Towards a taxonomy of
extremal black brane horizons
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|. Introduction

An ab initio interesting question in theoretical physics is
the classification of states of matter. Interesting new states
are thought to arise in finite density QCD; in materials of
modern interest in condensed matter physics;and
probably other places as well.
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An a priori different question is the classification of black
hole solutions in general relativity (or its extensions with
simple matter sectors). In asymptotically flat 4d Minkowski
space, impressive results were obtained by the early 1970s.

The “No Hair”” Theorem

A black hole can be
completely described by
three parameters: mass,
rotational rate, and
charge.

maximaler Satz von Parametern:

Werner Israel, circa 1964 {M’ a’ Q}
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Gauge/gravity duality invites us to connect the two
questions.

Finite temperature field theory is represented by the AdS/
Schwarzschild black brane:

d82 = ;(—fdtQ + dX2 + T)

“Doping” by adding charge density, one is led to study
instead a charged black brane. It is familiar from flat space
relativity that there are extremal avatars of such branes:

ds®> = —Adt? + A7 1dr? + r2dO?
GM? = p* + ¢*
2GM  G(p*+q°)
r r

A=1
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The no-hair theorems fail in AdS space. Charged black
brane horizons can take a variety of forms: cusser

The problem of classifying low-energy phases of doped
matter can be mapped to the problem of classifying
extremal black brane geometries.
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While attempts at classification (of 2d cfts, string vacua,
etc.) have a checkered history, we will put aside suspicion
and pursue this line of thought:

ll. The basic horizon
A. Near-horizon limit
B. Interesting physics

lll. More general homogeneous, isotropic geometries
A. Lifshitz geometries
B. Hyperscaling violation & entanglement
C. Instabilities

IV. Homogeneous, anisotropic geometries
A. Bianchi horizons
B. More general 4-algebras
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At various times, we will take detours to explore the
physical properties of the horizons we’ve discovered.

We will often comment on their possible relationship to
theories of Fermi surfaces and non-Fermi liquids.

" YbRh_Si,
Bl

It is important to remember that this is a problem of
classical & quantum gravity in its own right, however, and
should be understood on its own termes.
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ll. The basic horizon

In AdS/CFT, one represents a (global) U(1) symmetry of the
field theory by a bulk Abelian gauge field.

So the simplest theory where one can ask about field
theory at finite density is:

S—L d*x /— R—E—R—QF FMN
- 2k2 J Rz g2 MY

This theory has simple, exact solutions which represent the
planar analogue of the Reissner-Nordstrom black hole.
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The AdS/RN solution has a metric:

2 2 2 .
& = R* dr Chamblin, Emparan,
d52 . gMNddexN = ﬁ(_fdtZ i d$2) T st Johnson, Myers

P

with gauge field and “emblackening factor”:

The extremal limit arises when Q reaches a value where f
develops a double zero at the outer horizon. This black
brane represents the zero temperature ground state.

Sunday, October 14, 12



A

Charge
Electric flu density
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At extremality, the near-horizon geometry simplifies
to AdS, x R? :

ds? = —r2dt? + 9 4 a2 dy?

r2

It has some interesting (peculiar) features:

|. The spatial slices don’t contract at the horizon. This
leads directly to an extensive ground state entropy.
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2. A natural notion at RG fixed points is dynamical scaling.
We're used to fixed points of the renormalization group
with a scale invariance:

x— A, t — At
In a doped system, even if you have IR rotation invariance,
you may well expect instead:

r— Ax,t — \t, z#1

By a simple change of variables, you can see that the
IR extremal geometry here realizes this with

< — O
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Naively, this too could indicate that such a fixed point is
fine tuned. Large z is hard to realize in weakly coupled
QFT. E.g.to get z=2, one can consider:

L :/ d*z dt ((0:9)° — k(VZ9)?) .

One has tuned away the standard gradient term. Higher z
would require tuning away more such operators.

But, this is just weakly coupled intuition, and could be
misleading at strong coupling.
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Much interesting physics can arise by coupling fermions to
such an IR theory. For instance, the large z critical theory
easily dresses them into non-Fermi liquids. o Mcre

Vegh; S.S. Lee;
Leiden group

But this isn’t our focus today, and we move on to consider...

lll. More general homogeneous, isotropic horizons

Gravity + Maxwell is the minimal content to study doped
holographic matter.

It is quite reasonable to expect additional light fields in the
bulk!
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Let us consider adding a neutral scalar “dilaton” field to the

system. To begin with, we consider:

M. Taylor;

A. Theories with no dilaton potential Gotdrm SK.

Prakash, Trivedi

8= / d*zv/—g (R — 2(V¢)? — e**°F? — 2A) .

We restrict to metrics of the form:

ds? = —wlle)P wli 2E el @i 2= ) (e == o)

Sunday, October 14, 12



One can solve for the gauge field using Gauss’ law:

Q

204qu i
; b(r)?

dt N dr.

The result is solutions with near-horizon geometry:

a~r7, bwfrﬁ, ¢ = —K log(r)

where one easily finds:

Sunday, October 14, 12



After a simple change of variables, the metric takes the
form of a “Lifshitz” metric representing emergent
dynamical scaling with dynamical exponent z:

dr?

72

ds® = —r?dt* + r**(dz® + dy*)

SK, Liu,
Mulligan

1
t— N°t, (x,y) = Mx,y),r — %,z: 3

The near-horizon geometry glues into asymptotically AdS
space with constant dilaton.

Comparing to AdS/RN:
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|. The (tunable) value of z controls scaling laws for
thermodynamic observables:

5~ T28,2728

2. The finite value of z relaxes the extensive ground state
entropy of the Einstein/Maxwell theory.

3. Probe fermions coupled to finite z gravity duals also
realize non-Fermi liquid transport. z=2 e

Silverstein,

can Yield linear resistivity. Tong
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B. Hyperscaling violation

So far, we considered vanishing dilaton potential. It is more
reasonable to postulate:

1
Lomp = — (R _2(VO)

QK2

2 V((I))) . Z((I)) F,LLI/FMV

L? 4e2

Rather natural choices for the functions (motivated by e.g.
gauged supergravity), which yield scaling solutions, are:

Z (I) — Z (I) Charmousis,
( ) 0 eXp (Oé ) , as (I) — 00, Glzu-tter.'au;](, Kim,
V((I)) _ _% eXp (_ﬁ (I)) iritsis, Meyer
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The first parameter, in the gauge coupling function,
transmuted into a dynamical critical exponent z.

With two parameters in L, we find solutions that reflect
two critical exponents: z and a “hyperscaling violation”
parameter § :

ds;. o = p—2(d=0)/d (—7“_2(Z_1)dt2 + dr* + dxf) .

These are conformal to scale invariant metrics:

T = A = Nt,r—= A, ds — \%s .

The finite temperature deformations are also known:
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This results in an entropy that scales like:

T(d=0)/>

0
I'p

Sy ~ (MpR)*V

Hyperscaling violation shifts d!
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An example of a system which enjoys such “shifted d” in
the real world, is a Fermi liquid. Basic picture:

A codimension one surface in k-space divides occupied

from unoccupied states. Only the orthogonal direction

“scales” at a given point on the Fermi surface. It is like a
surfaces worth of |+| dimensional CFTs.
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One place where this shows up quantitatively is in the
entanglement entropy:

Ptot — |\Ij> <\Ij|

pa = B Piot

Sa = —trapalogpa.
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In general, one expects an “area law” for the entanglement
(with a UV-cutoff dependent coefficient). This represents
the entanglement of microscopic d.o.f. across the boundary.

One well-known violation of the area law occurs in 2D
CFTs. There, the result is:
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The Fermi liquid actually famously gives a logarithmic
violation of the “area law” which is universal. Eg in d=2:

Sp ~ krL log(L) + £ + - -

By setting
0=d—1 e

we can match the thermodynamic behavior of a Fermi
surface, in terms of T-scaling of entropy, heat capacity, etc.

Do we also match the anomalous entanglement entropy!?

Ogawa, Takayanagi,
Ugajin
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There is a formula for computing the holographic
entanglement entropy, proposed by Ryu and Takayanagi:

- Area of y4

4G\

with 74 the minimal surface with appropriate boundary,

(a)

L

extending into the bulk of AdS space.

Minimal surfaces for
strip and circular regions
A on the boundary
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Simple minimal surface calculations in the hyperscaling
violating metrics reveal that:

*The metrics with
0=d—1

have both the entanglement and free energy scalings of
a theory with a Fermi surface.

*For d—1<6<d one can find enhancements
which range from log to linear in the entanglement

e ntro PY° Dong, Harrison, SK,

Torroba,Wang
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(a) The original graph A

Such phases were found in field theory models on
“decorated lattices” after the gravity papers. [

Swingle

C. Instability of dilatonic metrics

In all of the solutions we’ve discussed, the dilaton is running
close to the horizon:
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¢ = —K log(r)

The coupling takes the form:

g=e

In 4d bulk, there are also magnetic solutions related to the
electric solutions we’ve been talking about, roughly by

gy

With standard conventions, g flows to weak coupling at the
“electric” horizons and strong coupling at the “magnetic”
horizons. Both cases are dangerous.
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a) For the electrically charged black brane (which |
discussed), the coupling vanishes at the horizon.

Why is this dangerous? In a theory like string theory, there
is a UV scale lower than the Planck scale:

Mstring — gMPlanck

Higher derivative operators in Einstein frame are
suppressed by powers of this scale:

L=+v—g(R+d'R*+-)

If the horizon has zero coupling, o' corrections matter.

Sunday, October 14, 12



Now, an arbitrarily small temperature serves to smooth
out this issue. But for the strict zero-T solution, one
expects a deformation. Sem Dol

Kallosh, Maloney

b) We have a 4d bulk, and at leading order the theory

enjoys electric-magnetic duality. Ve could just as well

consider the magnetic solutions. There, the opposite
problem occurs:

g flows to strong coupling at the horizon!

Then, we can neglect higher derivatives, but not g
corrections to e.g. gauge couplings.
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For magnetic branes, in some cases the “very near-horizon
fate” of the emergent Lifshitz solution (with running
dilaton) is as follows: Harrizon, Sk Wang

S = / d*z R—2(Vg¢)? — ™ ?F* —21).
6204¢F2 N f(¢) F2

1
f(¢):62acb_|_€1_|_€2 6—20@_'_53 6—4oz¢_|_...:?+€1_|_§292_|_§394_|_.”

Result: the “attractor potential” for the dilaton now has a
near-horizon minimum, and one can find flows that;:
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* Asymptote to AdS,

* Exhibit Lifshitz-scaling with the expected “z” over many
decades in energy

*End up in AdS, x R? (with much reduced entropy)

a'(r) b(r)
0.75
0.7

0.65

06¢ 1000 £

0.55¢

0.5¢ 100 -

045

| | | r | | | | r
108 1010 10'2 101 108 1010 10'2 1014

Figure 2: Here we see a log-log plot of the crossover from Lifshitz scaling to AdS, in the
metric functions a(r) and b(r). The crossover occurs around r = 10*. For r < 10", the
Lifshitz region persists over several decades in 7, while for » > 10!, the solution becomes
AdSy. Left: d/(r); right: b(r). The flow in a(r) just reflects the fact that the coefficient of
the linear term in a(r) ~ r is different in the Lifshitz and AdS, regions. The change in slope
in the log-log plot for b(r) indicates the difference between a solution with dynamical scaling
(z = 5, for our choice of parameters) and the z = 1 characteristic of AdSj.
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The hyperscaling metrics can similarly be “IR completed” by
AdS2 regions, in some cases. Cremonn

Sinkovics

But as AdS2 itself is under suspicion of various instabilities,
this leads to an Ouroborosian scenario...

Some of the instabilities of AdS2 that have been discussed
in the literature, break spatial translations. This  cuwe
provides a natural transition to our next topic...

Sunday, October 14, 12



V. Homogeneous, anisotropic geometries

All the phases we've discussed (and most discussed in the
literature) have enjoyed normal translation symmetry. But
in real systems, often the low T states break naive
translations:
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As a starting point for a classification, we would like to
classify the most general homogeneous, anisotropic
extremal black brane geometries.

Kundu, Narayan,
Sircar, Trivedi

Homogeneous: For a theory in d spatial dimensions, there
should be a d-dimensional group action which relates each
point to its neighbors.

That, is there should be d Killing vectors whose
commutators give rise to a Lie algebra. Only the trivial
algebra gives “normal” translations.
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Example:

Imagine in our three-dimensional space, we enjoy usual
translation symmetries along two of the directions. But
along the third, one must translate as well as rotating in the
transverse plane, to get a symmetry.

51 — (927 52 — (937 vector fields which
< generate our generalised
£3 =0 + 33283 _ x382. translations

These generate a homogeneous space, in the sense that
each point in an infinitesimal neighborhood can be
transported to each other point.
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However, the commutation relations define a Lie algebra
which is invariantly distinct from the algebra of translations:

[51752] = 0; [51753] = &o; [52753] = —¢&1,

In fact, these generalised translations could leave invariant a
vector order parameter (whose expectation value “breaks”
normal translations):

oV = E[fi, V]

V! = constant, V* =1V, cos(x1 +9), V3 =1 Sim(x1 + 0)
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Or in a picture:

Happily, for the application to phases in 3 spatial
dimensions, all possible algebras of this sort have been
classified. This is the Bianchi classification, also of use in

theoretical cosmology.
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The basic mathematical structure is as follows:

* For each of the 9 inequivalent algebras, there are three
“invariant one-forms’”’ «® left invariant under all
three isometries.

* A metric expressed in terms of these forms with constant
coefficients will automatically be invariant.

*The one-forms satisfy the relations:

dw’ = ~Chw’ A w"

1
2

with C the structure constants of the algebra.
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Now, in holography we really have an extra spatial
dimension. We also have time. Natural assumptions:

r—r+ €, t — e_ﬁtet ; Maintain as
t — t + const .

symmetries

Then the general “allowed” near-horizon metrics take
the form:

ds* = R?[dr* — """ dt? + mje(ﬁﬁﬁj)rwi R w]

l.e. given the Bianchi type, there are a finite set of constants
one must solve for to get the scaling metric.
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* Can find solutions in most Bianchi types in Einstein
gravity + massive vector, by solving algebraic equations.

* 7 of the types, as far as we can tell, are entirely new as
symmetries of black-brane solutions.

* Close analogues of type VIl have been previously found as
instabilities of other holographic phases. ..

Donos, Gauntlett

* Gluing these solutions into AdS seems possible. We have
done it for type VIl (numerically).
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Generalization to 4-algebras:

In fact, the Bianchi classification isn’t quite what we ordered

for 5-geometries dual to 4d field theories. Even if we wish

to study static geometries, we really have 4d spatial slices in
the bulk.

We should study real 4d Lie algebras with 3d subalgebras
that give the symmetry preserved in the “field theory”
spatial directions.
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These were classified ~60 years after Bianchi.

There are |2 4-algebras and a myriad of possible

MacCallum;

embeddings of 3-algebras within.  ;.ciWnemi

€] = 81 €9 = 82 - %x;@l €3 = 03 + %$201
Agp: C3, =1, C3, =1 eq = 22101 + (¥2 + x3)02 + 2305 + Oy
e1 =0, ey = 0o e3 =03 €4 = 1901 + 1302 + Oy wy = e 2 (dat + Lwada® — Jugda?)  wo = e " (da? — wyda®)
wy = dat — zyda® + a3da® wy = da? — xyda®  wy = da? wy = da* w3 = e~ da? wy = dx*
. ol 2 _ 3 _
Af o Clh=a C3=1 C3=1,C3 =1 o Ayg: Cyy=1, (5, =1, Cgy = -1 . .
e1 =0 ey = 0y e = 03 eqs = ax101 + (v2 + x3)02 + 1305 681 = 810 ‘9 €y =0y — 3u301 ey = O3+ 32201
wy = e idgl Wy = e (dey — madas)  wy = e”Widad wy = d, G4 = T205 = T303 T 04 .
! ? (drz = wadas) - ws ! ! wy = da’ + Laods® — Ldatda? wy = e " da? w3 = e¥dr®  wy = dat

A4132 0114 = 1, C§4 =1

, o Afg: Cpy=1, Cly=1+b, C3, =1, C3, =0
€1 i?l ) € 2: 0Os , e3 = 933 €4 = x101 + 333402 + 04 e =0 eg =0y — %1:381 ey = D5+ 51231
w1 = e Tdrt wy = dx® — xudr’ w3 = dx wy = dx s = (14 b)210) + 2205 + ba3ds + 04
wy = e~z (gt 4 %xzd'ﬁ — %I;;dl’g) Wy = e~ dz? wy = e Maded  wy = dat

A 034 =1, C'214 =1, 034 =1, C§4 =1, C§4 =1

e1 =0, es =0 e = 03 o Ay Oy =1, C3,=—1, C3, =1
er = (z1 + 22)01 + (T2 + 3)0o + 2305 + 04 — e2 = Oy — Lasdy e3 = 05 + Lundy
€4 = 71‘2({')3 + 1‘382 + 64
wy = e (dz! — z'da? + faidz®) wy = e ¥(da? — 24dx®) w3 = e "dad  wy = day wy = da’ + Laada® — Lwsda?  wy = cos(wy)da? — sin(zg)da®  ws = cos(xy)da® + sin(xy)da?
wy = dat
AtL Cly=1, —C%=a, C}, =0 . , ‘
e =01 es =0y e3 =03 ey = 2101 + ax20s + br305 + Oy o Afy: O3 =1, Cly=2a, C3;=a, C3,=~1, C3; =1, C§,=a
wy = e Mdz! wy = e ida?  wy = e Pde? wy = da? e =0 ey =0y — %1331
€3 = (93 -+ %:1?281 €4 = 2(1,.7/‘181 + ((1,]32 -+ 1'3)02 -+ ((1.7?3 - :1?2)83 -+ 84
wy = e 2% (dz! + Layda® — Lwyda?) wy = €7 (cos(z4)da? — sin(xq)dz®)
wz = e~ (cos(x4)dx® + sin(zy)dr?) wy = da?

Ayg: Cly=a, C3,=b, C3, =—1
61:81 62:82 €3:83
€4 = (LJ:161 + (b]ﬁz + 5113)62 + (b.’l/'3 - :1:2)83 + 84 ) A4 12: Clls — 17 szd — 17 Of4 =1, 0214 =1
wy = e~ @idg! wy = e [cos(z4)dx? — sin(xy)dad] ' e =0, ' ey = O €3 = 05 + 2101 + 2205
wy = e~ (cos(z4)da® + sin(z,)dz?) wy = da* €4 = Oy + 390y — 10 '

wr = e % (cos(x4)dzt — sin(wy)dz?®) wy = e~ (cos(wy4)dz® + sin(wy)dxl)
wy = da wy = dat

A4’7I 0114 = 2, 0224 = 1, C§4 = 1, 034 = 1., 0213 =1
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What we can hope to accomplish in the near future:

* Refine classification of homogeneous but possibly
anisotropic solutions using 4-algebras. Show that new
horizons can be supported by reasonable bulk matter and
embedded into asymptotically AdS space.

*Try to relate to symmetries of observed phases.

* Construct more examples of inhomogeneous phases in
Einstein gravity; hopefully some that are analytically
tracta b I e . c.f. Horowitz,

Santos, Tong
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