
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Density matrices can be purified

states {|↵i, |�i} and defining

| i =
p
a|Ai ⌦ |↵i+

p
b|Bi ⌦ |�i. (3.4)

One recovers ⇢ as the reduced density matrix by tracing out the newly introduced degrees

of freedom. We already seen one use of this technique in section 2.2.

We can purify the density matrix as defined in (3.2) by addition of states on an auxiliary

CFT to obtain the pure state

| i = 1qP
i e

� Ei
kT

X
k

e�
Ek
2kT |EkiL ⌦ |EkiR , (3.5)

where |EkiR denote the energy eigentstates of the original CFT, which we will call CFTR,

while |EkiL are the energy eigenstates of an auxiliary CFTL. The subsripts will be at-

tributed an interpretation shortly. With this we can re-write (3.2) as

Rh |ÔR| iR ⇡ h |ÔR| i. (3.6)

It should be noted that purification is a formal mathematical operation and not a dynamical

process. In particular, the new kets |EkiL that belong to the new CFTL do not correspond

to any real degrees of freedom. Interestingly, Maldacena found in [20] however that the

state (3.5) is dual to an eternal AdS black hole as depicted in figure 5. Note that the CFTL

and CFTR on either side of the Penrose diagram are entangled as a result of the purification

process. In [21] Van Raamsdonk has recently taken this notion of entanglement of states,

Figure 5. Penrose diagram of the extended AdS Schwarzschild black hole. It contains two asymp-
totically AdS regions that each lie behind the horizon of the other region and contain each a
boundary CFT.

or CFTs, further to the entanglement of asymptotically gravitational solutions. Each state

|Eki of one of Maldacena’s CFTs should be dual to a gravitational asymptotically AdS

solution |gki. Thus we should be able to write the eternal AdS black hole geometry as

|Gieternal =
1qP
i e

� Ei
kT

X
k

e�
Ek
2kT |gkiL ⌦ |gkiR . (3.7)

Note that while the left and right wedges of the Penrose diagram of the eternal black hole

are connected, the gravity duals of CFTL and CFTR, respectively, are a priori unrelated
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eternal AdS black hole
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Using AdS/CFT each CFT state dual to (at least asymptotically) 
gravitational solution

and only the entanglement of the states |EkiL and |EkiR leads to a “connection” of the

gravitational solutions |gkiL and |gkiR. Note the similarity of this procedure of getting

the eternal AdS black hole as entangled gravitational solutions (3.7) to the procedure of

getting the Minkowski vacuum as an entanglement of Rindler states (3.1). However, also

note that while (3.1) is an exact result and thus any probe “sees” this relation, (3.7) is an

approximation in that only operators which probe physics at E � kT “see” this structure.

Let us pause here to recall what we have done so far. We started with an atypical state

in a CFT that corresponded to an infalling shell in AdS that evolved to a typical state.

For the questions which probe physics at E � kT , we approximated the typical state by a

thermal density matrix and purified the latter by entangling the original states of the CFT

with states in an auxiliary CFT. The result of Maldacena shows that the gravitational dual

of this purified state is the eternal AdS black hole solution. Results of van Raamsdonk

suggest and that the Penrose diagram of an eternal black hole can be seen as entangled

gravitational solutions, each being dual to a state in one copy of the CFT.

So far we have not said anything about the gravitational dual of the original typical

state. With the above picture in mind we can now ask about the final state of the collapsing

shell in AdS. One might be tempted to think that the |gki are AdS Schwarzschild black

hole solutions; but this leads to the information paradox. Based on the conclusions of

the section (??) we expect the |gki to be solutions which end before the horizon in some

sense or at least do not have the usual notion of a horizon. Indeed, we will work under

the assumption that |gki as fuzzball solutions which have some complicated stringy, fuzzy

structure in the core but have no horizons or singularities.

Thus the Penrose diagram of an eternal AdS black hole can then be understood as an

entanglement of fuzzball solutions |gkiL and |gkiR. This is depicted in figure 6. We want

Figure 6. The extended AdS Schwarzschild black hole can be understood as the sum over entangled
fuzzball solutions |gkiL and |gkiR.

to emphasize again that this picture is only auxiliary. There is only one real set of fuzzball

solutions, {|gkiR}, the other one is purely auxiliary and does not carry any real degrees of

freedom.

What are the implications of this for an observable Ô measured in a typical fuzzball

|giR? From the above discussion we see that if Ô corresponds to the CFT energy E �
kT (and thus also local energy much greater than local temperature) we can obtain an

approximate answer by inserting the operator in the eternal AdS-Schwarzschild solution.
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This is shown in the figure 7 and expressed as

Rh g|ÔR| giR ⇡ hG|ÔR|Gi. (3.8)

(a) (b)

Figure 7. (a) [| needs to be modified] Expectation value of an operator ÔR in a given fuzzball
state | giR. (b) For suitable ÔR, this expectation value can be approximated by the canonical
ensemble over fuzzball states, and thus computed in the eternal AdS black hole geometry.

This is all well for a time independent operator. However, what can we say about

an infalling observers? These would correspond to time dependent operators. Here comes

the most beautiful part of Mathur’s approximate fuzzball complementarity proposal. He

claims that the above picture is still valid. An infalling observer will hit the complicated

stringy fuzz at the core of geometry since there is no where else to go. Spacetime ends

there! However, the above discussion suggests that there is an approximate description of

the process where the infalling observer goes past the region where the complicated fuzz

was supposed to exist. However, this approximate description is short lived as there is a

singularity which the infalling quanta will hit. This is shown in figure ??. How can this

miraculous thing happen? How can in one description a quanta smash into a fuzzy mess

and yet have a description where it sails through unharmed. We have already mentioned

this happens in the case of AdS/CFT in section 4. To show how this happens there would

be tantamount to proving AdS/CFT which, as is well known, is no easy task. We will

not attempt to do so in this paper and also not attempt to explain how approximate

complementarity arises for fuzzballs either but note that actually proving it is expected to

be hard. Neverthelss the above discussion strongly suggests such a picture for high energy

quanta with E � kT . This approximate complementarity is depicted in figure 8.

Finally we would like to observe some points about the separation of scales E � kT

and E ⇠ kT . The emission from a system carries information about its structure and

therefore we would expect the microstructure of the fuzzballs to have typical structure at

the scale of the temperature T . Thus should we see the quanta which come out of the

fuzzballs with energy E as separate from the fuzzballs or part of the fuzzballs. Since they

are part of the same system evaporating we would expect the latter to be the answer. In

that case the approximation used to get the description in figure 8 has already taken these

quanta into account.

Note that the discussion so far was based on typical states which are very close to

thermal states and have thus no significant net evaporation. In contrast the argument by
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(a) (b)

(c) (d)

Figure 8. In (a) and (b) we show the process of infall into a typical fuzzball. Based on the
discussion in the bulk we expect that a high energy quanta hitting such a fuzzball will be absorbed
by it and excite its collective modes. This process is expected to have an alternate description of
infall into a black hole shown in figure (c) and (d). Note that this description is short lived as is
evidenced by the presence of a singularity. This feature is related to the limited phase space coming
finiteness of the hilbert space of the fuzzball.

AMPS is for black holes which evaporate a quantum every time step �t ⇠ GM . While one

might expect the discussion above to change once Hawking radiation is incorporated, we

will argue that the modification is negligibly small (at least for large enough black holes).

The reason for this is that the thermalization time scale for the black hole after it has

completely evaporated into Hawking radiation is tHawking ⇠ M3 while that of the black

hole between the emission of two Hawking quanta is tscrambling ⇠ M logM . During a single

emission the change in temperature to total temperature ratio is

�T

T
⇡ 1

GM2
. (3.9)

This change in temperature is negligible for a large black hole (GM >> lp) and it can

therefore be approximated by its equilibrium configuration. Hence, we can apply the

above discussion to large Schwarzschild black holes in the same way as we did for eternal

black holes.

3.3 AMPS vs fuzzball complementarity

In this section we try to understand what is wrong with the second part of AMPS’s argu-

ment that an infalling observer will burn and therefore have no experience which can be

described by a black hole in the context of the fuzzball proposal. Let us recall our results
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described by a black hole in the context of the fuzzball proposal. Let us recall our results
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Conjecture: Similar story for observables capturing infall
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Is Alice burning or fuzzing?

D AB

B entangled with D and A both

Spacetime behind the horizon and the singularity are a 
short lived t~M approximate description

Alice’s encounter with B is strong (AMPS)
inconsistent to look at that in isolation

Unruh radiation

|0i =
X

e�E/2|EiL ⌦ |EiR



Fuzzballs: Possibility of complementarity

34

Is Alice burning or fuzzing?

D B A

Alice’s encounter with BD is strong

Approximate complementarity arguments show the BD 
system should be replaced by temporary picture with 
horizon and singularity not just D

A



carry out information, no free infall

Conclusions
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Is Alice burning or fuzzing?

Approximate complementarity different from Black hole 
complementarity

Inside of black hole only for E � kT

Low energy quanta                  part of fuzzball structureE ⇠ kT

Alice! Alice! Who the f*** is Alice?

such infalling quanta will undergo Brownian motion

In the fuzzball conjecture infalling Hawking quanta 
auxiliary

SBC is not zero if unitarity is to be preserved

temporary description of emergent space from fuzz


