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For any renormalizable quantum field theory, construct an  
observable which could:     

Goal  

•   track the number of degrees of freedom of 
the system at a given scale.  

•   probe and characterize quantum entanglement 
at a given scale.  

•   provide new probes of renormalization group 
flow. 
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Bi-partite entanglement: entanglement entropy   

A 
Σ S(Σ) = −TrρA log ρA

(will focus on vacuum) 



Entanglement entropy for a QFT 

 dominated by short-distance physics: 

 ill-defined in the continuum limit: Divergent for a renormalizable QFT 

Long range correlations hard to extract. 

S(Σ) ∝ AΣ

δd−2
+ · · · δ : Short-distance cutoff 

R Expect it to depend on physics at  
length scales ranging from size R all  
the way to short-distance cutoff.   

Bombelli et al, 
Srednicki 



Common practice: 

Even after the subtraction, could still depend on 
physics at scales much smaller than the size of the 
entangled region. 

subtract the UV divergent parts by hand,  often 
ambiguous (e,g. typically not invariant under 
reparametrizations of the cutoff) 



Free massive fields 
For a free massive scalar field for a spherical region  
in the regime mR >> 1 in d=3: 

The finite part diverges linearly in R and does not have a 
well defined limit in the large R limit. 

Sscalar(mR) = #
R

δ
− π

6
mR− π

240

1

mR
+ · · ·

Herzberg and Wilczek, Heurta 

At long distances, the system contains nothing.  

Ideally, we would have liked to have the EE to go to zero.   



Would like to be able to directly probe entanglement  
relations at a given scale. 

Entanglement entropy  contains too much shor-distance “junk”   

In the infinite R limit, it does not reduce to physics at 
the IR fixed point, and still depends on physics at 
much shorter length scales. 

Here we make a simple proposal. 

Would like to understand how entanglement relations  
change with scale:  RG flow of entanglement. 



“Renormalized entanglement entropy” 
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For any entangling (smooth) surface      with a scalable size R:  Σ
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Renormalized entanglement entropy 
Will show: 

•  UV finite, well-defined in the continuum limit 

R-independent for a scale invariant system S(Σ)
d (R) = s(Σ)

d

•  For a general  
  quantum field theory S(Σ)

d (R) →
�
s(Σ,UV)
d R → 0

s(Σ,IR)
d R → ∞

.

 It is most sensitive to degrees of freedom at  scale R.   



Divergence structure of entanglement entropy 

S(Σ)
div =

�

Σ
dd−2σ

√
hF (Kab, hab)

S(Σ)
div = S(Σ̄)

div

S(Σ)
div = a1R

d−2 + a2R
d−4 + · · ·

 The divergent part of EE should only depend on local physics 
at the cutoff scale near the entangling surface,  

h: induced metric, 
K: extrinsic curvature 

Function F must be 
even in K.  

F: sum of all possible geometric invariants 
Grover, Turner,  
Vishwanath 

No negative powers of R. 

a1,a2 : divergent coefficients, in general complicated functions 
of dimensional parameters of a system. 

Σ

(scalable surface) 



UV finiteness  
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Given:  S(Σ)
div = a1R

d−2 + a2R
d−4 + · · ·

will then get rid of all UV divergent terms for any QFT.  

The differential operator also gets rid of finite terms of the  
same R-dependence. 

Such terms can be modified by redefining the cutoff, thus  
not well defined in the continuum limit (“contaminated”). 

S(Σ)
d (R) is thus UV finite, and unambiguous (independent of  

reparametrizations of the cutoff).  



CFT 

S(Σ)
d (R) = s(Σ)

d

For a scale invariant system, we must have: 

S(Σ) =
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Converting it back to the EE itself, we then have  

This agrees with what was previously found from holographic 
 calculations. (Ryu, Takayanagi) 

s(Σ)
d is the “universal” part of the entanglement entropy.  



General QFTs 

In the small R limit:  

S(Σ)
d (R) → s(Σ,UV)

d , R → 0

S(Σ)(R) → S(Σ,UV), R → 0

S(Σ)
d (R) → s(Σ,IR)

d , R → ∞

1

µ1
,
1

µ2
, · · · � δ � RIntroducing a floating cutoff     :    δ

Contains mass parameters:  µ1, µ2, · · ·

1

µ

In the large R limit: 
�
R � 1

µ1
,
1

µ2
, · · ·

� S(Σ)(R)                  depends on physics at all 
scales from      to R including µ1, µ2, · · ·δ0



General QFTs 
Similarly, for any length L  << R,   

L � δ � R

(Their contributions should be suppressed by positive powers of L/R.) 

should not be sensitive to contributions from  
d.o.f. at scale L.  

S(Σ)
d (R)

S(Σ)
d (R) can be considered to directly probe and  

characterize entanglement at scale R.  

The R-dependence can be interpreted as describing the “RG”  
flow of entanglement entropy with distance scale. 



Summary 

•  UV finite, well-defined in the continuum limit 

•  R-independent for a scale invariant system S(Σ)
d (R) = s(Σ)

d

•  For a general  
  quantum field theory S(Σ)

d (R) →
�
s(Σ,UV)
d R → 0

s(Σ,IR)
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.

•  most sensitive to degrees of freedom at  scale R.   
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can be considered as describing the RG flow of  
entanglement entropy 

Note: definition not unique, simplest  



Gapped systems 
For a free massive scalar field for a spherical region  
in the regime mR >> 1 in d=3: 

Sscalar(mR) = #
R

δ
− π

6
mR− π

240

1

mR
+ · · ·

Sscalar(mR) = +
π

120

1

mR
+ · · · → 0

In odd d, for generic gapped systems, we expect: (e.g. d=3)  

S(Σ)
3 (R) → γ, R → ∞ γ : Topological entanglement  

entropy 
(Kitaev, Preskill; Levin, Wen) 

In even d: S(Σ)
2n (R) → 0, R → ∞, n = 1, 2, · · ·



Renyi entropy 

Rn(A) =
1

1− n
log TrρnA

One can similarly define “renormalized Renyi entropies.”  

All the earlier discussions can be carried over. 



Applications 
Use dimensional analysis to deduce qualitative 

features of EE of various systems 

CFT:  

(non)-Fermi liquids:  

S(Σ)
d (R) = s(Σ)

d

S(Σ)
d (R) ∝ kd−2

F Rd−2 ∝ AFSAΣ, R → ∞

SΣ(R) ∼ kd−2
F Rd−2 log(kFR) ∼ AFSAΣ log(AFSAΣ)

Wolf; Gioev, Klich 
Swingle,  
Swingle, Senthil 

For co-dimensional n Fermi surfaces: 

SΣ(R) ∝
�
(kFR)d−n log(kFR) n even

(kFR)d−n n odd



Application: EE and the number of d.o.f. 

S(Σ)
d (R)Could                  give a measure of the number of d.o.f. at 

scale R? 

R
dS(Σ)

d (R)

dR
< 0 ?

s(Σ,UV)
d > s(Σ,IR)

d
i.e. a c-theorem. 

S(Σ)
d (R) characterizes entanglement at scale R.  

describes the RG flow of entanglement entropy 

Given  S(Σ)
d (R) →

�
s(Σ,UV)
d R → 0

s(Σ,IR)
d R → ∞

.

If 



d=2 
S2(R) = R

dS

dR

S2 =
c

3
For a CFT 

Casini and Huerta 

S2(R) monotonic alternative proof of  
Zamolodchikov’s c-theorem 

For Lorentz-invariant, unitary QFTs 

Proof uses Lorentz symmetry and strong 
 sub-additivity condition 

S(A) + S(B) ≥ S(A ∩B) + S(A ∪B)

Holzhey, Larsen, Wilczek 



Higher dimensions 
now depends on the shape of     .  S(Σ)

d (R) Σ

Will all shapes work? 

d=4: for a CFT 

s(Σ)
4 = 2a4

�

Σ
d2σ

√
hE2 + c4

�

Σ
d2σ

√
h I2

s(sphere)4 = 4a4I2 vanishes for sphere,  

a4,c4 : coefficients of trace anomaly  

For a general shape,  will be a combination of a and c.  

Thus only for a sphere, do we always have 

Solodukhin 

s(Σ,UV)
4 > s(Σ,IR)

4



Higher dimensions (II) 
For all even spacetime dimensions:  

s(sphere)2n = 4a2n

For all odd dimension:  s(sphere)d = (logZ)finite

: finite part of the Euclidean partition for the 
CFT on Sd 

(logZ)finite

There are supports that these quantities could satisfy  

s(sphere,UV)
d > s(sphere,IR)

d

Myers, Sinha 
Casini, Myers, Heurta 

Casini, Myers, Heurta 

Cardy,  
Myers, Sinha 
Jefferis, Klebanov, 
 Pufu and Safdi 



Thus now focus on a sphere  

Sd(R) if monotonic 

•   lead to the conjectured c-theorem in all dimensions 

•   give a scale-dependent measure of the number of 
    d.o.f. for a general QFT. 



d=3 
S3(R) = R

dS

dR
− S

Free massive scalar and various holographic examples: 

S3(R) monotonically decreasing with R  
and non-negative  

Monotonicity  S��(R) < 0

Conjecture: 

Casini and Huerta have given a  proof shortly after  (1202.5650). 

But their proof does not appear to give non-negativeness. 

for all Lorentz invariant, unitary QFTs 



d=4 

Various 
holographic 
examples: 

neither monotonic  
nor non-negative  

S4(R) =
1

2

�
R2 d

2S

dR2
−R

dS

dR

�

S4(R)

Nevertheless S4(R → 0) > S4(R → ∞) from a-theorem 

R3∂3
RS +R2∂2

RS < R∂RS
not clear it could arise 
from the strong 
subadditivity condition.  

•  the function form should be modified 

•  Monotonicity of        or its improvement would imply  
an inequality for S with least three derivatives. 

S4



Application: new probes of renormalization  
group flow 



Behavior near a UV fixed point  

Sd(R) = s(UV)
d −A(α)(µR)2α + · · ·For small R  

α = d−∆ (source flow) α = ∆ (vev flow) 

Sd = s
(UV)
d −O(g2) g: least relevant coupling  

See also Klebanov, Nishioka, Pufu, Safdi 

Free massive field in 2+1 dimension:  

∂m2RS3

��
m2R2=0

�= 0
Klebanov, Nishioka, Pufu, Safdi 

In all holographic theories: 

A(α) > 0



Behavior near an IR fixed point  

For large R 

Sd(R) = s(IR)
d +

�
#
R + · · · odd d
#
R2 + · · · even d

Sd(R) = s(IR)
d +

B(α̃)

(µ̃R)2α̃
+ · · ·

∆ Dimension of leading  
irrelevant operator 

∼ s
(IR)
d +O(g2)

B(α̃) > 0

HL, Mezei, to appear 

For     outside the above range: α̃

Sd = s(IR)
d + Cgγ γ =

�
α̃−1 odd d

2α̃−1 even d
< 2

C: “nonlocal” 
Sign of C  not  
definite  in d=4 

α̃ <

�
1
2 odd d

1 even d

α̃ = ∆− d
For  



“Phase transitions”  
We also observed that in holographic systems, the  
entanglement entropy has “phase transitions” in the  
Lorentz-invariant vacuum as a function of size: 

 can be first order or second order 

Involving topology change or no  
topology change 

Nishioka and Takayanagi 
Klebanov, Kutasov, Murugan 
 Pakman, Parnachev 
Headrick 
Albash and Johnson…. 

See also Klebanov, Nishioka, Pufu,Safdi 

These phase transitions should tell us “something” about  
RG flow of a system.  

It appears to happens when a flow is “fast” 



Some examples 
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2nd order phase transitions 
involving topology change 

z = 0

z → ∞

ρ

R1 R2

R1 < Rc < R2

Rc



For any renormalizable quantum field theory (not necessarily  
Lorentz-invariant),  “renormalized entanglement entropy:” 

Summary 

•   for d=2,3, C-function, candidate for a 
measure of the number of degrees of freedom 
of the system at a given scale  (with Lorentz 
symmetry)  

•   probe and characterize quantum entanglement 
at a given scale.  

•  Non-relativistic ?  

•  an intrinsically finite definition (mutual information) ?  



Thank You ! 


