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The Maxwell potential of the solution is

A = µ
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dt . (5.5)

We have required the Maxwell potential to vanish on the horizon, At(r+) =
0. The simplest argument for this condition is that otherwise the holonomy
of the potential around the Euclidean time circle would remain nonzero when
the circle collapsed at the horizon, indicating a singular gauge connection.
The planar Reissner-Nordström-AdS solution is characterized by two scales,
the chemical potential µ = limr�0At and the horizon radius r+. From the
dual field theory perspective, it is more physical to think in terms of the
temperature than the horizon radius
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The black hole is illustrated in figure 4 below. This black hole, which can

Figure 4 The planar Reissner-Nordström-AdS black hole. The charge den-
sity is sourced entirely by flux emanating from the black hole horizon.

additionally carry a magnetic charge, was the starting point for holographic
approaches to finite density condensed matter [27, 28].

Because the underlying UV theory is scale invariant, the only dimension-
less quantity that we can discuss is the ratio T/µ. In order to answer our
basic question about the IR physics at low temperature, we must take the
limit T/µ ⇥ 1 of the solution. We thereby obtain the extremal Reissner-
Nordström-AdS black hole with

f(r) = 1� 4
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The near-horizon extremal geometry, capturing the field theory IR, follows
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I. Introduction

An ab initio interesting question in theoretical physics is 
the classification of states of matter.  Interesting new states 
are thought to arise in finite density QCD; in materials of 

modern interest in condensed matter physics; and 
probably other places as well.
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An a priori different question is the classification of black 
hole solutions in general relativity (or its extensions with 

simple matter sectors).  In asymptotically flat 4d Minkowski 
space, impressive results were obtained by the early 1970s.

At first, the richness of phases of quantum matter is an 
embarassment for holography.

This is because, famously,  “black holes have no hair”:
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Gauge/gravity duality invites us to connect the two 
questions.  

Finite temperature field theory is represented by the AdS/
Schwarzschild black brane:

Thus, our line of attack will be as follows.  In AdS/CFT, finite 
temperature field theory is represented by the AdS 

Schwarzschild black brane:

Adding charge density, one is led instead to study a charged 
black brane.  It is familiar from Reissner-Nordstrom black 

holes that there are extremal avatars of such branes:
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go through the steps explicitly, but merely quote the final answer. The solution is known as

the Reissner-Nordstrøm metric, and is given by

ds2 = −∆dt2 + ∆−1dr2 + r2dΩ2 , (7.110)

where

∆ = 1 − 2GM

r
+

G(p2 + q2)

r2
. (7.111)

In this expression, M is once again interpreted as the mass of the hole; q is the total electric

charge, and p is the total magnetic charge. Isolated magnetic charges (monopoles) have never

been observed in nature, but that doesn’t stop us from writing down the metric that they

would produce if they did exist. There are good theoretical reasons to think that monopoles
exist, but are extremely rare. (Of course, there is also the possibility that a black hole

could have magnetic charge even if there aren’t any monopoles.) In fact the electric and

magnetic charges enter the metric in the same way, so we are not introducing any additional

complications by keeping p in our expressions. The electromagnetic fields associated with

this solution are given by

Ftr = − q

r2

Fθφ = p sin θ . (7.112)

Conservatives are welcome to set p = 0 if they like.

The structure of singularities and event horizons is more complicated in this metric than

it was in Schwarzschild, due to the extra term in the function ∆(r) (which can be thought of
as measuring “how much the light cones tip over”). One thing remains the same: at r = 0

there is a true curvature singularity (as could be checked by computing the curvature scalar

RµνρσRµνρσ). Meanwhile, the equivalent of r = 2GM will be the radius where ∆ vanishes.

This will occur at

r± = GM ±
√

G2M2 − G(p2 + q2) . (7.113)

This might constitute two, one, or zero solutions, depending on the relative values of GM2

and p2 + q2. We therefore consider each case separately.

Case One — GM2 < p2 + q2

In this case the coefficient ∆ is always positive (never zero), and the metric is completely

regular in the (t, r, θ, φ) coordinates all the way down to r = 0. The coordinate t is always

timelike, and r is always spacelike. But there still is the singularity at r = 0, which is now a
timelike line. Since there is no event horizon, there is no obstruction to an observer travelling

to the singularity and returning to report on what was observed. This is known as a naked

singularity, one which is not shielded by an horizon. A careful analysis of the geodesics
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of the ex ternal (asymptot ically fla t) universe, a t least as seen from the black hole. B ut they
see this (infinitely long) history in a finite amount of their proper t ime — thus, any signal
tha t gets to them as they approach r− is infinitely blueshifted. T herefore it is reasonable
to believe (although I know of no proof ) tha t any non-spherically symmetric perturba t ion
tha t comes into a Reissner-Nordstrøm black hole will violent ly disturb the geometry we have
described. I t ’s hard to say wha t the actual geometry will look like, but there is no very
good reason to believe tha t it must contain an infinite number of asymptot ically fla t regions
connect ing to each other via various wormholes.
Case Three — GM2 = p2 + q2

T his case is known as the extreme Reissner-Nordstrøm solut ion (or simply “ex tremal
black hole”). T he mass is exact ly balanced in some sense by the charge — you can construct
exact solut ions consist ing of several ex tremal black holes which remain sta t ionary with re-
spect to each other for all t ime. O n the one hand the ex tremal hole is an amusing theoret ical
toy; these solut ions are often examined in studies of the informa t ion loss paradox, and the
role of black holes in quantum gravity. O n the other hand it appears very unstable, since
adding just a lit t le bit of ma t ter will bring it to C ase T wo.
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T he ex tremal black holes have ∆(r) = 0 a t a single radius, r = GM . T his does represent
an event horizon, but the r coordina te is never t imelike; it becomes null a t r = GM , but is
spacelike on either side. T he singularity a t r = 0 is a t imelike line, as in the other cases. So

ds2 =
L2

z2
(�fdt2 + dx2 +

dz2
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)

f = 1� zd

zd
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“Doping” by adding charge density, one is led to study 
instead a charged black brane.  It is familiar from flat space 
relativity that there are extremal avatars of such branes:

Thus, our line of attack will be as follows.  In AdS/CFT, finite 
temperature field theory is represented by the AdS 
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The no-hair theorems fail in AdS space.  Charged black 
brane horizons can take a variety of forms:

But the no hair theorems break down in AdS space, and a 
rich zoo of new black holes (= new phases of matter) have 

been found:
18 Horizons, holography and condensed matter

Figure 6 The zero temperature holographic superconductor. The electric
flux is sourced entirely by the scalar field condensate.

finds that the theory (6.1) admits Lifshitz solutions with the dynamical
critical exponent z given by solutions to

8(VT � 3) + 4(V
� 2
T � 4VT + 12)z + (V

� 2
T + 8VT � 24)z2 + V

� 2
T z3 = 0 . (6.6)

Here we introduced

VT = ⇥2L2
�
V (⇤⇥) +m2⇤2

⇥
⇥
, V

�
T =

⇥2L

e

�
V �(⇤⇥) + 2m2⇤⇥

⇥
. (6.7)

Thus the dynamical critical exponent is determined by the value of the
potential and its first derivative at the fixed point value of ⇤⇥, which is in
turn determined by the equations of motion. In order for the scaling (6.5) to
have a straightforward interpretation as a renormalisation transformation,
one should have z > 0. The null energy condition in the bulk furthermore
implies z > 1 [46]. Even if (6.6) gives physical solutions for z, it is not
guaranteed that the corresponding Lifshitz solution is realised as the near
horizon geometry. An instructive simple case to consider is m2 > 0 and
V = 0. One obtains in this case [46, 45]

z =
�2

�2 � L2m2
, ⇤2

⇥ =
1

e2L2

6z

(1 + z)(2 + z)
. (6.8)

The Lifshitz solutions are seen to exist so long as the scalar is not too heavy,
L2m2 < �2. As L2m2 ⌅ 0, we see that z ⌅ 1 and an emergent relativistic
AdS4 is obtained. As L2m2 ⌅ �2 from below, z ⌅ ⇧ and the extremal
AdS2⇥R2 geometry is recovered. However, recall from (6.2) that AdS2⇥R2 is
stable against ⇤ condensing if �2�m2L2 ⇤ 3

2 . Extremal Reissner-Nordström
is likely the ground state in this case. It follows that the Lifshitz geometries
(6.8) realized as IR scaling regimes in this theory with a positive quadratic

7 Electron stars 23

it is clear from the equations of state (7.6) that the fluid is present only if
the local chemical potential (7.5) is larger than the rest mass energy of the
fermions

µloc. > m . (7.8)

This is the condition to populate the local Fermi sea. Looking for extremal
solutions, without a finite temperature horizon, one finds that the condition
(7.8) is satisfied from the deep IR up to a specific radius. This radius is the
boundary of the star. Outside of the star, the geometry becomes Reissner-
Nordström-AdS with a mass and charge determined by integrating over the
fermions in the star. This type of solution is illustrated in figure 7 below.
Analogously to the holographic superconductors, at zero temperature all the

Figure 7 The electron star. The electric flux is sourced entirely by a fluid
of fermions. The fluid is present at all radii for which the local chemical
potential is greater than the fermion mass.

charge is carried by the fermions rather than lying behind a horizon.
Secondly, consider heating up the system. At leading order in the semi-

classical limit, this means placing a finite temperature black hole horizon in
the interior of the spacetime. The fluid remains at zero temperature, as the
fluid must be in thermal equilibrium with the Hawking radiation of the black
hole, the e�ects of which are negligible in the semiclassical limit. At finite
temperature, a fraction of the charge is carried by the black hole horizon,
which subsequently pushes the fermion fluid a finite distance away from the
horizon. The star becomes a band of fluid with an inner and an outer radius
[66, 67]. At nonzero temperature we can dial the ratio T/µ. We can expect
that at su⌅ciently high values of this ratio, the star will collapse to form a
black hole. This will be analogous to the maximal mass of spherical neutron
stars; in global rather than planar AdS, the mass scale can be compared
to the radius of the spatial boundary sphere. In that case there is a first

12 Horizons, holography and condensed matter

given electric flux at the boundary, leads to gravitational physics that is
interesting in its own right.
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Figure 3 The basic question in finite density holography: use the gravi-
tational equations to motion to find the interior IR geometry given the
boundary condition that there is an electric flux at infinity.

5 The planar Reissner-Nordström-AdS black hole

The minimal framework capable of describing the physics of electric flux in
an asymptotically AdS geometry is Einstein-Maxwell theory with a negative
cosmological constant [26]. The Lagrangian density can be written

L =
1

2⇥2

�
R+

6

L2

⇥
� 1

4e2
Fµ⇥F

µ⇥ . (5.1)

Here ⇥ and e are respectively the Newtonian and Maxwell constants while
L sets the cosmological constant lengthscale.

There is a unique regular solution to the theory (5.1) with electric flux
at infinity and that has rotations and spacetime translations as symmetries.
This is the planar Reissner-Nordström-AdS black hole, with metric

ds2 =
L2

r2

�
�f(r)dt2 +

dr2

f(r)
+ dx2 + dy2

⇥
. (5.2)

The metric function here is

f(r) = 1�
�
1 +

r2+µ
2

2�2

⇥�
r

r+

⇥3

+
r2+µ

2

2�2

�
r

r+

⇥4

. (5.3)

We introduced the dimensionless ratio of the Newtonian and Maxwell cou-
plings

�2 =
e2L2

⇥2
. (5.4)

New horizons include those
representing holographic super-
conductors, holographic Fermi

liquids, and a host of others
dual to more engimatic phases

of matter!

Tuesday, October 2, 12
The problem of classifying low-energy phases of doped 

matter can be mapped to the problem of classifying 
extremal black brane geometries.

Gubser;
...
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While attempts at classification (of 2d cfts, string vacua, 
etc.) have a checkered history, we will put aside suspicion 

and pursue this line of thought:

II.  The basic horizon
     A.  Near-horizon limit
     B.  Interesting physics

III.  More general homogeneous, isotropic geometries
     A.  Lifshitz geometries
     B.  Hyperscaling violation & entanglement
     C.  Instabilities

IV.  Homogeneous, anisotropic geometries
     A.  Bianchi horizons
     B.  More general 4-algebras
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At various times, we will take detours to explore the 
physical properties of the horizons we’ve discovered.

We will often comment on their possible relationship to 
theories of Fermi surfaces and non-Fermi liquids.

The Fermi liquid fixed point is infrared stable (except for 
the Cooper channel instability).  This explains its ubiquity in 

metals. Landau; ..... ; Shankar;
Polchinski

But a variety of experiments yield phase diagrams with 
decidedly  “non-Fermi liquid” behavior, even in the regime 
where Fermi liquid theory would be expected to apply:

Sunday, September 2, 2012

It is important to remember that this is a problem of 
classical & quantum gravity in its own right, however, and 

should be understood on its own terms.
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II.  The basic horizon

In AdS/CFT, one represents a (global) U(1) symmetry of the 
field theory by a bulk Abelian gauge field.  

2

Our investigation was motivated in part by earlier work
of Sung-Sik Lee [14], which initiated the study of spec-
tral functions of fermionic operators using a gravity dual.
Our results differ from those of [14]; we believe the dif-
ference lies in the implementation of the real-time holo-
graphic prescription [15, 16, 17].

The plan of the paper is as follows. In the next sec-
tion we set up the framework for calculating the spectral
functions of a fermionic operator at finite density using
the gravity description. In sec. III we discuss properties
of the spectral functions, including scaling behavior near
a Fermi surface. We conclude in sec. IV with a discussion
of the interpretation of the results and possible caveats.

II. SET-UP OF THE CALCULATION

Consider a three-dimensional relativistic conformal
field theory (CFT) with a global U(1) symmetry that has
a gravity dual. Such a system at finite charge density can
be described by a charged black hole in four dimensional
anti-de Sitter spacetime (AdS4) [18], with the current Jµ

in the CFT mapped to a U(1) gauge field AM in AdS.
A fermionic operator O in the CFT with charge q and
conformal dimension ∆ is mapped to the gravity side to
a spinor field ψ with charge q and a mass

mR = ∆− 3

2
(1)

where R is the AdS curvature radius. The spectral func-
tion of O at finite charge density can then be extracted
by solving the Dirac equation for ψ in the charged AdS
black hole geometry. Which pairs of (q,∆) arise depends
on the specific dual CFT. However, since we are working
with a universal sector common to many gravity theories,
we will take the liberty of considering an arbitrary pair
of (q,∆), scanning many possible CFTs.

A. Black hole geometry

The action for a vector field AM coupled to AdS4 grav-
ity can be written as

S =
1

2κ2

∫

d4x
√
−g

[

R− 6

R2
− R2

g2
F

FMNFMN

]

(2)

where g2
F is an effective dimensionless gauge coupling4.

The equations of motion following from (2) are solved by
the geometry of a charged black hole [18, 19]5

ds2 =
r2

R2
(−fdt2 + dx2

i ) +
R2dr2

r2f
(3)

4 It is defined so that for a typical supergravity Lagrangian it is a
constant of order O(1)

5 For a generic embedding of (2) into 4d N = 2 supergravity, this
solution can be lifted to an M-theory solution [20].

with

f = 1 +
Q2

r4
− M

r3
, A0 = µ

(

1 − r0

r

)

, µ ≡ gF Q

R2r0
(4)

where r0 is the horizon radius determined by f(r0) =
0, and µ can be identified as the chemical potential of
the boundary theory. For calculational purposes it is
convenient to use dimensionless quantities. Consider the
rescaling

r → r0r, (t, #x) → R2

r0
(t, #x), A0 → r0

R2
A0,

M → Mr3
0 , Q → Qr2

0 (5)

after which the metric becomes

ds2

R2
≡ gMNdxMdxN = r2(−fdt2 + d#x2) +

1

r2

dr2

f
,

(6)
with now the horizon at r = 1 and

f = 1 +
Q2

r4
− 1 + Q2

r3
, A0 = µ

(

1 − 1

r

)

, µ = gF Q .

(7)
The dimensionless temperature is given by

T =
1

4π

(

3 − Q2
)

. (8)

The zero-temperature limit is obtained by setting Q =√
3. At zero temperature, near the horizon the metric (6)

becomes AdS2 × R2 with the curvature radius of AdS2

given by

R2 =
R√
6

. (9)

B. Dirac equation

To compute the spectral functions for O we need only
the quadratic action of ψ in the geometry (6)-(9)

Sspinor =

∫

dd+1x
√
−g i(ψ̄ΓMDMψ − mψ̄ψ) (10)

where

ψ̄ = ψ†Γt, DM = ∂M +
1

4
ωabMΓab − iqAM (11)

and ωabM is the spin connection6. Note that the Dirac
action (10) depends on q only through

µq ≡ µq = gF qQ (12)

6 We will use M and a, b to denote bulk spacetime and tangent
space indices respectively, and µ, ν · · · to denote indices along
the boundary directions, i.e. M = (r, µ). All indices on Gamma
matrices refer to tangent space ones. For notational convenience
below we will take m to be defined in units of 1/R, i.e. mR → m.

So the simplest theory where one can ask about field 
theory at finite density is:

This theory has simple, exact solutions which represent the 
planar analogue of the Reissner-Nordstrom black hole.
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The simplest action that supports a (“bottom-up”) 
holographic dictionary for such doped matter is:

3

The spirit of the discussion of this paper will be similar
to that of [3]; we will not restrict to any specific theory.
Since Einstein gravity coupled to matter fields captures
universal features of a large class of field theories with
a gravity dual, we will simply work with this universal
sector, essentially scanning many possible CFTs.5

The role played by the IR CFT in determining the
low-frequency form of the Green’s functions of the d-
dimensional theory requires some explanation. Each op-
erator O in the UV theory gives rise to a tower of op-
erators O!k in the IR CFT labeled by spatial momentum
!k. The small ω expansion of the retarded Green function
GR(ω,!k) for O contains an analytic part which is gov-
erned by the UV physics and a non-analytic part which
is proportional to the retarded Green function of O!k in
the IR CFT. What kind of low-energy behavior occurs
depends on the dimension δk of the operator O!k in the

IR CFT and the behavior of GR(ω = 0,!k).6 For example,
when δk is complex one finds the log-periodic behavior
described earlier. When GR(ω = 0,!k) has a pole at some
finite momentum |!k| = kF (with δkF real), one then finds
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3

The spirit of the discussion of this paper will be similar
to that of [3]; we will not restrict to any specific theory.
Since Einstein gravity coupled to matter fields captures
universal features of a large class of field theories with
a gravity dual, we will simply work with this universal
sector, essentially scanning many possible CFTs.5

The role played by the IR CFT in determining the
low-frequency form of the Green’s functions of the d-
dimensional theory requires some explanation. Each op-
erator O in the UV theory gives rise to a tower of op-
erators O!k in the IR CFT labeled by spatial momentum
!k. The small ω expansion of the retarded Green function
GR(ω,!k) for O contains an analytic part which is gov-
erned by the UV physics and a non-analytic part which
is proportional to the retarded Green function of O!k in
the IR CFT. What kind of low-energy behavior occurs
depends on the dimension δk of the operator O!k in the

IR CFT and the behavior of GR(ω = 0,!k).6 For example,
when δk is complex one finds the log-periodic behavior
described earlier. When GR(ω = 0,!k) has a pole at some
finite momentum |!k| = kF (with δkF real), one then finds

gapless excitations around |!k| = kF indicative of a Fermi
surface.

Our discussion is general and should be applicable to
operators of any spin. In particular both types of scal-
ing behavior mentioned earlier for spinors also applies
to scalars. But due to Bose statistics of the operator in
the boundary theory, this behavior is associated with in-
stabilities of the ground state. In contrast, there is no
instability for spinors even when the dimension is com-
plex.

Our results give a nice understanding of the low-energy
scaling behavior around the Fermi surface. The scaling
exponents are controlled by the dimension of the corre-
sponding operator in the IR CFT. When the operator is
relevant (in the IR CFT), the quasi-particle is unstable.
Its width is linearly proportional to its energy and the
quasi-particle residue vanishes approaching the fermi sur-
face. When the operator is irrelevant, the quasi-particle
becomes stable, scaling toward the Fermi surface with
a nonzero quasi-particle residue. When the operator is
marginal the spectral function then has the form for a
“marginal Fermi liquid” introduced in the phenomeno-
logical study of the normal state of high Tc cuprates [8].

It is also worth emphasizing two important features of
our system. The first is that in the IR, the theory has not
only an emergent scaling symmetry but an SL(2, R) con-
formal symmetry (maybe even Virasoro algebra). The
other is the critical behavior (including around the Fermi
surfaces) only appears in the frequency, not in the spatial

5 The caveat is there may exist certain operator dimensions or
charges which do not arise in a consistent gravity theory with
UV completion.

6 The behavior at exactly zero frequency GR(ω = 0,"k) is con-
trolled by UV physics, not by the IR CFT.

momentum directions.
The plan of the paper is as follows. In §2, we introduce

the charged AdS black hole and its AdS2 near-horizon
region. In §3, we determine the low energy behavior of
Green’s functions in the dual field theory, using scalars as
illustration. The discussion for spinors is rather parallel
and presented in Appendix A. In §IV–VI, we apply this
result to demonstrate three forms of emergent quantum
critical behavior in the dual field theory: scaling behavior
of the spectral density (§IV), periodic behavior in logω at
small momentum (§V), and finally (§VI) the Fermi sur-
faces found in [3]. We conclude in §VII with a discussion
of various results and possible future generalizations. We
have included various technical appendices. In particu-
lar in Appendix D we give retarded functions of charged
scalars and spinors in the AdS2/CFT1 correspondence.
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The AdS/RN solution has a metric:

with gauge field and “emblackening factor”:

 

Chamblin, Emparan,
Johnson, Myers

Friday, July 20, 2012The extremal limit arises when Q reaches a value where f 
develops a double zero at the outer horizon.  This black 
brane represents the zero temperature ground state.
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At extremality,  the near-horizon geometry simplifies
to               :

5 The planar Reissner-Nordström-AdS black hole 13

The Maxwell potential of the solution is

A = µ

�
1� r

r+

⇥
dt . (5.5)

We have required the Maxwell potential to vanish on the horizon, At(r+) =
0. The simplest argument for this condition is that otherwise the holonomy
of the potential around the Euclidean time circle would remain nonzero when
the circle collapsed at the horizon, indicating a singular gauge connection.
The planar Reissner-Nordström-AdS solution is characterized by two scales,
the chemical potential µ = limr�0At and the horizon radius r+. From the
dual field theory perspective, it is more physical to think in terms of the
temperature than the horizon radius

T =
1

4⇤r+

�
3�

r2+µ
2

2�2

⇥
. (5.6)

The black hole is illustrated in figure 4 below. This black hole, which can

!"#$%&'
(&)*+,-./&0,$+0'1/234

4 4
4

4

Figure 4 The planar Reissner-Nordström-AdS black hole. The charge den-
sity is sourced entirely by flux emanating from the black hole horizon.

additionally carry a magnetic charge, was the starting point for holographic
approaches to finite density condensed matter [27, 28].

Because the underlying UV theory is scale invariant, the only dimension-
less quantity that we can discuss is the ratio T/µ. In order to answer our
basic question about the IR physics at low temperature, we must take the
limit T/µ ⇥ 1 of the solution. We thereby obtain the extremal Reissner-
Nordström-AdS black hole with

f(r) = 1� 4

�
r

r+

⇥3

+ 3

�
r

r+

⇥4

. (5.7)

The near-horizon extremal geometry, capturing the field theory IR, followsIt has some interesting (peculiar) features:

1.   The spatial slices don’t contract at the horizon.   This 
leads directly to an extensive ground state entropy.

AdS2 �R2

ds2 = �r2dt2 + dr2

r2 + dx2 + dy2
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2.   A natural notion at RG fixed points is dynamical scaling.  
We’re used to fixed points of the renormalization group 

with a scale invariance:

x� �x, t� �t

In a doped system, even if you have IR rotation invariance, 
you may well expect instead:

By a simple change of variables, you can see that the 
IR extremal geometry here realizes this with 

z =�

x� �x, t� �zt, z ⇥= 1
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Naively, this too could indicate that such a fixed point is 
fine tuned.  Large z is hard to realize in weakly coupled 

QFT.  E.g. to get z=2, one can consider:

1. Introduction and Motivation

In many condensed matter systems, one finds phase transitions governed by fixed

points which exhibit “dynamical scaling”

t → λzt, x → λx, z "= 1 (1.1)

instead of the more familiar scale invariance which arises in the conformal group

t → λt, x → λx . (1.2)

A toy model which exhibits this scale invariance (and which is analogous in many ways

to the free scalar field example of a standard conformal field theory) is the Lifshitz field

theory:

L =

∫

d2x dt
(

(∂tφ)2 − κ(∇2φ)2
)

. (1.3)

This theory has a line of fixed points parametrized by κ [1] and arises at finite temperature

multicritical points in the phase diagrams of known materials [2,1]. It enjoys the anisotropic

scale invariance (1.1) with z = 2.

This fixed point and its interacting cousins have become a subject of renewed interest

in the context of strongly correlated electron systems. For instance, in the Rokhsar-

Kivelson dimer model [3], there is a zero-temperature quantum critical point which lies

in the universality class of (1.3) [4] (for a nice general exposition of the importance of

quantum critical points, see [5]). Similar critical points also arise in more general lattice

models of strongly correlated electrons [6,7,8]. The correlation functions in these models

have interesting properties like finite-temperature ultra-locality in space at fixed time [9],

which may be important in explaining certain experimental results [10,11]. Such theories

are also of interest in 1+1 dimensional systems [12,13].

Furthermore, such fixed points seem to have a non-trivial generalization to non-

Abelian gauge theories. The Lagrangian (1.3) can be dualized to that for an Abelian

gauge field in a standard way, since scalars are dual to vectors in 2+1 dimensions. This

yields a Lagrangian with the unusual property that the usual E2 term has vanishing co-

efficient; the leading terms in the Lagrangian depend on derivatives of the electric field.

Freedman, Nayak and Shtengel analyzed a similar theory with SU(2) gauge group in [14].

They provided evidence that the SU(2) theory as well, has an interacting line of fixed

points with z = 2. However, these fixed points are strongly coupled; their existence and

1

One has tuned away the standard gradient term.  Higher z 
would require tuning away more such operators.

But, this is just weakly coupled intuition, and could be 
misleading at strong coupling.
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Much interesting physics can arise by coupling fermions to 
such an IR theory.  For instance, the large z critical theory 

easily dresses them into non-Fermi liquids. Liu, McGreevy,
Vegh; S.S. Lee;
Leiden group

But this isn’t our focus today, and we move on to consider...

III.  More general homogeneous, isotropic horizons

Gravity + Maxwell is the minimal content to study doped 
holographic matter.

It is quite reasonable to expect additional light fields in the 
bulk!
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Let us consider adding a neutral scalar “dilaton” field to the 
system.  To begin with, we consider:

A.  Theories with no dilaton potential

state entropy.3

Another motivation is that the phenomena discussed in [1, 2] for flat-space charged
dilaton black holes strongly suggest that, at least for some values of the parameters,
charged dilaton black branes in AdS may provide novel holographic duals of insulators.
While the bulk theory clearly has excitations at arbitrarily low-energy (after all, it has
uncharged Schwarzschild black brane solutions), in the sector with non-trivial charge
density, there may be a gap to charged excitations in analogy with [1, 2]. We will find
that this is not so, in the absence of a dilaton potential. *** With the addition of a
dilaton potential, we find blah blah blah ***

In this paper, we will justify these assertions. In §2, we find the form of the near-
horizon geometry for charged extremal dilaton black branes as a function of �. We use
this geometry to compute the entropy and specific heat as a function of �, and see that
the extremal branes have vanishing entropy and positive specific heat for all � ⇥ 0.
In §3, we compute the conductivity in a controlled approximation as one approaches
the extremal limit, using techniques similar to those in [13]. We find that the very low
temperature and frequency (with small ⇤/T ) behaviour of these systems is as expected
for 3d CFTs. In §4, we discuss how adding a scalar potential for the dilaton can
change the physics in various important ways. We conclude with a discussion of the
interpretation of our results, and of promising directions for future work, in §5. In the
appendix, we show that one can numerically extend our near-horizon solutions of §2 to
provide full black brane solutions with AdS asymptotics, and we numerically explore
the properties of slightly non-extremal branes.

2. Near-horizon behaviour of extremal brane

2.1 Near-horizon solution

While the full black-brane solutions with AdS asymptotics did not admit a simple
analytical form that we could find, we are able to provide an analytical description of
the near-horizon geometry for the extremal charged dilaton branes 4. We use a notation
and formalism similar to that in [14], in describing these near-horizon solutions.

For our bulk action, we take

S =

⇤
d4x
⇤
�g

�
R� 2(⌅⇥)2 � e2�⇥F 2 � 2�

⇥
. (2.1)

3In the context of holographic superconductors [10, 11], another class of black branes with vanishing
entropy at T = 0 was recently found in [12, 13].

4By the near-horizon region we mean the region of spacetime “close to” where the gtt component
of the metric vanishes.

4

The maximally symmetric solution of this action has vanishing
gauge field, constant dilaton, and an AdS metric with 

curvature radius L related to the cosmological term via:

� = � 3
L2 .

We instead search for solutions with a metric of the form

The maximally symmetric vacuum solution is then of course AdS space with AdS scale
L determined by � = � 3

L2 . We consider a metric of the form

ds2 = �a(r)2 dt2 + a(r)�2 dr2 + b(r)2 (dx2 + dy2) (2.2)

and a gauge field of the form

e2�⌅F =
Q

b(r)2
dt ⇥ dr. (2.3)

That is, we are looking for electrically charged black branes.

The equations of motion can be easily inferred from (107)-(110) of [14]. We find
that

(a2b2)⇥⇥ = �4�b2 (2.4)

b⇥⇥

b
= �(⇤r⇥)2 (2.5)

⇤r(a
2b2⇤r⇥) = ��e�2�⌅ Q2

b2
, (2.6)

together with the first order constraint,

a2b⇥2 +
1

2
a2⇥b2⇥ = ⇥⇥2a2b2 � e�2�⌅ Q2

b2
� b2�. (2.7)

Even though we will be interested in the near-horizon limit, it is important to keep
the cosmological constant term on the right-hand side of (2.4); the black brane (unlike
the black hole) has vanishing curvature along the x, y spatial slices, so the cosmological
constant does provide the most significant source in some of the Einstein equations. As
was mentioned above, the radius of AdS space is given by,

L =
⇤
�3� (2.8)

In the discussion below it will be convenient to set L = 1. When needed the dependence
on L can be determined by dimensional analysis.

To find the near-horizon limit, we proceed with a scaling ansatz. Define the near-
horizon variable w = r � rH where rH is the radius of the horizon. Let us make the
ansatz that the near-horizon scalings of the functions a, b,⇥ are given by

a = C2w
⇤, b = C1w

⇥, ⇥ = � K log(w) + C3 , (2.9)
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In the discussion below it will be convenient to set L = 1. When needed the dependence
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To find the near-horizon limit, we proceed with a scaling ansatz. Define the near-
horizon variable w = r � rH where rH is the radius of the horizon. Let us make the
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We restrict to metrics of the form:

state entropy.3

Another motivation is that the phenomena discussed in [1, 2] for flat-space charged
dilaton black holes strongly suggest that, at least for some values of the parameters,
charged dilaton black branes in AdS may provide novel holographic duals of insulators.
While the bulk theory clearly has excitations at arbitrarily low-energy (after all, it has
uncharged Schwarzschild black brane solutions), in the sector with non-trivial charge
density, there may be a gap to charged excitations in analogy with [1, 2]. We will find
that this is not so, in the absence of a dilaton potential. *** With the addition of a
dilaton potential, we find blah blah blah ***

In this paper, we will justify these assertions. In §2, we find the form of the near-
horizon geometry for charged extremal dilaton black branes as a function of �. We use
this geometry to compute the entropy and specific heat as a function of �, and see that
the extremal branes have vanishing entropy and positive specific heat for all � ⇥ 0.
In §3, we compute the conductivity in a controlled approximation as one approaches
the extremal limit, using techniques similar to those in [13]. We find that the very low
temperature and frequency (with small ⇤/T ) behaviour of these systems is as expected
for 3d CFTs. In §4, we discuss how adding a scalar potential for the dilaton can
change the physics in various important ways. We conclude with a discussion of the
interpretation of our results, and of promising directions for future work, in §5. In the
appendix, we show that one can numerically extend our near-horizon solutions of §2 to
provide full black brane solutions with AdS asymptotics, and we numerically explore
the properties of slightly non-extremal branes.

2. Near-horizon behaviour of extremal brane

2.1 Near-horizon solution

While the full black-brane solutions with AdS asymptotics did not admit a simple
analytical form that we could find, we are able to provide an analytical description of
the near-horizon geometry for the extremal charged dilaton branes 4. We use a notation
and formalism similar to that in [14], in describing these near-horizon solutions.
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d4x
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�g

�
R� 2(⌅⇥)2 � e2�⇥F 2 � 2�

⇥
. (2.1)

3In the context of holographic superconductors [10, 11], another class of black branes with vanishing
entropy at T = 0 was recently found in [12, 13].

4By the near-horizon region we mean the region of spacetime “close to” where the gtt component
of the metric vanishes.
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Even though we will be interested in the near-horizon limit, it is important to keep
the cosmological constant term on the right-hand side of (2.4); the black brane (unlike
the black hole) has vanishing curvature along the x, y spatial slices, so the cosmological
constant does provide the most significant source in some of the Einstein equations. As
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L =
⇤
�3� (2.8)

In the discussion below it will be convenient to set L = 1. When needed the dependence
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One can solve for the gauge field using Gauss’ law:
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Even though we will be interested in the near-horizon limit, it is important to keep
the cosmological constant term on the right-hand side of (2.4); the black brane (unlike
the black hole) has vanishing curvature along the x, y spatial slices, so the cosmological
constant does provide the most significant source in some of the Einstein equations. As
was mentioned above, the radius of AdS space is given by,

L =
⇤
�3� (2.8)

In the discussion below it will be convenient to set L = 1. When needed the dependence
on L can be determined by dimensional analysis.

To find the near-horizon limit, we proceed with a scaling ansatz. Define the near-
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The result is solutions with near-horizon geometry:

a ⇠ r� , b ⇠ r� , � = �K log(r)

where one easily finds:

It is most useful to first find an approximate, near-horizon
extremal solution to the equations.  Let us guess that near 

the horizon w=0, the solution takes the form:
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where the Cs are just integration constants.  

where C1, C2, C3 are constants. A little algebra then shows that an exact solution to
the equations (2.4), (2.5), (2.6) and the constraint eq.(2.7) is obtained if the exponents
take the values

⇤ = 1, K =
�
2

1 + (�
2 )2 , ⇥ =

(�
2 )2

1 + (�
2 )2

. (2.10)

By rescaling w, t, x and y appropriately the constant C3 can be set to zero and C1 to
unity. One then gets that two remaining parameters C1 and Q are determined in terms
of � by

C2
2 =

6

(⇥ + 1)(2⇥ + 1)
(2.11)

Q2 =
6

(�2 + 2)
(2.12)

The final values of the metric components are then

a = C2w, b = w⇥, ⌅ = � K log(w) . (2.13)

Note that since a vanishes linearly with w, the metric component gtt has a second
order zero at w = 0, as is needed for an extremal solution. In the extremal solution
found above the gauge coupling gU(1) ⇥ e��⇤ becomes arbitrarily weak at the horizon,
as ⌅⇤⌅. Conversely, when w ⇤⌅ the gauge coupling becomes very strong.

The scaling exponents that characterise the solution actually indicate that in the
near-horizon region, the metric takes the form characterising a Lifshitz fixed point with
anisotropic scaling [15]. The dynamical critical exponent is fixed to z =

(1+( �
2 )2)

(�
2 )2 . The

scaling symmetry is not exact, it is broken by the logarithmic dependence of the dilaton
on w.

As was mentioned above the scaling solution eq.(2.9), eq.(2.10), eq.(2.11), is an
exact solution to the equations of motion. However for our purposes it does not have
the correct asymptotic behaviour. We are interested in solutions which asymptote to
AdS4. In the next subsection and in appendix xx we will discuss how a new solution
can be obtained after adding a perturbation to the above solution. This solution is
asymptotically AdS4 and has an asymptotically constant dilaton. After a coordinate
transformation we see that the charge Q is fixed to a universal value in the scaling
solution, eq(2.11). In contrast in the asymptotically AdS4 case the charge Q will be
directly related to the number density in the dual theory 5, and has physical signifi-
cance. In addition the AdS4 solution will also depend on ⌅0- the asymptotic value of
the dilaton. The asymptotically AdS4 solution will therefore be characterised by two
parameters, Q and ⌅0.

5This follows directly from the gauge field eq.(2.3) and the AdS/CFT dictionary.
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solve the system of equations from the previous slide, 

if one chooses exponents:
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ds

2 = �r

2
dt

2 + r

2z(dx2 + dy

2) +
dr

2

r

2

t ! �

z
t, (x, y) ! �(x, y), r ! r

�

, z =
1

�

After a simple change of variables, the metric takes the 
form of a “Lifshitz” metric representing emergent 

dynamical scaling with dynamical exponent z:

The near-horizon geometry glues into asymptotically AdS 
space with constant dilaton.

Comparing to AdS/RN:

SK, Liu,
Mulligan
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1.  The (tunable) value of z controls scaling laws for 
thermodynamic observables:

2.  The finite value of z relaxes the extensive ground state 
entropy of the Einstein/Maxwell theory.

Hartnoll,
Polchinski,
Silverstein,

Tong

2.3 Thermodynamics of the near-extremal solution

A generalization of the scaling solution can be found for the action eq.(2.1) [29]. It
has a metric

ds2 = C2
2w

2(1� m

w2�+1
)dt2 +

dw2

C2
2w

2(1� m
w2�+1 )

+ w2�(dx2 + dy2), (2.40)

which now depends on the parameter m. The constant C2 takes the same value as in
eq.(2.12). The dilaton and gauge field are unchanged from their values in the scaling
solution and are given in eq.(2.13), eq.(2.3), eq.(2.12), respectively. Asymptotically,
as w ⇤ ⌅, this solution reduces to the original scaling solution eq.(2.13). The
behavior close to the horizon though is di�erent. The gtt component of the metric
now has a first order zero, with non-vanishing surface gravity, and as a result the
resulting temperature in non-zero. The scaling solution in eq.(2.13) corresponds
to the near-horizon of an extremal black brane. We therefore expect that the new
solution above corresponds to the near-horizon region of a slightly non-extremal black
brane.

The horizon in the solution eq.(2.40) is located at wh, where wh satisfies

w2�+1
h = m. (2.41)

The resulting temperature which can be obtained in the standard fashion by contin-
uing to Euclidean space [31] is

T ⇥ wh. (2.42)

And the entropy density is then

s ⇥ w2�
h ⇥ T 2�. (2.43)

As was mentioned above the solution eq.(2.40) arises as the near horizon limit of
a slightly non-extremal black brane solution. The entropy density can be expressed
as a function of two dimensionful parameters for the non-extremal solution, the
temperature T and the chemical potential µ. Both of these are intensive variables
with dimensions [Mass]1. It follows from eq.(2.43) and dimensional analysis that
the entropy density of a slightly non-extremal black brane is given by

s ⇥ T 2�µ2�2� . (2.44)

The entropy can be found from the classical action eq.(2.14) evaluated on-shell.
This action can be calculated by scaling out the dependence on L - the radius of
AdS space - and then working with dimensionless quantities. As a result the action
and the entropy will have a prefactor which goes like, L2/GN where GN is the four
dimensional Newton’s constant. Putting all this together gives the entropy density
of the slightly non-extremal black brane to be

s = aCT 2�µ2�2�, (2.45)

– 12 –

3.  Probe fermions coupled to finite z gravity duals also 
realize non-Fermi liquid transport. z=2

can yield linear resistivity.
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B.   Hyperscaling violation

II. EINSTEIN-MAXWELL-DILATON THEORY

We begin with a discussion of the basic characteristics of the EMD theory of compressible

quantum states [14, 25] in d spatial dimensions. As reviewed in Ref. [37], the globally

conserved U(1) charge of the compressible state is holographically realized by a U(1) gauge

field Aµ. In addition, the EMD theories also include a scalar field (the ‘dilaton’) [66] which

is dual to a relevant perturbation on the UV conformal field theory, and which allows access

to a wider range of IR scaling behavior in compressible states.

So we consider the holographic Lagrangian

LEMD =
1

2⇥2

�
R� 2 (⌅�)2 � V (�)

L2

⇥
� Z(�)

4e2
Fµ⇥F

µ⇥ (2.1)

defined on a (d + 2)-dimensional spacetime with Ricci scalar R, with Maxwell flux Fµ⇥

associated with Aµ, and a dilaton field � with potential V (�) and coupling Z(�).

We use co-ordinates (t, r, xi), where t is the time direction, r is the emergent holographic

direction, and xi (i = 1 . . . d) are the flat spatial directions. We will examine solutions with

metric

ds2 = L2

⇤
�f(r)dt2 + g(r)dr2 +

dx2
i

r2

⌅
, (2.2)

only the temporal component of the gauge field non-zero

At =
eL

⇥
h(r), (2.3)

and a dilaton field �(r) dependent only upon r. Under these conditions, we can work with

action per unit spacetime volume of the boundary theory

SEMD =

⇧
dr

Ld+2

rd
⌃
f(r)g(r)LEMD. (2.4)

The Einstein equations for this Lagrangian are

�
4⇥2rd

⌃
g(r)

dLd
⌃
f(r)

⇤
f(r)

�SEMD

�f(r)
� g(r)

�SEMD

�g(r)

⌅

=
f �(r)

rf(r)
+

g�(r)

rg(r)
+

4

r2
+

4��(r)2

d
= 0

2⇥2r2(g(r))3/2

Ld
⌃

f(r)

�SEMD

�g(r)
(2.5)

=
d

2

f �(r)

rf(r)
� h�(r)2Z(�(r))

2f(r)
� 1

2
g(r)V (�(r))� d(d� 1)

2r2
+ ��(r)2 = 0,
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So far, we considered vanishing dilaton potential. It is more 
reasonable to postulate:

Rather natural choices for the functions (motivated by e.g. 
gauged supergravity), which yield scaling solutions, are:

while the equation of motion of the dilaton field is

⇧2r2
⇧
g(r)

2Ld
⇧
f(r)

⇤SEMD

⇤�(r)
(2.6)

=
f ⇥(r)�⇥(r)

2f(r)
+

h⇥(r)2Z ⇥(�(r))

4f(r)
� g⇥(r)�⇥(r)

2g(r)
� 1

4
g(r)V ⇥(�(r)) + �⇥⇥(r)� d

�⇥(r)

r
= 0.

Finally, the only non-zero Maxwell equation is Gauss’ Law, which yields

� ⇧2

Ld

⇤SEMD

⇤h(r)
=

d

dr

⇤
h⇥(r)Z(�(r))

rd
⇧
f(r)g(r)

⌅
= 0. (2.7)

The integration constant in (2.7) is set by the charge density on the boundary [36], and so

we have

�
�
Ld�1

⇧e

⇥
h⇥(r)Z(�(r))

rd
⇧

f(r)g(r)
= Q. (2.8)

The dependence of the solutions on the charge density Q will be crucial to our purposes.

We now discuss the structure of the solutions in the IR limit, r ⇤ ⌅. As we discussed in

Section I, we are interested in solutions which obey (1.1) in this limit. Extending the results

of Ref. [25] to general d, we can deduce that such a solution will emerge from the equations

of motion provided we choose the large � behavior to obey

Z(�) = Z0 exp (��)

V (�) = �V0 exp (�⇥ �)
, as � ⇤ ⌅. (2.9)

with �, ⇥ > 0, and the exponents z and ⌅ are then given by

⌅ =
d2⇥

� + (d� 1)⇥
(2.10)

z = 1 +
⌅

d
+

8(d(d� ⌅) + ⌅)2

d2(d� ⌅)�2
. (2.11)

The inequality (1.9) is clearly obeyed by (2.11); this inequality can also be obtained by

applying the null energy condition discussed by Ogawa et al. [40]. Also, imposing the

inequality (1.8) on (2.10), we obtain

⇥ ⇥ (d� 1)

(2d� 1)
�. (2.12)

The compressible state with hidden Fermi surfaces has ⌅ = d � 1, and this requires that

(2.12) is realized as an equality.

Inserting (2.9) into the equations of motion, we can scale out the explicit dependence on
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The first parameter, in the gauge coupling function, 
transmuted into a dynamical critical exponent z.

With two parameters in L, we find solutions that reflect 
two critical exponents: z and a “hyperscaling violation” 

parameter    :2.1 Metrics with scale covariance

As we reviewed before, the gravity side is characterized by a metric of the form

ds2d+2 = r�2(d��)/d
�
�r�2(z�1)dt2 + dr2 + dx2

i

⇥
. (2.1)

This is the most general metric that is spatially homogeneous and covariant under the scale
transformations

xi ⌅ ⇥xi , t ⌅ ⇥zt , r ⌅ ⇥r , ds ⌅ ⇥�/dds . (2.2)

Thus, z plays the role of the dynamical exponent, and � is the hyperscaling violation expo-
nent.

The dual (d+1)-dimensional field theory lives on a background spacetime identified with
a surface of constant r in (2.1). The radial coordinate is related to the energy scale of the
dual theory. For example, an object of fixed proper energy Epr and momentum ⌘ppr redshifts
according to

E(r) =
1

rz��/d
Epr , ⌘p(r) =

1

r1��/d
⌘ppr . (2.3)

When � ⇥ dz and � < d, r ⌅ 0 (the boundary of (2.1)) described the UV of the dual
QFT. Clearly, di�erent probes give di�erent energy-radius relations, as in AdS/CFT [37].
For instance, a string of fixed tension in the (d + 2)-dimensional theory has E ⇧ 1/rz�2�/d.
Probe scalar fields will be discussed in §3.

Before proceeding, it is important to point out that the metric (2.1) will only give a
good description of the dual theory in a certain range of r, and there could be important
corrections for r ⌅ 0 or very large r. Outside the range with hyperscaling violation, but
assuming spatial and time translation symmetries and spatial rotation invariance, the metric
will be of the more general form

ds2d+2 = e2A(r)
�
�e2B(r)dt2 + dr2 + dx2

i

⇥
. (2.4)

An important situation corresponds to a field theory that starts from a UV fixed point and
then develops a scaling violation exponent � at long-distances. This means that the gravity
side warp factor e2A ⌅ R2/r2 for r ⌅ 0 (with R the AdS radius) and that below a cross-over
scale rF it behaves as in (2.1). This scale then appears in the metric as an overall factor

ds2 ⇧ R2/r2�/dF , and is responsible for restoring the canonical dimensions in the presence of
hyperscaling violation.5 Finally, at scales r ⇤ rF the theory may flow to some other fixed
point, develop a mass gap etc., and (2.1) would again no longer be valid. String theory
examples that exhibit these flows will be presented in §6. For now we will simply ignore
these corrections and focus on the form (2.1), keeping in mind that it may be valid only in a
certain window of energies. We follow an ‘e�ective’ approach where the dual theory is taken
to live at finite r of order rF .

In order to understand the metric properties of this class of spacetimes, notice that
(2.1) is conformally equivalent to a Lifshitz geometry, as can be seen after a Weyl rescaling

5For instance, in models with a Fermi surface, rF is set by the Fermi momentum [19].
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The finite temperature deformations are also known:
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The basic property of f(r) is that it vanishes at some r = rh; the temperature is then
proportional to a power of rh, as we explain in more detail below. In order to study finite
temperature e�ects on a regime with hyperscaling violation, in the gravity side we need to
take rF < rh.

Starting now from the metric (2.1) with hyperscaling violation, the black hole solution
becomes [17, 34]

ds2d+2 =
R2

r2

�
r

rF

⇥2�/d �
�r�2(z�1)f(r)dt2 +

dr2

f(r)
+ dx2

i

⇥
, (5.2)

with

f(r) = 1�
�

r

rh

⇥d+z��

. (5.3)

Starting from a solution with f(r) = 1 and matter content general enough to allow for
arbitrary (z, �),14 one can show, using the results in the Appendix, that (5.3) still gives a
solution. Concrete examples will be presented in §6. As usual, the relation between the
temperature and rh follows by expanding rh � r = u2, and demanding that near the horizon
the metric is ds2 ⇧ du2 + u2d⇤ 2, where ⇤ = (2⇥T )it. The result is

T =
1

4⇥

|d+ z � �|
rzh

. (5.4)

These expressions imply that the thermal entropy, which is proportional to the area of
the black hole, becomes

ST ⌅ (MP lR)dV
T (d��)/z

r�F
. (5.5)

Thus, a positive specific heat imposes the condition

d� �

z
⇤ 0 . (5.6)

We see that the branch {0 < z < 1, � ⇤ d + z} that was consistent with the NEC is
thermodynamically unstable. On the other hand, {z ⇥ 0, � ⇤ d} is still allowed by (5.6). It
would be interesting to study this case in more detail to decide whether it is consistent – the
entanglement entropy analysis of §4 suggested an instability for all � > d.

Eq. (5.5) suggests that d � � plays the role of an e�ective space dimensionality for the
dual theory. From this point of view, � = d� 1 yields a system living in one e�ective space
dimension, i.e. a (1 + 1)-dimensional theory. Recall also that for this value of � there is a
logarithmic violation of the area law for the entanglement entropy. These points support
the interpretation of � = d � 1 as systems with a Fermi surface [19, 20]. The case � = d
would then correspond to a system in (0 + 1)-dimensions. In §4 we found novel phases with

14This can be accomplished for instance in Einstein gravity with a scalar and gauge field.
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This results in an entropy that scales like: 
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Hyperscaling violation shifts d!
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An example of a system which enjoys such “shifted d” in 
the real world, is a Fermi liquid.  Basic picture:

Non-Fermi liquids A. J. Schofield 2

can be obtained relatively simply using Fermi’s golden
rule (together with Maxwell’s equations) and I have in-
cluded these for readers who would like to see where
some of the properties are coming from.

The outline of this review is as follows. I begin with
a description of Fermi-liquid theory itself. This the-
ory tells us why one gets a very good description of a
metal by treating it as a gas of Fermi particles (i.e. that
obey Pauli’s exclusion principle) where the interactions
are weak and relatively unimportant. The reason is
that the particles one is really describing are not the
original electrons but electron-like quasiparticles that
emerge from the interacting gas of electrons. Despite its
recent failures which motivate the subject of non-Fermi
liquids, it is a remarkably successful theory at describ-
ing many metals including some, like UPt3, where the
interactions between the original electrons are very im-
portant. However, it is seen to fail in other materials
and these are not just exceptions to a general rule but
are some of the most interesting materials known. As
an example I discuss its failure in the metallic state of
the high temperature superconductors.

I then present four examples which, from a theo-
retical perspective, generate non-Fermi liquid metals.
These all show physical properties which can not be
understood in terms of weakly interacting electron-like
objects:

• Metals close to a quantum critical point. When a
phase transition happens at temperatures close to
absolute zero, the quasiparticles scatter so strongly
that they cease to behave in the way that Fermi-
liquid theory would predict.

• Metals in one dimension–the Luttinger liquid. In
one dimensional metals, electrons are unstable and
decay into two separate particles (spinons and
holons) that carry the electron’s spin and charge
respectively.

• Two-channel Kondo models. When two indepen-
dent electrons can scatter from a magnetic impu-
rity it leaves behind “half an electron”.

• Disordered Kondo models. Here the scattering
from disordered magnetic impurities is too strong
to allow the Fermi quasiparticles to form.

While some of these ideas have been used to try and un-
derstand the high temperature superconductors, I will
show that in many cases one can see the physics illus-
trated by these examples in other materials. I believe
that we are just seeing the tip of an iceberg of new types
of metal which will require a rather different starting
point from the simple electron picture to understand
their physical properties.

Figure 1: The ground state of the free Fermi gas in mo-
mentum space. All the states below the Fermi surface
are filled with both a spin-up and a spin-down elec-
tron. A particle-hole excitation is made by promoting
an electron from a state below the Fermi surface to an
empty one above it.

2. Fermi-Liquid Theory: the electron quasi-
particle

The need for a Fermi-liquid theory dates from the
first applications of quantum mechanics to the metallic
state. There were two key problems. Classically each
electron should contribute 3kB/2 to the specific heat
capacity of a metal—far more than is actually seen ex-
perimentally. In addition, as soon as it was realized
that the electron had a magnetic moment, there was
the puzzle of the magnetic susceptibility which did not
show the expected Curie temperature dependence for
free moments: χ ∼ 1/T .

These puzzles were unraveled at a stroke when
Pauli (Pauli 1927, Sommerfeld 1928) (apparently
reluctantly—see Hermann et al. 1979) adopted Fermi
statistics for the electron and in particular enforced the
exclusion principle which now carries his name: No two
electrons can occupy the same quantum state. In the
absence of interactions one finds the lowest energy state
of a gas of free electrons by minimizing the kinetic en-
ergy subject to Pauli’s constraint. The resulting ground
state consists of a filled Fermi sea of occupied states
in momentum space with a sharp demarcation at the
Fermi energy εF and momentum pF = h̄kF (the Fermi
surface) between these states and the higher energy un-
occupied states above. The low energy excited states
are obtained simply by promoting electrons from just
below the Fermi surface to just above it (see Fig. 1).
They are uniquely labelled by the momentum and spin
quantum numbers of the now empty state below the
Fermi energy (a hole) and the newly filled state above
it. These are known as particle-hole excitations.

This resolves these early puzzles since only a small
fraction of the total number of electrons can take part

A codimension one surface in k-space divides occupied 
from unoccupied states.  Only the orthogonal direction 
“scales” at a given point on the Fermi surface. It is like a 

surfaces worth of 1+1 dimensional CFTs.
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One place where this shows up quantitatively is in the 
entanglement entropy:

Next we divide the total system into two subsystems A and B. In the spin chain

example, we just artificially cut off the chain at some point and divide the lattice points

into two groups. Notice that physically we do not do anything to the system and the

cutting procedure is an imaginary process. Accordingly the total Hilbert space can be

written as a direct product of two spaces Htot = HA ⊗ HB corresponding to those of

subsystems A and B. The observer who is only accessible to the subsystem A will feel as

if the total system is described by the reduced density matrix ρA

ρA = trB ρtot, (2.2)

where the trace is taken only over the Hilbert space HB.

Now we define the entanglement entropy of the subsystem A as the von Neumann

entropy of the reduced density matrix ρA

SA = −trA ρA log ρA. (2.3)

This quantity provides us with a convenient way to measure how closely entangled (or how

“quantum”) a given wave function |Ψ〉 is. Notice also that in time-dependent backgrounds

the density matrix ρtot and ρA are time dependent as dictated by the von Neumann

equation. Thus we need to specify the time t = t0 when we measure the entropy. In this

paper, we always study static systems and we can neglect this issue.

It is also possible to define the entanglement entropy SA(β) at finite temperature

T = β−1. This can be done just by replacing (2.1) with the thermal one ρthermal = e−βH ,

where H is the total Hamiltonian. When A is the total system, SA(β) is clearly the same

as the thermal entropy.

2.2 Properties

There are several useful properties which the entanglement entropy satisfies generally.

We consider the zero temperature case. We summarize some of them as follows:

• (i) When B is the complement of A as before, we obtain

SA = SB. (2.4)

This manifestly shows that the entanglement entropy is not an extensive quantity.

This equality (2.4) is violated at finite temperature.

• (ii) When A is divided into two submanifolds A1 and A2, we find

SA1 + SA2 ≥ SA. (2.5)
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On the other hand, unconventional quantum liquid phases with gapless excitations,

such as gapless spin liquid phases, seem to be, at least at present, more difficult to

characterize in higher dimensions. Our results from AdS/CFT correspondence can be

useful to study these gapless spin liquid states (some of these phases have been suspected

to be described by a relativistic gauge field theory of some sort [18]) .

The organization of the present paper is as follows. In section 2 we present a review of

definition and basic properties of entanglement entropy. Section 3 is devoted to compu-

tations of entanglement entropy in 2D CFTs. In section 4 we first summarize the known

facts on entanglement entropy in higher dimensional CFTs and perform explicit computa-

tions especially for 4D CFTs. Next we relate the central charges in a given 4D CFT to its

entanglement entropy. In section 5 we present our proposal of holographic computations

of entanglement entropy from AdS/CFT. We also give an explicit proof of this claim in

AdS3/CFT2 based on the well-known relation [24, 25] and discuss its extension to higher

dimensional cases. Based on our proposal, in section 6, we compute the entanglement

entropy in 2D CFTs from the AdS3 side and find agreements. Higher dimensional cases

are considered in section 7 where we compute the entropy from the analysis of AdSd+2

spaces. We compare it with the CFT results especially for AdS5/CFT4 case and find an

agreement under a specific condition for simplification. We also estimate entanglement

entropy in massive or non-conformal theories. In section 8 we summarize our results and

discuss future problems.

2 Basics of Entanglement Entropy

We start with a review of basic ideas and properties of entanglement entropy.

2.1 Definition of Entanglement Entropy

Consider a quantum mechanical system with many degrees of freedom such as spin

chains. More generally, we can consider arbitrary lattice models or QFTs including CFTs.

We put the system at zero temperature and then the total quantum system is described

by the pure ground state |Ψ〉. We assume no degeneracy of the ground state. Then, the

density matrix is that of the pure state

ρtot = |Ψ〉〈Ψ|. (2.1)

The von Neumann entropy of the total system is clearly zero Stot = −tr ρtot log ρtot = 0.

4

A

B
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In general, one expects an “area law” for the entanglement 
(with a UV-cutoff dependent coefficient).  This represents 

the entanglement of microscopic d.o.f. across the boundary.

One well-known violation of the area law occurs in 2D 
CFTs.  There, the result is:

This is called subadditivity.

• (iii) For any three subsystems A, B and C that do not intersect each other, the

following strong subadditivity inequality holds :

SA+B+C + SB ≤ SA+B + SB+C . (2.6)

Equivalently, we can have a more strong version of (2.5) as follows

SA + SB ≥ SA∪B + SA∩B, (2.7)

for any subsystems A and B. When A and B do not intersect with each other, this

relation is reduced to the subadditivity (2.5.)

More details of properties of the entanglement entropy can be found in e.g. [26].

2.3 Entanglement Entropy in QFTs and Area Law

Consider a QFT on a d+1 dimensional manifold R×N , where R and N denote the time

direction and the d dimensional space-like manifold, respectively. We define the subsystem

by a d dimensional submanifold A ⊂ N at fixed time t = t0. We call its complement the

submanifold B. The boundary of A, which is denoted by ∂A, divides the manifold N

into two submanifolds A and B. Then we can define the entanglement entropy SA by

the previous formula (2.3). Sometimes this kind of entropy is called geometric entropy

as it depends on the geometry of the submanifold A. Since the entanglement entropy is

always divergent in a continuum theory we introduce an ultraviolet cut off a (or a lattice

spacing). Then the coefficient in front of the divergence turns out to be proportional to

the area of the boundary ∂A of the subsystem A as first pointed out in [16, 17],

SA = γ · Area(∂A)

ad−1
+ subleading terms, (2.8)

where γ is a constant which depends on the system. This behavior can be intuitively

understood since the entanglement between A and B occurs at the boundary ∂A most

strongly. This result (2.8) was originally found from numerical computations [17, 16] and

checked in many later arguments (see e.g. recent works [27, 28, 29] ).

The simple area law (2.8), however, does not always describe the scaling of the entan-

glement entropy in generic situations. As we will discuss in details in the later sections,

the entanglement entropy of 1D quantum systems at criticality scales logarithmically with

respect to the linear size l of A, SA ∼ c
3 log l/a where c is the central charge of the CFT

6

B

------------------------
A

Holzhey, 
Larsen,
Wilczek
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The Fermi liquid actually famously gives a logarithmic 
violation of the “area law” which is universal.  Eg in d=2:

By setting 
� = d� 1

we can match the thermodynamic behavior of a Fermi 
surface, in terms of  T-scaling of entropy, heat capacity, etc.

Do we also match the anomalous entanglement entropy?

Huijse, Sachdev,
Swingle

Ogawa, Takayanagi,
Ugajin

SL ⇠ kFL log(L) + L
✏ + · · ·
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There is a formula for computing the holographic 
entanglement entropy, proposed by Ryu and Takayanagi:
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Holographic Derivation of Entanglement Entropy from AdS/CFT

Shinsei Ryu and Tadashi Takayanagi
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(Dated: February 1, 2008)

A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ〉〈Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ〉
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ〉〈Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement

z

x1

z

x1

L

xi>1

l

(a) (b) xi>1

l

Figure 6: Minimal surfaces in AdSd+2: (a) AS and (b) AD.

fully check our proposal due to the lack of general analytical results in the CFT side,

we will manage to obtain some supporting evidences employing the previous results in

section 4.

7.1 General Results

For specific choices of the subsystem (or submanifold) A, it is easy to evaluate the

area of minimal surfaces directly in AdSd+2 spaces of general dimensions d. Essentially

this is possible by applying the techniques employed to compute the Wilson loops from

AdS/CFT duality [64, 65, 66].

7.1.1 Entanglement Entropy for Straight Belt AS

First consider the entanglement entropy for the straight belt AS (4.2) with the width l.

The d dimensional minimal surface in AdSd+2 is given by minimizing the area functional

(we set x = x1 in the coordinate system (5.1))

Area = RdLd−1

∫ l/2

−l/2

dx

√

1 + ( dz
dx)2

zd
. (7.1)

Regarding x as a time, we can find the Hamiltonian which does not depend on x. This

leads to
dz

dx
=

√

z2d
∗ − z2d

zd
, (7.2)

where z∗ is a constant. This equation determines the minimal surface γA (see Fig. 6(a)).

Since z = z∗ is the turning point of the minimal surface, we require20

l

2
=

∫ z∗

0

dz
zd

√

z2d
∗ − z2d

=

√
π Γ(d+1

2d )

Γ( 1
2d)

z∗. (7.3)

20We employed the formula
∫ 1
0 dxxµ−1(1 − xλ)ν−1 = B(µ/λ,ν)

λ , where B(x, y) = Γ(x)Γ(y)/Γ(x + y).

33

with         the minimal surface with appropriate boundary, 
extending into the bulk of AdS space.

�A

Minimal surfaces for
strip and circular regions

A on the boundary
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Simple minimal surface calculations in the hyperscaling 
violating metrics reveal that:

* The metrics with
✓ = d� 1

have both the entanglement and free energy scalings of 
a theory with a Fermi surface.

* For

Dong, Harrison, SK,
Torroba, Wang

one can find enhancements
which range from log to linear in the entanglement

entropy.

d� 1  ✓  d
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(a) The original graph � (b) The decorated graph �3 (c) The decorated graph with
quenched disorder �3,t with

t = 6

Figure 1: A decorated graph with quenched disorder is constructed from the square lattice via the
procedure explain in the text. The sites of subgraphs S1 and S2 are depicted as squares and circles,
respectively.

is easily solved and the ground state is found to be twofold degenerate [23].
As a warm-up we briefly review this computation. Consider the original graph, �, as the

subgraph S1 and the additional sites as the subgraph S2. The subgraph S2 is a collection
of two site chains. Remember that an isolated site that can be both empty and occupied
has a trivial cohomology. It follows that the non-trivial elements in HQ2 have the S1 sites
neighboring a two site chain on S2 either both empty or both occupied. Consequently, there
are only two non-trivial elements in HQ2 , one with S1 completely empty and one with S1

completely filled. If we leave S1 completely empty, we obtain one non-trivial element of
HQ2 in the sector with L� fermions, where L� denotes the number of links in the original
graph �. The element with S1 completely filled, clearly has fermion number N�, where N�

denotes the number of vertices in the original graph �. It now quickly follows that these two
elements are also in H12, since within HQ2 both states are in the kernel of Q1 and not in the
image of Q1. Now remember that for the ’tic-tac-toe’ lemma to hold a su�cient condition
was that all elements in H12 have the same number of fermions on sublattice S2. Here this
condition is clearly not met. One can easily show, however, that the lemma also holds when
the elements of H12 do not dier in their total fermion number by one. We thus conclude
that H12 = HQ provided that N� ⇤= L� ± 1.

As an example consider the square lattice with doubly periodic boundary conditions
as the original graph �. We find that L� = 2N� and the total number of sites in �3 is
N = 2L�+N�. Consequently, this lattice has one ground state at 1/5 filling and one at 2/5
filling.

Let us now consider the cohomology problem on the graphs �3,t. As before we define
the subgraph S1 as the original graph � and the subgraph S2 as the rest of the sites. It
follows that S2 is a collection of L� � t open 2-site chains and t periodic 3-site chains. Note

7

Such phases were found in field theory models on 
“decorated lattices” after the gravity papers. Huijse,

Swingle

C. Instability of dilatonic metrics

In all of the solutions we’ve discussed, the dilaton is running 
close to the horizon:
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� = �K log(r)

The coupling takes the form:

g = e��⇥

In 4d bulk, there are also magnetic solutions related to the 
electric solutions we’ve been talking about, roughly by  

g $ 1
g

With standard conventions, g flows to weak coupling at the 
“electric” horizons and strong coupling at the “magnetic” 

horizons.  Both cases are dangerous.

Sunday, October 14, 12



a)  For the electrically charged black brane (which I 
discussed), the coupling vanishes at the horizon.

Why is this dangerous?  In a theory like string theory, there 
is a UV scale lower than the Planck scale:

Mstring = gMPlanck

Higher derivative operators in Einstein frame are 
suppressed by powers of this scale:

If the horizon has zero coupling,        corrections matter.��

L =
⌅
�g

�
R + ��R2 + · · ·

⇥
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Now, an arbitrarily small temperature serves to smooth 
out this issue.  But for the strict zero-T solution, one 

expects a deformation. Sen; Dabholkar,
Kallosh, Maloney

b) We have a 4d bulk, and at leading order the theory 
enjoys electric-magnetic duality.  We could just as well 
consider the magnetic solutions.  There, the opposite 

problem occurs:

g flows to strong coupling at the horizon!

Then, we can neglect higher derivatives, but not g 
corrections to e.g. gauge couplings.

Sunday, October 14, 12



For magnetic branes, in some cases the “very near-horizon 
fate” of the emergent Lifshitz solution (with running 

dilaton) is as follows:

many similar cases such singularities are known to be harmless and physically admissible
[10], it is an open question in this case what the correct interpretation of the singularities
is.1 The results of this note will not apply to the solutions, like those of [6], which have exact
Lifshitz scaling symmetry.

More generally, these metrics also emerge naturally in relativistic systems which are
doped by finite charge density. For instance, asymptotically AdS extremal black branes
whose near-horizon geometry is of the Lifshitz form were found in [11, 12] by studying the
solutions of the theory with action

S =

⇤
d4x

⌃
�g

�
R� 2(⌥⇤)2 � e2�⇥F 2 � 2�

⇥
. (1.3)

In these theories, although the metric in the IR takes the Lifshitz form with z =
1+(�2 )

2

(�2 )
2 , the

scalar dilaton is logarithmically running. Both electrically and magnetically charged black
branes give rise to such geometries: in the former the dilaton runs towards weak coupling
at the horizon (in the sense that g ⇤ e��⇥ ⇧ 0), while in the latter, the dilaton runs
towards strong coupling. Related solutions with Lifshitz asymptotics were first discussed in
[13], and several other papers exploring closely related solutions have subsequently appeared
[14, 15, 16, 17, 18, 19, 20, 21, 22].

It was noted already in [11, 12] that the running of the dilaton means that one cannot
trust the Lifshitz form of the solutions to the action (1.3) in the very deep IR. In the case
of the magnetically charged branes, this is because as g grows, quantum corrections should
be expected to grow in importance – see §4.2 of [12]. For electrically charged branes, on the
other hand, it would be expected that in string theory �⇥ corrections (i.e., higher-derivative
terms) would become important.

We have already seen cases in string theory where �⇥ corrections “resolve” a horizon which
is naively singular [23]. Here, we discuss an analogous phenomenon for black branes. Instead
of �⇥ corrections we will focus on the quantum corrections to the near-horizon geometry of
the magnetically charged black branes in quantum-corrected versions of the theory (1.3). As
a simplest toy model for these corrections in g, we will promote the gauge kinetic term in
(1.3)

e2�⇥F 2 ⇧ f(⇤)F 2 (1.4)

with the “gauge coupling function” f(⇤) taking the form

f(⇤) = e2�⇥ + ⇥1 + ⇥2 e�2�⇥ + ⇥3 e�4�⇥ + · · · = 1

g2
+ ⇥1 + ⇥2 g2 + ⇥3 g4 + · · · (1.5)

The new terms ⌅ ⇥i in the gauge coupling function are meant to mock up the quantum
corrections which become important as the coupling constant grows near the horizon. We

1It is rather natural to think that because theories with dispersion relation � = kz for z > 1 have more
“soft modes” than conventional relativistic theories, the tidal forces are a dual avatar of the more complicated
structure of IR singularities in such theories.
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Result:  the “attractor potential” for the dilaton now has a 
near-horizon minimum, and one can find flows that:

Harrison, SK, Wang
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* Asymptote to 

* Exhibit Lifshitz-scaling with the expected  “z” over many
decades in energy

* End up in                 (with much reduced entropy)AdS2 �R2
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Figure 2: Here we see a log-log plot of the crossover from Lifshitz scaling to AdS4 in the
metric functions a(r) and b(r). The crossover occurs around r = 1011. For r < 1011, the
Lifshitz region persists over several decades in r, while for r > 1011, the solution becomes
AdS4. Left: a�(r); right: b(r). The flow in a(r) just reflects the fact that the coe⌅cient of
the linear term in a(r) ⇤ r is di�erent in the Lifshitz and AdS4 regions. The change in slope
in the log-log plot for b(r) indicates the di�erence between a solution with dynamical scaling
(z = 5, for our choice of parameters) and the z = 1 characteristic of AdS4.

4 Discussion

One of the common ways of obtaining dynamical scaling in holographic theories has been
to study charged black brane solutions of Einstein-Maxwell-dilaton gravity. However, the
resulting Lifshitz solutions have a running dilaton, and therefore the deep IR behaviour is
not expected to maintain the scaling form of the metric [11]. Instead, it is expected that
in the magnetic (electric) black branes, quantum corrections (�� corrections) should modify
the very near-horizon geometry. We have argued here that one generic consequence, in the
magnetic case, can be the re-emergence in the deep IR of an attractor fixed point with fixed
dilaton and an AdS2 � R2 geometry (as occurs also in the Einstein-Maxwell system in the
absence of a dilaton). Then, the richest solutions exhibit three scaling regions: a UV AdS4

fixed point, an intermediate region (which can extend over many decades in energy scale)
with dynamical critical exponent governed by the detailed form of the dilaton coupling, and
a deep IR AdS2 �R2 geometry.

We close with some comments/questions.

• We chose to incorporate a certain set of corrections in g in (1.5), just keeping ⇥1,2. Clearly,
in general one would have there an infinite series. Our approximation in truncating at the
order we did could only be justified if for some reason ⇥2 were large enough to yield a weak-
coupling value of ⇤H , with further terms of higher order in g being negligible. There is no
reason to expect this to happen in general. However, the important point is that once there
are multiple orders in g appearing in the gauge coupling function, there will generically be
critical points in the attractor potential. The Lifshitz solutions only obtain when one has
a “runaway attractor” (as described in [11]), and so the fact that generic corrections yield

9

AdS4

Sunday, October 14, 12



But as AdS2 itself is under suspicion of various instabilities, 
this leads to an Ouroborosian scenario...

Some of the instabilities of AdS2 that have been discussed 
in the literature, break spatial translations.  This 
provides a natural transition to our next topic...

The hyperscaling metrics can similarly be “IR completed” by 
AdS2 regions, in some cases.

Gauntlett
et al;...

Bhattacharya,
Cremonini,
Sinkovics
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IV.   Homogeneous, anisotropic geometries

All the phases we’ve discussed (and most discussed in the 
literature) have enjoyed normal translation symmetry.  But 

in real systems, often the low T states break naive 
translations:
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As a starting point for a classification, we would like to 
classify the most general homogeneous, anisotropic 

extremal black brane geometries.

Homogeneous:  For a theory in d spatial dimensions, there 
should be a d-dimensional group action which relates each 

point to its neighbors.

That, is there should be d Killing vectors whose 
commutators give rise to a Lie algebra.  Only the trivial

algebra gives “normal” translations.

Iizuka, SK,
Kundu, Narayan,

Sircar, Trivedi
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Example:

Imagine in our three-dimensional space, we enjoy usual 
translation symmetries along two of the directions.  But 

along the third, one must translate as well as rotating in the 
transverse plane, to get a symmetry.

ple where a Type VII near-horizon geometry can arise from an asymptotically AdS

spacetime is given in §5. A brief discussion of subtleties which might arise when
time is involved in the generalised translations is contained in §6. The paper ends

with some discussion in §7. Important supplementary material is contained in the
Appendices §A-§D.

Before closing the introduction, let us comment on related literature. There is a

formidable body of work on brane solutions in the string theory and general relativity
literature; for a recent review with further references, see [12]. A classification of

extremal black holes (as opposed to black branes), quite different from ours, has
been discussed in [13]. Our solutions can be viewed as black branes with new kinds
of “hair”; simple discussions of how branes in AdS space can violate the black hole

no-hair theorems are given in the papers on holographic superconductivity, see e.g.
[14] and [15] for discussions with additional references. Early examples of black

branes with interesting horizon structure were discussed in studies of the Gregory-
Laflamme instability; the original papers are [16] and a recent discussion appears

in [17]. As we mentioned previously, solutions with instabilities of the Type VII
kind have appeared already in the context of AdS/CFT duality in the interesting
papers [9, 10, 11]. Lifshitz symmetry has characterized one new type of horizon

to emerge in holographic duals of field theories at finite charge density in many
recent studies; this was discussed in [18] and [19] (see also [20] for string theory

and supergravity embeddings of such solutions). The attractor mechanism has also
inspired a considerable literature. The seminal paper is [21]. For a recent review

with a good collection of references, see [22]. Some references on attractors without
supersymmetry are [23, 24, 25, 26, 27]. A recent discussion of how the attractor
mechanism may be related to new kinds of horizons for black branes, including e.g.

Lifshitz solutions, appears in [28].

2. Generalised Translations and The Bianchi Classification

It is worth beginning with a simple example illustrating the kind of generalised
translational symmetry we would like to explore. Suppose we are in three dimensional

space described by coordinates x1, x2, x3 and suppose the system of interest has the
usual translational symmetries along the x2, x3 directions. It also has an additional
symmetry but instead of being the usual translation in the x1 direction it is now a

translation accompanied by a rotation in the x2 − x3 plane. The translations along
the x2, x3 direction are generated by the vectors fields,

ξ1 = ∂2, ξ2 = ∂3, (2.1)

whereas the third symmetry is generated by the vector field,

ξ3 = ∂1 + x2∂3 − x3∂2. (2.2)

– 4 –

ple where a Type VII near-horizon geometry can arise from an asymptotically AdS

spacetime is given in §5. A brief discussion of subtleties which might arise when
time is involved in the generalised translations is contained in §6. The paper ends

with some discussion in §7. Important supplementary material is contained in the
Appendices §A-§D.

Before closing the introduction, let us comment on related literature. There is a

formidable body of work on brane solutions in the string theory and general relativity
literature; for a recent review with further references, see [12]. A classification of

extremal black holes (as opposed to black branes), quite different from ours, has
been discussed in [13]. Our solutions can be viewed as black branes with new kinds
of “hair”; simple discussions of how branes in AdS space can violate the black hole
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recent studies; this was discussed in [18] and [19] (see also [20] for string theory

and supergravity embeddings of such solutions). The attractor mechanism has also
inspired a considerable literature. The seminal paper is [21]. For a recent review

with a good collection of references, see [22]. Some references on attractors without
supersymmetry are [23, 24, 25, 26, 27]. A recent discussion of how the attractor
mechanism may be related to new kinds of horizons for black branes, including e.g.

Lifshitz solutions, appears in [28].
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translation accompanied by a rotation in the x2 − x3 plane. The translations along
the x2, x3 direction are generated by the vectors fields,

ξ1 = ∂2, ξ2 = ∂3, (2.1)

whereas the third symmetry is generated by the vector field,

ξ3 = ∂1 + x2∂3 − x3∂2. (2.2)
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vector fields which
generate our generalised

translations

These generate a homogeneous space, in the sense that 
each point in an infinitesimal neighborhood can be 

transported to each other point.
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However, the commutation relations define a Lie algebra 
which is invariantly distinct from the algebra of translations:

It is easy to see that the three transformations generated by these vectors trans-

form any point in the three dimensional plane to any other point in its immediate
neighborhood. This property, which is akin to that of usual translations, is called

homogeneity. However, the symmetry group we are dealing with here is clearly dif-
ferent from usual translations, since the commutators of the generators, eq.(2.1,2.2)
take the form

[ξ1, ξ2] = 0; [ξ1, ξ3] = ξ2; [ξ2, ξ3] = −ξ1, (2.3)

and do not vanish, as they would have for the usual translation 3.

In this paper we will be interested in exploring such situations in more generality
where the symmetries are different from the usual translations but still preserve

homogeneity, allowing any point in the system of interest to be transformed to any
other by a symmetry transformation 4.

When can one expect such a symmetry group to arise? Let us suppose that there
is a scalar order parameter, φ(x), which specifies the system of interest. Then this

order parameter must be invariant under the unbroken symmetries. The change of
this order parameter under an infinitesimal transformation generated by the vector

field ξi is given by

δφ = εξi(φ) (2.4)

and this would have to vanish for the transformation to be a symmetry. It is easy

to see that requiring that this is true for the three symmetry generators mentioned
above, eq.(2.1), eq.(2.2), leads to the condition that φ is a constant independent

of the coordinates, x1, x2, x3. Now, such a constant configuration for φ is invariant
under the usual translation along x1, generated by ∂1, besides being invariant also
under a rotation in the x2−x3 plane (and the other rotations). Thus we see that with

a scalar order parameter a situation where the generalised translations are unbroken
might as well be thought of as one that preserves the usual three translations along

with additional rotations.

Now suppose that instead of being a scalar the order parameter specifying the
system is a vector V , which we denote by V i∂i. Under the transformation generated
by a vector field ξi this transforms as

δV = ε[ξi, V ]. (2.5)

Requiring that these commutators vanish for all three ξi’s leads to the conditions,

V 1 = constant, V 2 = V0 cos(x
1 + δ), V 3 = V0 sin(x

1 + δ) (2.6)

3In fact this symmetry group is simply the group of symmetries of the two dimensional Euclidean
plane, its two translations and one rotation.

4In a connected space this follows from the requirement that any point is transformed to any
other point in its immediate neighborhood by a symmetry transformation.
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Or in a picture:

March 22, 2012 0:9 WSPC - Proceedings Trim Size: 9.75in x 6.5in sachdev˙solvay

2

Many varieties of entanglement play a fundamental role in the structure of the new
phases of quantum matter, and it is often long-ranged. Remarkably, the long-range
entanglement appears in the natural state of the new materials at low enough tem-
peratures, and does not require delicate preparation of specific quantum states after
protection from environmental perturbations.

The structure of Sommerfeld-Bloch theory of metals is summarized in Fig. 1.
The electrons occupy single-particle states labelled by a momentum k below the

Band
Insulator

E

k

Metal

Superconductor

Fig. 1. Schematic of the phases of matter which can be described by extensions of the independent
electron theory.

Fermi energy EF . The states with energy equal to EF define a (d� 1)-dimensional
‘Fermi surface’ in momentum space (in spatial dimension d), and the low energy
excitations across the Fermi surface are responsible for the metallic conduction.
When the Fermi energy lies in an energy gap, then the occupied states completely
fill a set of bands, and there is an energy gap to all electronic excitations: this defines
a band insulator, and the band-filling criterion requires that there be an even number
of electrons per unit cell. Both the metal and the band insulator are states which are
adiabatically connected to the states of free electrons illustrated in Fig. 1. Finally,
in the Bardeen-Cooper-Schrie�er theory, a superconductor is obtained when the

Wednesday, March 28, 2012

Happily, for the application to phases in 3 spatial 
dimensions, all possible algebras of this sort have been 

classified.  This is the Bianchi classification, also of use in 
theoretical cosmology.
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The basic mathematical structure is as follows:

* For each of the 9 inequivalent algebras, there are three 
“invariant one-forms”       left invariant under all 

three isometries.

* A metric expressed in terms of these forms with constant 
coefficients will automatically be invariant.

* The one-forms satisfy the relations:

3. General Set-Up and A Simple Example

Here we turn to describing more explicitly a spacetime metric incorporating the
generalised translational symmetries described above and to asking when such a

metric can arise as the solution to Einstein’s equations of gravity coupled with matter.
Mostly we will work in 5 dimensions, this corresponds to setting d = 4 in eq.(1.1).
In addition, to keep the discussion simple, we assume that the usual translational

symmetry along the time direction is preserved so that the metric is time independent
and also assume that there are no off-diagonal components between t and the other

directions in the metric. This leads to

ds2 = dr2 − a(r)2dt2 + gijdx
idxj (3.1)

with the indices i, j taking values 1, 2, 3. For any fixed value of r, t, we get a three

dimensional subspace spanned by xi. We will take this subspace to be a homogeneous
space, corresponding to one of the 9 types in the Bianchi classification.

As discussed in [2], for each of the 9 cases there are three invariant one forms,
ωi, i = 1, 2, 3, which are invariant under all 3 isometries. A metric expressed in terms

of these one-forms with xi independent coefficients will be automatically invariant
under the isometries. For future reference we also note that these one-forms satisfy

the relations

dωi =
1

2
C i

jkω
j ∧ ωk (3.2)

where C i
jk are the structure constants of the group of isometries [2].

We take the metric to have one additional isometry which corresponds to scale
invariance. An infinitesimal isometry of this type will shift the radial coordinate

by r → r + ε. In addition we will take it to rescale the time direction with weight
βt, t → te−βtε, and assume that it acts on the spatial coordinates xi such that the

invariant one forms, ωi transform with weights βi under it, 5 ωi → e−βiεωi.

These properties fix the metric to be of the form

ds2 = R2[dr2 − e2βtrdt2 + ηije
(βi+βj)rωi ⊗ ωj] (3.3)

with ηij being a constant matrix which is independent of all coordinates.

In the previous section we saw that a situation where the usual translations were
not preserved but the generalised translations were unbroken requires a vector (or

possibly tensor) order parameter. A simple setting in a gravity setting which could
lead to such a situation is to consider an Abelian gauge field coupled to gravity. We

will allow the gauge field to have a mass in the discussion below. Such a theory with
a massive Abelian gauge field is already known to give rise to Lifshitz spacetimes [18],

5The dilatation generator could act more generally than this. A discussion of the more general
case is left for the future.

– 7 –

with C the structure constants of the algebra.

!i
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Now, in holography we really have an extra spatial 
dimension.  We also have time.  Natural assumptions:

r � r + �, t� e��t⇥t ;
t� t + const .

Then the general  “allowed” near-horizon metrics take
the form:
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I.e. given the Bianchi type, there are a finite set of constants 
one must solve for to get the scaling metric.

Maintain as
symmetries
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* Can find solutions in most Bianchi types in Einstein 
gravity + massive vector, by solving algebraic equations.

* 7 of the types, as far as we can tell, are entirely new as 
symmetries of black-brane solutions.

* Close analogues of type VII have been previously found as 
instabilities of other holographic phases. Domokos, Harvey;

Nakamura, Ooguri, Park;
Donos, Gauntlett

* Gluing these solutions into AdS seems possible.  We have 
done it for type VII (numerically).
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Generalization to 4-algebras:

In fact, the Bianchi classification isn’t quite what we ordered 
for 5-geometries dual to 4d field theories.   Even if we wish 
to study static geometries, we really have 4d spatial slices in 

the bulk.   

We should study real 4d Lie algebras with 3d subalgebras 
that give the symmetry preserved in the “field theory” 

spatial directions.
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These were classified ~60 years after Bianchi.

There are 12 4-algebras and a myriad of possible 
embeddings of 3-algebras within. MacCallum; 

Patera, Winternitz

In the following, we follow the notation of [26] in naming the algebras – we call them
A4,k with k = 1, · · · , 12. We list only the non-vanishing structure constants (up to obvious
permutation of indices).

• A4,1: C1
24 = 1, C

2
34 = 1

e1 = @1 e2 = @2 e3 = @3 e4 = x2@1 + x3@2 + @4

!1 = dx

1 � x4dx
2 + 1

2x
2
4dx

3
!2 = dx

2 � x4dx
3

!3 = dx

3
!4 = dx

4

• A

a

4,2: C
1
14 = a, C

2
24 = 1, C

2
34 = 1, C

3
34 = 1

e1 = @1 e2 = @2 e3 = @3 e4 = ax1@1 + (x2 + x3)@2 + x3@3

!1 = e

�ax4
dx

1
!2 = e

�x4(dx2 � x4dx3) !3 = e

�ax4
dx

3
!4 = dx4

• A4,3: C1
14 = 1, C

2
34 = 1

e1 = @1 e2 = @2 e3 = @3 e4 = x1@1 + x3@2 + @4

!1 = e

�x4
dx

1
!2 = dx

2 � x4dx
3

!3 = dx

3
!4 = dx

4

• A4,4: C1
14 = 1, C

1
24 = 1, C

2
24 = 1, C

2
34 = 1, C

3
34 = 1

e1 = @1 e2 = @2 e3 = @3

e4 = (x1 + x2)@1 + (x2 + x3)@2 + x3@3 + @4

!1 = e

�x4(dx1 � x

4
dx

2 + 1
2x

2
4dx

3) !2 = e

�x4(dx2 � x4dx
3) !3 = e

�x4
dx

3
!4 = dx4

• A

a,b

4,5: C
1
14 = 1, � C

2
24 = a, C

3
34 = b

e1 = @1 e2 = @2 e3 = @3 e4 = x1@1 + ax2@2 + bx3@3 + @4

!1 = e

�x4
dx

1
!2 = e

�ax4
dx

2
!3 = e

�bx4
dx

3
!4 = dx

4

• A

a,b

4,6: C
1
14 = a, C

2
24 = b, C

3
24 = �1

e1 = @1 e2 = @2 e3 = @3

e4 = ax1@1 + (bx2 + x3)@2 + (bx3 � x2)@3 + @4

!1 = e

�ax4
dx

1
!2 = e

�bx4 [cos(x4)dx2 � sin(x4)dx3]
!3 = e

�bx4(cos(x4)dx3 + sin(x4)dx2) !4 = dx

4

• A4,7: C1
14 = 2, C

2
24 = 1, C

2
34 = 1, C

3
34 = 1, C

1
23 = 1

4

e1 = @1 e2 = @2 � 1
2x3@1 e3 = @3 +

1
2x2@1

e4 = 2x1@1 + (x2 + x3)@2 + x3@3 + @4

!1 = e

�2x4(dx1 + 1
2x2dx

3 � 1
2x3dx

2) !2 = e

�x4(dx2 � x4dx
3)

!3 = e

�x4
dx

3
!4 = dx

4

• A4,8: C1
23 = 1, C

2
24 = 1, C

3
34 = �1

e1 = @1 e2 = @2 � 1
2x3@1 e3 = @3 +

1
2x2@1

e4 = x2@2 � x3@3 + @4

!1 = dx

1 + 1
2x2dx

3 � 1
2dx

3
dx

2
!2 = e

�x4
dx

2
!3 = e

x4
dx

3
!4 = dx

4

• A

b

4,9: C
1
23 = 1, C

1
14 = 1 + b, C

2
24 = 1, C

3
34 = b

e1 = @1 e2 = @2 � 1
2x3@1 e3 = @3 +

1
2x2@1

e4 = (1 + b)x1@1 + x2@2 + bx3@3 + @4

!1 = e

�(b+1)x4(dx1 + 1
2x2dx

3 � 1
2x3dx

2) !2 = e

�x4
dx

2
!3 = e

�bx4
dx

3
!4 = dx

4

• A4,10: C1
23 = 1, C

3
24 = �1, C

2
34 = 1

e1 = @1 e2 = @2 � 1
2x3@1 e3 = @3 +

1
2x2@1

e4 = �x2@3 + x3@2 + @4

!1 = dx

1 + 1
2x2dx

3 � 1
2x3dx

2
!2 = cos(x4)dx2 � sin(x4)dx3

!3 = cos(x4)dx3 + sin(x4)dx2

!4 = dx

4

• A

a

4,11: C
1
23 = 1, C

1
14 = 2a, C

2
24 = a, C

3
24 = �1, C

2
34 = 1, C

3
34 = a

e1 = @1 e2 = @2 � 1
2x3@1

e3 = @3 +
1
2x2@1 e4 = 2ax1@1 + (ax2 + x3)@2 + (ax3 � x2)@3 + @4

!1 = e

�2ax4(dx1 + 1
2x2dx

3 � 1
2x3dx

2) !2 = e

�ax4(cos(x4)dx2 � sin(x4)dx3)
!3 = e

�ax4(cos(x4)dx3 + sin(x4)dx2) !4 = dx

4

• A4,12: C1
13 = 1, C

2
23 = 1, C

2
14 = �1, C

1
24 = 1

e1 = @1 e2 = @2 e3 = @3 + x1@1 + x2@2

e4 = @4 + x2@1 � x1@2

!1 = e

�x3(cos(x4)dx1 � sin(x4)dx2) !2 = e

�x3(cos(x4)dx2 + sin(x4)dx1)
!3 = dx

3
!4 = dx

4

2.2 Three-dimensional subalgebras

We would like the bulk geometry to reflect homogeneity of the spatial slices in the dual
field theory. For this to happen, we wish to embed a three-dimensional real Lie algebra

5
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What we can hope to accomplish in the near future:

* Refine classification of homogeneous but possibly 
anisotropic solutions using 4-algebras. Show that new 

horizons can be supported by reasonable bulk matter and 
embedded into asymptotically AdS space.

* Construct more examples of inhomogeneous phases in 
Einstein gravity; hopefully some that are analytically 

tractable. c.f. Horowitz,
Santos, Tong

* Try to relate to symmetries of observed phases.

Sunday, October 14, 12


