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Introduction

• For several phenomena in QCD the presence of quarks is important
(SU(Nc) theory with Nf quarks).

• Sometimes the relevant physics can be studied in the “Quenched Ap-
proximation”: quarks are probes in the glue dynamics.

• For others however, one should include propagating quarks inducing quan-
tum corrections in order to see them. In this second class we can mention:

♠ The conformal window: the theory flows to an IR CFT for x ≡ Nf
Nc

≥ xc
if quarks are massless. Chiral symmetry is expected to remain unbroken in
this phase. The conformal window ends at the Banks-Zaks point, x = 11

2 .

♠ The phase transition at x = xc that is conjectured to be in the BKT
class. This type of transition where for x < xc there is a condensate is
known as a conformal transition.

Miransky, Kaplan+Stephanov+Son

♠ The region just below xc where the theory is expected to exhibit walking
behavior. This type of behavior is useful for technicolor models.
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♠ The QCD thermodynamics as a function of x.

♠ The phase diagram as a function of baryon density. Here we expect a

color superconducting phase, as well as a color-flavor locking phase.
Alford+Rajagopal+Wilczek

• All of the phenomena above except the Banks-Zaks region are at strong

coupling and therefore hard to analyze.

• Several (uncontrolable) techniques were applies so far for their study:

Truncated Schwinger-Dyson equations, lattice calculations, guesswork on

β functions, etc. It is with such techniques that some of the expectations

above were found.

• The purpose of our effort is to explore the construction of holographic

models that exhibit similar phenomena, so that: (a) Explore the landscape

of possibilities (b) Construct realistic strong coupling models of QCD in

the Veneziano Limit.

V-QCD, Elias Kiritsis
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The Veneziano limit

• The ’t Hooft limit

Nc → ∞, λ = g2YMNc → fixed

always samples the quenched approximation as Nf is kept fixed as Nc → ∞.

• The proper limit in order to study the previous phenomena in the large

Nc approximation is the limit introduced by Veneziano in (1976)

Nc → ∞ , Nf → ∞ ,
Nf

Nc
= xf → fixed , λ = g2YMNc → fixed

• In terms of the dual string theory, the boundaries of diagrams are not

suppressed anymore: surfaces with an arbitrary number of boundaries con-

tribute at the same order (for the flavor singlet sector).

V-QCD, Elias Kiritsis
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The Banks-Zaks region

• The QCD β function in the V-limit is

λ̇ = β(λ) = −b0λ2+b1λ3+O(λ4) , b0 =
2

3

(11− 2xf)

(4π)2
, b1 = −

2

3

(34− 13xf)

(4π)4

• The Banks-Zaks region is

xf =
11

2
− ϵ with 0 < ϵ≪ 1

We obtain a fixed point of the β-function at

λ∗ ≃
(8π)2

75
ϵ+O(ϵ2)

which is trustable in perturbation theory, as λ∗ can be made arbitrarily

small.
6



• The mass operator, ψ̄LψR has now dimension smaller than three, from

the perturbative anomalous dimension (in the V-limit)

−
d logm

d logµ
≡ γ =

3

(4π)2
λ+

(203− 10xf)

12 (4π)4
λ2 +O(λ3, N−2

c )

• Extrapolating to lower x we expect the phase diagram

V-QCD, Elias Kiritsis
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Walking, Technicolor, S-parameter, dilatons

• Walking dynamics has been advocated as a necessary practical ingredient

for technicolor models. This has been associated to a large anomalous

dimension for the quark mass operator.
Holdom, Appelquist+Karabali+Wijewardhana

• It has been suggested that the S-parameter might be small in the walking

region.
Appelquist+Sannino

• It has also been conjectured that there is a special scalar state that is

hierarchically lighter than the rest in the walking region, (the “dilaton”)

reflecting the nearly broken scale invariance.
Yamawaki+Bando+Matumoto

• Such properties have oscillated between fact and fancy in the past 30

years. Their status has not been decided yet.

V-QCD, Elias Kiritsis
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The strategy

• Construct a (toy) holographic model for QCD in the Veneziano limit.

• Put together two ingredients: the holographic model for glue developped

earlier: IHQCD
Gursoy+E.K+Nitti

• and the model for flavor based in Sen’s tachyon action.
Casero+E.K.+Paredes, Iatrakis+E.K.+Paredes

V-QCD, Elias Kiritsis

8



The holographic models: glue

For YM, ihQCD is a well-tested holographic, string-inspired bottom-up

model with action
Gursoy+Kiritsis+Nitti, Gubser+Nelore

Sg =M3N2
c

∫
d5x

√
g

[
R−

4

3
(∂ϕ)2 + Vg(ϕ)

]
and Poincaré-invariant metric

ds2 = e2A(r)(dr2 + ηµνdx
µdxν)

• The potential Vg ↔ QCD β-function

• the ”scale factor” A ↔ logµ energy scale.

• eϕ ↔ λ ’t Hooft coupling

9



In the UV λ→ 0 and

Vg = V0 + V1λ+ V2λ
2 +O(λ3)

In the IR λ→ ∞ and

Vg ∼ λ
4
3
√
logλ+ · · ·

• With an appropriate tuning of two parameters in Vg the model describes

well both T = 0 properties as well as thermodynamics.

Panero

V-QCD, Elias Kiritsis
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The holographic models: flavor

• Fundamental quarks → probe D4-D̄4 branes in 5-dimensions.

qL ↔ D3 −D4 , qR ↔ D3 −D4

• We have the gauge fields

D4−D4 → A
µ
L ↔ J

µ
L ≃ ψ̄iLγ

µψ
j
L , D4−D4 → A

µ
R ↔ J

µ
R ≃ ψ̄iRγ

µψ
j
R

and a bifundamental scalar, the ”tachyon”

D4 −D4 → Tij ↔ ψ̄iLψ
j
R

• For the vacuum structure only the tachyon is relevant. It is expected
that its backreaction on glue will be crucial in shaping the phase diagram,

Klebanov+Maldacena, Bigazzi+Casero+Cotrone+Kiritsis+Paredes

• An action for the tachyon motivated by the Sen action has been advocated
as the proper dynamics of the chiral, condensate giving in general all the
expected features of χSB.

Casero+Kiritsis+Paredes

STDBI = −NfNcM3
∫
d5x Vf(T ) e

−ϕ
√
−det(gab+ ∂aT∂bT )

V-QCD, Elias Kiritsis
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Fusion

The idea is to put together the two ingredients in order to study the chiral

dynamics and its backreaction to glue.

S = N2
c M3

∫
d5x

√
g

[
R−

4

3

(∂λ)2

λ2
+ Vg(λ)

]
−

−NfNc M3
∫
d5xVf(λ, T )

√
−det(gab+ h(λ)∂aT∂bT )

with

Vf(λ, T ) = V0(λ) exp(−a(λ)T2)

• We must choose V0(λ), a(λ), h(λ).

♠ The simplest and most reasonable choices, compatible with glue dynamics

do the job! The phase structure at T = 0 is robust against many different

choices in the IR.

V-QCD, Elias Kiritsis
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Parameters

• A theory with a single relevant (or marginally relevant) coupling like YM

has no parameters.

• The same applies to QCD with massless quarks.

• QCD with all quarks having mass m has a single (dimensionless) param-

eter : m
ΛQCD

.

• After various rescalings this single parameter can be mapped to the

parameter T0 that controls the diverging tachyon in the IR.

• There is also xf that has become continuous in the large Nc Veneziano

limit.

V-QCD, Elias Kiritsis
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The effective potential

For solutions T = T∗ = constant the relevant non-linear action simplifies

S =M3N2
c

∫
d5x

√
g

[
R−

4

3

(∂λ)2

λ2
+ Vg(λ)− xfVf(λ, T )

]

Vf(λ, T ) = V0(λ) e
−a(λ)T2

∗

• Minimizing for T∗ we obtain T∗ = 0 and T∗ = ∞. The effective potential

for λ is

♠ T∗ = 0, Veff = Vg(λ)− xV0(λ) with a IR fixed point at λ = λ∗(xf).

♠ T∗ = ∞, Veff = Vg(λ) with no fixed points.

V-QCD, Elias Kiritsis
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Condensate dimension at the IR fixed point

• By expanding the DBI action we obtain the IR tachyon mass at the IR
fixed point λ = λ∗ which gives the chiral condensate dimension:

−m2
IRℓ

2
IR = ∆IR(4−∆IR) =

24a(λ∗)

h(λ∗)(Vg(λ∗)− xfV0(λ∗))

• Must reach the Breitenlohner-

Freedman (BF) bound (horizontal

line) at some xc.

• xc marks the conformal phase tran-

sition
Kaplan+Lee+Son+Stephanov

4.0 4.5 5.0 5.5
x

3.5

4.0

4.5

-mIR
2 {IR

2

We obtain: 3.7 . xc . 4.2

V-QCD, Elias Kiritsis

14



UV mass vs IR parameter

T0

m

T0

m

• Left figure: Plot of the UV Mass parameter m, as a function of the IR

T0 scale, for x < xc.

• Right figure: Similar plot for x ≥ xc.

• Such plots are sketched from the numerics, analytical expansions and

some guesses.
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• The tachyon starts at the boundary, evolves into the sinusoidal form for a

while, T ∼ r2 sin [k log r+ ϕ], and then at the end diverges. Similar behavior

seen at
Kutasov+Lin+Parnachev

• For the n-th solution, the tachyon changes sign n times before diverging

in the IR.

• At m = 0 there is an ∞ number of saddle point solutions (Efimov-like

minima)

• The Efimov minima have free energies ∆En with

∆E0 >∆E1 >∆E2 > · · ·

15-



• This suggests that the presence of double trace deformations can alter

the ground state of the system and make the second Effimov vacuum be

the ground state.

V-QCD, Elias Kiritsis
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Recap

• For x = 0, the theory has a mass gap, and confines.

• 0 < x < xc ≃ 4 the theory has chiral symmetry breaking, massless pions,

and gapped spectrum otherwise.

• xc < x < 11
2 the theory is chirally symmetric, and flows to a non-trivial

fixed point in the IR.

V-QCD, Elias Kiritsis
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Walking
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The tachyon logT (left) and the coupling λ (right) as functions of log r for

an extreme walking background with x = 3.992. The thin lines on the left

hand plot are the approximations used to derive the BKT scaling.

V-QCD, Elias Kiritsis
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BKT/Miransky scaling

We obtain BKT-Miransky scaling:

σ ∼ Λ3
UV exp

(
−

2K√
λ∗ − λc

)
∼ Λ3

UV exp

(
−

2K̂
√
xc − x

)
.

and the function that controls K, K̂ is

∆IR(4−∆IR) = −m2
IRℓ

2
IR = G(λ∗, x) ≡

24a(λ)

h(λ)(Vg(λ)− xVf0(λ))
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V-QCD, Elias Kiritsis
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Spectra

• The main difference from all previous calculations is that here flavor back

reacts on color.

• In the singlet sector the glueballs and mesons mix to leading order and

the spectral problem becomes complicated.

• The preliminary conclusions are:

♠ All masses follow Miransky scaling in the walking region.

♠ There is no dilaton

♠ There are several level crossings as xf varies but they seem accidental

♠ The situation with the S-parameter is still unclear.

19
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The masses of the first four modes of the scalar mesons of the U(1) sector for potentials

I. Left: the masses in the units of ΛUV as a function of x. Right: the ratios mn/m2 of the

masses of the modes. We chose to normalize to the second mode since that makes the

x-dependence of the ratios better visible.

V-QCD, Elias Kiritsis
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Finite Temperature
Alho+Jarvinnen+Kajantie+E.K.+Tuominnen

Choices:

• Potentials I vs II

• Value of 0 < W0 <
24
11

• Fixed point exists for all x, or not

1 2 3 4 5

x f

4

5

6

-m
IR

2 {
IR

2

1 2 3 4 5

x f

4

5

6

-m
IR

2 {
IR

2

V-QCD, Elias Kiritsis
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Finite Temperature: the generic phase diagram

Qualitative behavior of the transition temperature between the low and high T phases of

V-QCD matter.

V-QCD, Elias Kiritsis
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The different types of blackholes

p

T4

x f = 3.7
x f = 3.9

x f = 4.1

100 �
Ε - 3 p

T4

x f = 3.7

x f = 3.9

x f = 4.1

0.1 100 105 108 1011 1014

T

L

0.5

1.0

1.5

2.0

Figure 21: Thermodynamics for some values of xf within the conformal window, computed for

PotI. Note that in the conformal window always τ = 0 and the functions a(λ), κ(λ) do not affect

the result.
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Figure 22: T (λh) for various small values of xf and for potential I, W0 = 24/11 (Left) or for

potential II, W0 = 12/11 (Right). The black curve is the IHQCD limit. The chirally symmetric

Tu(λh) ≡ T (λh, τ = 0) branch asymptotes to the IHQCD curve as xf → 0, for both potentials.

The chirally broken Tb(λh) ≡ T (λh, τh(λh,mq = 0)) branches behave very differently for PotI and

PotII. For PotI Tb is absent at such low xf and all phases are chirally symmetric (see also Fig. 18).

For PotII the curves Tb follow very closely Ts and, correspondingly, Th ≈ Ts (see Fig. 15).

that the 2loop correction is smaller than the 1loop term if T > (2 log T )|b1|/b
2
0 , |b1|/b20 =

3|13xf − 34|/(2(11 − 2xf )2). This is always true for T > 1 = Λ if xf < 3.6. However, for

xf > 3.6 this gives a lower limit of T which grows extremely fast when xf grows within the

conformal window. Tcrossover is somewhat below the solution of this equation. Numerical

values are in qualitative agreement with Fig. 21.

4.8 The limits xf → 0 and xf → xc

The V-QCD models at xf = 0 are equivalent to an IHQCD model with potential Vg. One

thus expects that the hadronisation transition Th will approach the 1st order deconfining

transition of SU(Nc) YM theory15 when xf → 0. However, for PotI and large W0 this

cannot be the case, since the hadronisation transition does not exist for very low xf , as we

15Note that strictly speaking the limit of YM theory demands Nf = 0 and falls outside the Veneziano

limit Nf →∞ of QCD. This may explain the non-trivial structures observed at xf → 0.

– 44 –
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Examples of the Tend, Th and Tcrossover transitions in potential II with Stefan-Boltzmann -normalization

of LUV and with xf = 3 The curving of Ts(λh) at λh ∼ 0.2, T ∼ 2 is related to the crossover transition.

Right: an overview of the pressure in the same case, also showing the interaction measure, the peak of

which determines the position of Tcrossover. The black curve shows the vacuum beta function, scaled

to fit, as a function of temperature in the symmetric phase, so that β(T ) = β(λs(T )), where λs(T ) is the

inverse function of Ts(λh). The walking maximum of the beta function clearly coincides with the plateau

related to Tcrossover, confirming that the p/T 4 ∼ constant phase below Tcrossover is indeed the quasi-conformal

phase related to walking dynamics.
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An example of the Ts transition in potential I with W0 = 24/11 and with xf = 0.3 The local maximum and

minimum which generate the 1st order Ts -transition.
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Left: An example of the T12 transition in potential I with W0 = 12/11 and with xf = 3.5. The overall

structure of T (λh), with an inset showing the maximum and minimum in more detail.

Right: An example of a configuration where all but the crossover and hadronisation transitions Tcrossover,

Th, are in the thermodynamically unstable region, in the initial stages of the approach to the IHQCD limit.

The potential is II with W0 = 12/11 and with xf = 0.4 Note that everything to the right of the Th transition

is in the unstable phase.
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Thermodynamics for some values of xf within the conformal window, computed for PotI.

Note that in the conformal window always τ = 0 and the functions a(l), Φ(l) do not affect

the result.

V-QCD, Elias Kiritsis
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Finite small mass
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The phase diagrams
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Outlook

There are many directions that need to be explored:

• Further analysis of the meson spectra at T = 0 and their asymptotics at
high energy.

• Settle the question of the S parameter for technicolor applications.

• Study energy loss of quarks in QGP (with full backreaction).

• Study the phase diagram at finite density and applications to CMT.

• Transport and hydrodynamics in the walking region.

• Addition of multi-trace operators of the quark mass operators. These
affect the walking region, rearrange the Efimov vacua, and are generated
in technicolor setups.

• ”Model building”: Construction of realistic technicolor models.

V-QCD, Elias Kiritsis

25



.

Thank you

V-QCD, Elias Kiritsis
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N=1 sQCD

The case of N = 1 SU(Nc) superQCD with Nf quark multiplets is known

and provides an interesting (although much more complex) example for the

non-supersymmetric case.
Seiberg

• x = 0 the theory has confinement, a mass gap and Nc distinct vacua

associated with a spontaneous breaking of the leftover R symmetry ZNc.

• At 0 < x < 1, the theory has a runaway ground state.

• At x = 1, the theory has a quantum moduli space with no singularity.

This reflects confinement with χSB.

• At x = 1 + 1
Nc

, the moduli space is classical (and singular). The theory

confines, but there is no χSB.

28



• At 1+ 2
Nc

< x < 3
2 the theory is in the non-abelian magnetic IR-free phase,

with the magnetic gauge group SU(Nf −Nc) IR free.

• At 3
2 < x < 3, the theory flows to a CFT in the IR. (conformal window)

Near x = 3 this is the Banks-Zaks region where the original theory has an

IR fixed point at weak coupling. Moving to lower values, the coupling of

the IR SU(Nc) gauge theory grows.

However near x = 3
2 the dual magnetic SU(Nf − Nc) is in its Banks-Zaks

region, and provides a weakly coupled description of the IR fixed point

theory.

• At x > 3, the theory is IR free.

V-QCD, Elias Kiritsis
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Walking region+Technicolor

• Technicolor: EW symmetry breaking is due to a new strong gauge inter-

action with ΛTC ∼ 1TeV .

• The EW Higgs is scalar TC meson and the vev is due to a condensate of

TC fermions ⟨H⟩ ∼ ⟨ψ̄TCψTC⟩ from TC chiral symmetry breaking.

• The Higgs vev is the TC fπ and should be ∼ 250 GeV.

• The composite Higgs couplings to the SM fermions χ are now four-fermi

terms,

Hχ̄χ ∼ ψ̄TCψTC χ̄χ

and should be generated by a new (ETC) interaction at a higher scale,

ΛETC.

• There are some important problems with this idea:

29



♠ At the qualitative level: it relies on non-perturbative physics and therefore

is not easily controlable/calculable.

♠ There can be important flavor changing processes (that are suppressed

in the SM)

♠ To get the correct size for all masses, the dimension of operators ψTCψTC
must be close to two (instead of 3 in perturbation theory).

♠ The dimensionless quantity
Peskin+Takeuchi

S =
d

dq2
(ΠV (q

2)−ΠA(q
2))

∣∣∣∣
q2=0

,

(
δµν −

qµqν

q2

)
Πi(q

2) ≡ ⟨J iµ(q)J iν(0)⟩

is O(1) in generic theories from the spectral decomposition+sum rules, but

EW data imply that its should be O(10−2) .
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♠ It has been argued by many scientists that a way out of the above is a

TC theory that is near conformal (”walking”) in the TC regime,
Holdom

♠ This theory is expected to have a light scalar, ”the dilaton”, namely

the singlet scalar meson (σ-meson), that is important for making the S

parameter small.
Yamawaki

♠ Despite a lot of work in the last 15 years, whether such a theory exists,

and whether it has the required properties has remained elusive till now,

because lattice techniques are hard to apply.

♠ It has been argued recently that strongly coupled ty models based on the

hard-wall or soft wall holographic models have S ∼ O(1)
Rubakov+Levkov+Troitsky+Zenkevich

V-QCD, Elias Kiritsis
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Below the BF bound

• Correlation of the violation of BF bound and the conformal phase tran-
sition

• For ∆IR(4−∆IR) < 4

T (r) ∼ mqr
4−∆IR + σr∆IR

• For ∆IR(4−∆IR) > 4

T (r) ∼ Cr2 sin [(Im∆IR) log r+ ϕ]

Two possibilities:

• x > xc: BF bound satisfied at the fixed point ⇒ only trivial massless
solution (T ≡ 0, ChS intact, fixed point hit)

• x < xc: BF bound violated at the fixed point ⇒ a nontrivial massless
solution exists, which drives the system away from the fixed point.

Conclusion: phase transition at x = xc

V-QCD, Elias Kiritsis
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Matching to QCD

• Vg(λ) is fixed from glue.

• The UV is adjusted to perturbative QCD.

Vg ∼ V0 +O(λ) , V0 ∼W0 +O(λ)

V0 − xW0 =
12

ℓ2UV

• W0 is one of the most important parameters of the models.

31



• There are two classes of tachyon potentials:

♠ Type I: T ∼ eCr as r → ∞.

♠ Type II T ∼
√
r as r → ∞.

• In all cases the ”regular” IR solution depends on a single undetermined

constant (instead on two).

• The phase structure is essentially independent of IR choices.

V-QCD, Elias Kiritsis

31-



Varying the model

“prediction” for xc

After fixing UV coefficients from QCD, there is still freedom in choosing the

leading coefficient of V0 at λ→ 0 and the IR asymptotics of the potentials

Thick blue → VI
Thin red → VII
Resulting variation of the

edge of conformal window

3.7 . xc . 4.2

4.0 4.5 5.0 5.5
x

3.5

4.0

4.5

-mIR
2 {IR

2

RETURN

V-QCD, Elias Kiritsis
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The IR fixed point

Veff(λ) = Vg(λ)− xV0(λ)

2 4 6 8 10
Λ

5.95

6.00

6.05

6.10

V
Banks-Zaks

Λ
*

2 4 6 8 10
Λ

-0.2

0.2

0.4

0.6
Β

Λ
*

5 10 15 20
Λ

7.15

7.20

7.25

7.30

7.35

7.40
V

High x

Λ
*

5 10 15 20
Λ

-0.2

0.2

0.4

0.6
Β

Λ
*

50 100 150 200
Λ

15

20

25

30

35

40

45
V

Low x

Λ
*

50 100 150 200
Λ

-50

50

100

150

200

250
Β

Λ
*

Two possibilities: (a) The maximum exists for all x. (b) The maximum
exists for x > x∗.

V-QCD, Elias Kiritsis
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Matching to QCD: UV

• As λ→ 0 we can match:

♠ Vg(λ) with (two-loop) Yang-Mills β-function.

♠ Vg(λ)− xV0(λ) with QCD β-function.

♠ a(λ)/h(λ) with anomalous dimension of the quark mass/chiral condensate

• The matching allows to mark the BZ point, that we normalize at x = 11
2 .

• After the matching above we are left with a single undetermined param-
eter in the UV:

Vg ∼ V0 +O(λ) , V0 ∼W0 +O(λ)

V0 − xW0 =
12

ℓ2UV

V-QCD, Elias Kiritsis
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Matching to QCD: IR

• In the IR, the tachyon has to diverge ⇒ the tachyon action ∝ e−T
2

becomes small

♠ Vg(λ) ≃ λ
4
3
√
λ chosen as for Yang-Mills, so that a “good” IR singularity

exists etc.

♠ V0(λ), a(λ), and h(λ) chosen to produce tachyon divergence: there are

several possibilities.

♠ The phase structure is essentially independent of IR choices.
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Choice I, for which in the IR

T (r) ∼ T0 exp

[
81 35/6(115− 16x)4/3(11− x)

812944 21/6
r

R

]
, r → ∞

R is the IR scale of the solution. T0 is the control parameter of the UV

mass.

Choice II: for which in the IR

T (r) ∼
27 23/431/4√

4619

√
r − r1
R

, r → ∞

R is the IR scale of the solution. r1 is the control parameter of the UV

mass.

V-QCD, Elias Kiritsis
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The free energy

The free energy difference be-

tween the ChS and ChSB mq = 0

solutions

Chiral symmetry breaking solution

favored whenever it exists (x < xc)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

10-6

10-4

0.01

1
ÈDEÈ�LUV

4

• The Efimov minima have free energies ∆En with

∆E0 >∆E1 >∆E2 > · · ·

V-QCD, Elias Kiritsis
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Walking
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The β-functions for vanishing quark mass for various values of x. The red solid, blue

dashed, and magenta dotted curves are the β-functions corresponding to the full

numerical solution (dλ/dA) along the RG flow, the potential Veff = Vg − xVf0, and the

potential Vg, respectively.
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The tachyon logT (left) and the coupling λ (right) as functions of log r

for an extreme walking background with x = 3.992. The thin lines on the

left hand plot are the approximations used to derive the BKT scaling.

V-QCD, Elias Kiritsis
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Holographic β-functions

The second order equations for the system of two scalars plus metric can

be written as first order equations for the β-functions
Gursoy+Kiritsis+Nitti

dλ

dA
= β(λ, T ) ,

dT

dA
= γ(λ, T )

The equations of motion boil down to two partial non-linear differential

equations for β, γ.

Such equations have also branches as for DBI and non-linear scalar actions

the relation of e−AA′ with the potentials is a polynomial equation of degree

higher than two.
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The red lines are added on the top row at β = 0 in order to show the location of the

fixed point.
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The β-functions for vanishing quark mass for various values of x. The red

solid, blue dashed, and magenta dotted curves are the β-functions

corresponding to the full numerical solution (dλ/dA) along the RG flow,

the potential Veff = Vg − xVf0, and the potential Vg, respectively.

V-QCD, Elias Kiritsis
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UV mass vs T0 and r1

The UV behavior of the background solutions with good IR singularity for the scenario I
(left) and parameter T0 and scenario II (right) and parameter r1.

The thick blue curve represents a change in the UV behavior, the red dashed curve has zero

quark mass, and the contours give the quark mass. The black dot where the zero mass

curve terminates lies at the critical value x = xc. For scenario I (II) we have xc ≃ 3.9959

(xc ≃ 4.0797).

V-QCD, Elias Kiritsis
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Numerical solutions: T = 0

T ≡ 0 backgrounds (color codes λ, A)
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Numerical solutions: Massless with x < xc

Massless backgrounds with x < xc ≃ 3.9959 (λ, A, T )
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Massless backgrounds: beta functions β = dλ
dA , ( xc ≃ 3.9959)
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.

Massless backgrounds: gamma functions γ
T = d logT

dA
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Matching to QCD: IR

• In the IR, the tachyon has to diverge ⇒ the tachyon action ∝ e−T
2

becomes small

♠ Vg(λ) ≃ λ
4
3
√
λ chosen as for Yang-Mills, so that a “good” IR singularity

exists etc.

♠ V0(λ), a(λ), and h(λ) chosen to produce tachyon divergence: there are

several possibilities.

♠ The phase structure is essentially independent of IR choices.
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Choice I:

Vg(λ) = 12+
44

9π2
λ+

4619

3888π4
λ2

(1 + λ/(8π2))2/3

√
1+ log(1 + λ/(8π2))

Vf(λ, T ) = V0(λ)e
−a(λ)T2

V0(λ) =
12

11
+

4(33− 2x)

99π2
λ+

23473− 2726x+92x2

42768π4
λ2

a(λ) =
3

22
(11− x)

h(λ) =
1(

1+ 115−16x
288π2

λ
)4/3

For which in the IR

T (r) ∼ T0 exp

[
81 35/6(115− 16x)4/3(11− x)

812944 21/6
r

R

]
, r → ∞

R is the IR scale of the solution. T0 is the control parameter of the UV
mass.
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Choice II:

a(λ) =
3

22
(11− x)

1 + 115−16x
216π2

λ+ λ2

λ20

(1 + λ/λ0)4/3

h(λ) =
1

(1+ λ/λ0)4/3

for which in the IR

T (r) ∼
27 23/431/4√

4619

√
r − r1
R

, r → ∞

R is the IR scale of the solution. r1 is the control parameter of the UV

mass.

V-QCD, Elias Kiritsis
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Comparison to previous “guesses”
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The anomalous dimension of the quark mass at the IR fixed point as a function of x within
the conformal window in various approaches.

The solid blue curve is our result for the potential I.

The dashed blue lines show the maximal change as W0 is varied from 0 (upper curve) to
24/11 (lower curve).

The dotted red curve is the result from a Dyson-Schwinger analysis, the dot-dashed ma-

genta curve is the prediction of two-loop perturbative QCD, and the long-dashed green

curve is based on an all-orders β-function.

V-QCD, Elias Kiritsis
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Miransky scaling for the masses
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The plots depict the scalar and pseudoscalar masses of the first mode close to xc fit to the Miransky

exponential factor.
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The holographic models: flavor

• Fundamental quarks arise from D4-D̄4 branes in 5-dimensions.

D4−D4 strings → ALµ ↔ JLµ = ψ̄LσµψL

D4−D4 strings → ARµ ↔ JRµ = ψ̄Rσ̄µψR

D4−D4 strings → T ↔ ψ̄LψR

• For the vacuum structure only the tachyon is relevant.

• An action for the tachyon motivated by the Sen action has been advocated
as the proper dynamics of the chiral condensate, giving in general all the
expected features of χSB.

Casero+Kiritsis+Paredes

STDBI = −NfNcM3
∫
d5x Vf(T ) e

−ϕ
√
−det(gab+ ∂aT∂bT )

• It has been tested in a 6d asymptotically-AdS confining background (with
constant dilaton) due to Kuperstein+Sonneschein.

Iatrakis+Kiritsis+Paredes
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It was shown to have the following properties:

• Confining asymptotics of the geometry trigger chiral symmetry breaking.

• A Gell-Mann-Oakes-Renner relation is generically satisfied.

• The Sen DBI tachyon action with V ∼ e−T
2
asymptotics induces linear

Regge trajectories for mesons.

• The Wess-Zumino (WZ) terms of the tachyon action, computed in
string theory, produce the appropriate flavor anomalies, include the axial
U(1) anomaly and η′-mixing, and implement a holographic version of the
Coleman-Witten theorem.

• The dynamics determines the chiral condensate uniquely a s function of
the bare quark mass.

• The mass of the ρ-meson grows with increasing quark mass.

• By adjusting the same parameters as in QCD (ΛQCD, mud) a good fit
can be obtained of the light meson masses.

V-QCD, Elias Kiritsis

45-



The chiral vacuum structure

• We take the potential to be the flat space one

V = V0 e
−T2

with a maximum at T = 0 and a minimum at T = ∞.

• Near the boundary z = 0, the solution can be expanded in terms of two

integration constants as:

τ = c1z+
π

6
c31z

3 log z+ c3z
3 +O(z5)

• c1, c3 are related to the quark mass and condensate.

• At the tip of the cigar, the generic behavior of solutions is

τ ∼ constant1 + constant2
√
z − zΛ

• With special tuned condition there is a one-parameter family of diverging

solutions in the IR depending on a single parameter:

τ =
C

(zΛ − z)
3
20

−
13

6πC
(zΛ − z)

3
20 + . . .
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• This is the correct “regularity condition” in the IR as τ is allowed to

diverge only at the tip.

All the graphs are plotted using zΛ = 1, µ2 = π and c1 = 0.05. The tip of the cigar is at z = zΛ = 1. On the

left, the solid black line represents a solution with c3 ≈ 0.3579 for which τ diverges at zΛ. The red dashed

line has a too large c3 (c3 = 1) - such that there is a singularity at z = zs where ∂zτ diverges while τ stays

finite. This is unacceptable since the solution stops at z = zs where the energy density of the flavor branes

diverges. The red dotted line corresponds to c3 = 0.1; this kind of solution is discarded because the tachyon

stays finite everywhere. The plot in the right is done with the same conventions but with negative values of

c3 = −0.1,−0.3893,−1. For c3 ≈ −0.3893 there is a solution of the differential equation such that τ diverges

to −∞. This solution is unstable.
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• Chiral symmetry breaking is manifest.

V-QCD, Elias Kiritsis
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Chiral restauration at deconfinement

• In the deconfined phase, the bulk metric is that of a bh.

• The branes now are allowed to enter the horizon without recombining.

• To avoid intermediate singularities of the solution the boundary conditions

must be tuned so that tachyon is finite at the horizon.

• Near the horizon the correct solution behaves as a one-parameter family

τ = cT −
3cT
5zT

(zT − z)−
9cT

200zT
(8 + µ2cT

2)(zT − z)2 + . . .
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Plots corresponding to the deconfined phase. We have taken c1 = 0.05. The solid line

displays the physical solution c3 = −0.0143 whereas the dashed lines (c3 = −0.5 and

c3 = 0.5) are unphysical and end with a behavior of the type τ = k1 − k2
√
zs − z.
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These plots give the values of c3 determined numerically by demanding the correct IR

behavior of the solution, as a function of c1.

V-QCD, Elias Kiritsis
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Jump of the condensate at the phase transition

• From holographic renormalization we obtain

⟨q̄q⟩ =
1

β
(2πα′KR3λ)

−4c3 +

(
mq

β

)3
µ2(1 + α)

 , mq = β c1

• We calculate the jump at the phase transition that is scheme independent

for a fixed quark mass.

∆⟨q̄q⟩ ≡ ⟨q̄q⟩conf − ⟨q̄q⟩deconf = −4
1

β
(2πα′KR3λ)∆c3

• This is equivalent to ∆c3
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• We plot it as a function of the quark mass.

The finite jump of the quark condensate and its derivative with respect

to c1 when the confinement-deconfinement transition takes place. The

important features appear when mq ∼ ΛQCD

V-QCD, Elias Kiritsis
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Meson spectra

For the vectors

zΛm
(1)
V = 1.45+ 0.718c1 , zΛm

(2)
V = 2.64+ 0.594c1 , zΛm

(3)
V = 3.45+ 0.581c1 ,

zΛm
(4)
V = 4.13+ 0.578c1 , zΛm

(5)
V = 4.72+ 0.577c1 , zΛm

(6)
V = 5.25+ 0.576c1 .

For the axial vectors:

zΛm
(1)
A ≈ 2.05+ 1.46c1 , zΛm

(2)
A ≈ 3.47+ 1.24c1 , zΛm

(3)
A ≈ 4.54+ 1.17c1 ,

zΛm
(4)
A ≈ 5.44+ 1.13c1 , zΛm

(5)
A ≈ 6.23+ 1.11c1 , zΛm

(6)
A ≈ 6.95+ 1.10c1 .

For the pseudoscalars:

zΛm
(1)
P ≈

√
3.53c21 +6.33c1 , zΛm

(2)
P ≈ 2.91+ 1.40c1 , zΛm

(3)
P ≈ 4.07+ 1.27c1 ,

zΛm
(4)
P ≈ 5.04+ 1.21c1 , zΛm

(5)
P ≈ 5.87+ 1.17c1 , zΛm

(6)
P ≈ 6.62+ 1.15c1 .

For the scalars:

zΛm
(1)
S = 2.47+ 0.683c1 , zΛm

(2)
S = 3.73+ 0.488c1 , zΛm

(3)
S = 4.41+ 0.507c1 ,

zΛm
(4)
S = 4.99+ 0.519c1 , zΛm

(5)
S = 5.50+ 0.536c1 , zΛm

(6)
S = 5.98+ 0.543c1 .

• Valid up to c1 ∼ 1.

• In qualitative agreement with lattice results
Laerman+Schmidt., Del Debbio+Lucini+Patela+Pica, Bali+Bursa

V-QCD, Elias Kiritsis
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Mass dependence of fπ

The pion decay constant and its derivative as a function of c1 - the quark mass. The

different lines correspond to different values of k. From bottom to top (on the right plot,

from bottom to top in the vertical axis) k = 12
π2 ,

24
π2 ,

36
π2 . The pion decay constant comes in

units of z−1
Λ .

V-QCD, Elias Kiritsis
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Linear Regge Trajectories

Results corresponding to the forty lightest vector states with c1 = 0.05 and c1 = 1.5.

V-QCD, Elias Kiritsis
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Walking

RETURN

V-QCD, Elias Kiritsis
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The phase diagram

53
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