Probing Higher Spin Black Holes

Per Kraus (UCLA)

1209.4937 P.K., Eric Perlmutter

Introduction

- Higher spin gravity is an (apparently) consistent theory that sits "midway" between low energy field theory and string theory (Vasiliev)
 - infinite towers of fields
 - nonlocal dynamics
 - huge enlargement of gauge symmetry
- Extra symmetry provides soluble examples of AdS/CFT correspondence (Klebanov/Polyakov; Gaberdiel/Gopakumar; ...)
 - can we gain insight into the big problems of quantum gravity?

3D HS Gravity

ightharpoonup Extension of Chern-Simons formulation of ordinary gravity with $\Lambda < 0$ (Achucarro, Townsend / Witten)

vielbein
$$e^a_\mu$$
, spin connection $\omega^a_\mu = \frac{1}{2} \epsilon^a_{\ bc} \omega^{bc}_\mu$

SL(2,R) x SL(2,R) gauge fields
$$A=(\omega^a+\frac{1}{l}e^a)J_a$$
 , $\overline{A}=(\omega^a-\frac{1}{l}e^a)J_a$
$$[J_a,J_b]=\epsilon_{ab}^{\ \ c}J_c$$

$$R_{\mu\nu} = \frac{1}{l^2} g_{\mu\nu} \quad \longleftrightarrow \quad \frac{dA + A \wedge A = 0}{d\overline{A} + \overline{A} \wedge \overline{A} = 0}$$

$$S = \frac{k}{4\pi} \int \text{Tr}(AdA + \frac{2}{3}A^3) - \frac{k}{4\pi} \int \text{Tr}(\overline{A}d\overline{A} + \frac{2}{3}\overline{A}^3) \qquad k = \frac{l}{4G} = \frac{c}{6}$$

- Replacing SL(2) by a larger algebra that contains SL(2) yields a higher spin gravity theory
- Ordinary 3D gravity is a consistent subsector
 - example: SL(3) describes ordinary gravity
 coupled to a massless spin-3 field (Campoleonii et. al.)

$$g_{\mu\nu} \sim \text{Tr}(e_{\mu}e_{\nu}) , \quad \varphi_{\alpha\beta\gamma} \sim \text{Tr}(e_{\alpha}e_{\beta}e_{\gamma})$$

$$e \sim A - \overline{A}$$

Gauge symmetry includes coord. transformations under which $g_{\mu\nu}$ and $\varphi_{\alpha\beta\gamma}$ transform as tensors, as well as spin-3 gauge transformations under which $g_{\mu\nu}$ transforms in novel way

e.g. Ricci scalar not gauge invariant

Just as SL(2) gravity has asymptotic Virasoro symmetry, HS theories have asymptotic Walgebras containing higher spin currents

(Henneaux/Rey; Campoleoni et. al.)

Pure HS theory contains no propagating degrees of freedom.

<u>Matter</u>

Attempt to introduce scalar matter via equation

$$dC + AC - C\overline{A} = 0$$

- For gauge group SL(2) (or other finite dimension group)
 this leads to an unfamiliar finite dimensional system
- For appropriate infinite dimensional gauge group get
 Klein-Gordon equation when evaluated in AdS
- Above construction appears in linearized version of full nonlinear Vasiliev equations (Prokushkin, Vasiliev)
 - Mass of scalar, and its interactions, fixed by gauge symmetry

Higher spin gauge algebra: hs(λ)

 \bullet Introduce $y_{1,2}$ and the Moyal product:

$$f(y_{\alpha}) * g(y_{\beta}) = e^{i\epsilon^{\alpha\beta}\partial_{\alpha}\partial_{\beta}'} f(y_{\alpha})g(y_{\beta}')\Big|_{y'=y}$$
$$[y_{1}, y_{2}]_{*} = 2i$$

- Elements of hs(1/2) are symmetric, even degree polynomials $V_m^s \sim y_1^{s+m-1}y_2^{s-m-1}$
 - SL(2) generated by:

$$L_1 = -\frac{i}{4}y_1^2$$
, $L_0 = -\frac{i}{4}y_1y_2$, $L_{-1} = -\frac{i}{4}y_2^2$

• General case of $hs(\lambda)$ obtained from deformed commutator: $[y_1, y_2]_* = 2i(1 + \nu k), \quad \lambda = (1 + \nu)/2$

$$hs(N) = SL(N)$$

Scalar wave equation

AdS:

$$A = e^{\rho} V_1^2 dz + V_0^2 d\rho$$

$$\overline{A} = e^{\rho} V_{-1}^2 d\overline{z} - V_0^2 d\rho$$

$$\Rightarrow ds^2 = d\rho^2 + e^{2\rho} dz d\overline{z}$$

$$V_{\pm 1}^2 = L_{\pm 1} , \quad V_0^2 = L_0$$

Scalar equation: $dC + AC - C\overline{A} = 0$ $C = \sum_{ms} C_m^s(x^\mu) V_m^s$

• plug in and solve recursively. Lowest component is constrained to obey:

$$[\nabla^2 - (\lambda^2 - 1)]C_0^1 = 0$$

KG equation with: $m^2 = \lambda^2 - 1$

Higher spin deformation of background leads to higher derivative scalar wave equation

e.g.:
$$A=e^{\rho}V_1^2dz+V_0^2d\rho-\eta e^{2\rho}V_2^3d\overline{z}$$

$$\overline{A}=e^{\rho}V_{-1}^2d\overline{z}-V_0^2d\rho$$

$$\Rightarrow \ ds^2=d\rho^2+e^{2\rho}dzd\overline{z}\ , \quad \varphi_{\overline{z}\overline{z}\overline{z}}\sim\eta e^{4\rho}$$

- scalar equation: $[\nabla^2 4\eta e^{-2\rho}\partial^3 (\lambda^2 1)]C_0^1 = 0$
- Solution of generalized wave equation leads to AdS 3-point correlation functions:

$$\langle \mathcal{O}_{\pm}(z_1)\overline{\mathcal{O}}_{\pm}(z_2)J^{(s)}(z_3)\rangle = \frac{(-1)^{s-1}}{2\pi}\frac{\Gamma(s)^2}{\Gamma(2s-1)}\frac{\Gamma(s\pm\lambda)}{\Gamma(1\pm\lambda)}\left(\frac{z_{12}}{z_{13}z_{23}}\right)^s\langle \mathcal{O}_{\pm}(z_1)\overline{\mathcal{O}}_{\pm}(z_2)\rangle$$

$$\mathcal{O}_{-} \sim \text{standard quantization} \qquad \qquad \text{(Ammon, P.K., Perlmutter)}$$

$$\mathcal{O}_{+} \sim \text{alternate quantization}$$

Duality

• Gaberdiel and Gopakumar conjecture duality between bulk $hs[\lambda]$ theory and W_N minimal model CFT

$$\frac{SU(N)_k \oplus SU(N)_1}{SU(N)_{k+1}} \quad k, N \to \infty , \quad \lambda = \frac{N}{k+N} \text{ fixed}$$

$$c \sim N(1 - \lambda^2)$$

various checks based on symmetries, spectrum, etc.e.g.:

$$\langle \mathcal{O}_{\pm}(z_1)\overline{\mathcal{O}}_{\pm}(z_2)J^{(s)}(z_3)\rangle = \frac{(-1)^{s-1}}{2\pi} \frac{\Gamma(s)^2}{\Gamma(2s-1)} \frac{\Gamma(s\pm\lambda)}{\Gamma(1\pm\lambda)} \left(\frac{z_{12}}{z_{13}z_{23}}\right)^s \langle \mathcal{O}_{\pm}(z_1)\overline{\mathcal{O}}_{\pm}(z_2)\rangle$$

 much of the challenge in proving duality involves defining the bulk theory at the fully quantum, nonperturbative level

Black Holes

- Black hole solutions carrying higher spin charge have been constructed (Gutperle, P.K; P.K., Perlmutter)
- Solutions contribute to generalized partition functions $Z(\beta, \mu_i) = \text{Tr}\left[e^{-\beta(H+\sum_i \mu_i Q_i)}\right]$
- Partition function extracted from bulk matches that of dual CFT in high temperature regime

(P.K., Perlmutter; Gaberdiel, Hartman, Jin)

Main subtlety involves interpretation of spacetime solution. Non-obvious causal structure due to higher spin gauge invariance

Building HS Black Holes

BTZ:

$$\frac{A = (e^{\rho}L_1 - \frac{2\pi}{k}e^{-\rho}\mathcal{L}L_{-1})dx^+ + L_0d\rho}{\overline{A} = -(e^{\rho}L_{-1} - \frac{2\pi}{k}e^{-\rho}\overline{\mathcal{L}}L_1)dx^- - L_0d\rho} \qquad BTZ$$

$$\mathcal{L} = \frac{M-J}{4\pi} \quad \overline{\mathcal{L}} = \frac{M+J}{4\pi}$$

Now add in spin-3 chemical potential. Ward identity analysis establishes:

$$A_- \sim \mu e^{2\rho} W_2 + \cdots$$
 chiral spin-3 chemical potential spin-3 generator

- Secondarial Expect this to induce spin-3 charge: $A_+ \sim e^{-2\rho} WW_{-2}$
 - In $hs(\lambda)$ case expect infinite number of charges to be induced, due to nonlinear symmetry algebra

Smoothness conditions

 ordinary gravity: relation between (M,Q) and their conjugate potentials (T,μ) fixed by smoothness at Euclidean horizon

Inapplicable for HS black holes, since even existence of event horizon is a gauge dependent statement. Need a new gauge invariant condition

Thermodynamics

$$Z(\tau, \alpha) = \text{Tr}\left[e^{4\pi^2 i(\tau \mathcal{L} + \alpha \mathcal{W})}\right]$$

holonomy condition implies integrability:

$$\frac{\partial \mathcal{L}}{\partial \alpha} = \frac{\partial \mathcal{W}}{\partial \tau}$$

$$\ln Z(\tau,\alpha) = \frac{i\pi k}{2\tau} \left[1 - \frac{4}{3} \frac{\alpha^2}{\tau^4} + \frac{400}{27} \frac{\lambda^2 - 7}{\lambda^2 - 4} \frac{\alpha^4}{\tau^8} - \frac{1600}{27} \frac{5\lambda^4 - 85\lambda^2 + 377}{(\lambda^2 - 4)^2} \frac{\alpha^6}{\tau^{12}} + \cdots \right]$$

valid for:
$$\tau \to 0$$
, $\alpha \to 0$, $\frac{\alpha}{\tau^2}$ fixed

 first few terms found to agree with CFT computation based on modular properties of partition function

Holonomy condition

gauge invariant information captured by holonomies of CS gauge fields

$$H = Pe^{\oint A}$$
, $\overline{H} = Pe^{\oint \overline{A}}$

- We demand that holonomy around Euclidean time circle should be in center of gauge group
- Gives precisely enough information to fix all charges in terms of the potentials, and allows for a consistent thermodynamic interpretation

Causal structure

Metric for non-rotating case takes form

$$ds^2=d
ho^2-F(
ho)dt^2+G(
ho)d\phi^2$$

$$F(
ho),\;G(
ho)\,>\,0\quad {\hbox{no event horizon!}}$$

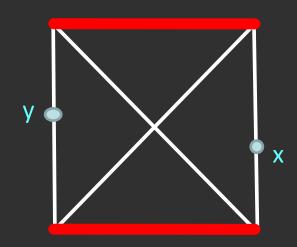
traversable wormhole:



But when holonomy conditions are obeyed, one can find a true black hole metric somewhere on this gauge orbit (Ammon, Gutperle, P.K., Perlmutter)

Probing causual structure

- Our "black hole" metrics either look like traversable wormholes or black holes, depending on choice of gauge
- To map out physical causal structure we can compute AdS/CFT two-point functions of probe scalars, and look for lightcone singularities



Black hole causal structure:G(x,y) nonsingular

Scalar two-point function

Elegant approach to obtaining scalar bulk-boundary propagator: start from propagator at $A = \overline{A} = 0$, then gauge transform to physical solution c.f. (Giombi/Yin)

starting point:
$$A=\overline{A}=0$$
, $C=c$ no spacetime dependence gauge transform: $A=g^{-1}\star dg$, $\overline{A}=\overline{g}^{-1}\star d\overline{g}$
$$C=g^{-1}\star c\star \overline{g}$$

bulk solution: $G(x^M) = Tr(C)$

purely algebraic procedure

bulk-boundary propagator

- Construct universal A=0 gauge propagator
- highest weight state of $hs(\lambda)$: $V_{m>0}^s \star c_{\pm} = 0$

$$V_0^2 \star c_{\pm} = -\left(\frac{1 \pm \lambda}{2}\right) c_{\pm}$$

dimension of CFT operator

$$\lambda = 1/2$$
: $V_m^s = \left(\frac{-i}{4}\right)^{s-1} y_1^{s+m-1} y_2^{s-m-1}$

highest weight states: $c_-=e^{-iy_1y_2}$, $c_+=y_1*e^{-iy_1y_2}*y_2$

These give bulk-boundary propagator with source point at origin along boundary

Constructing physical gauge propagator now becomes exercise in star product gymnastics

19

Examples

Pure AdS: $G_{-}(\rho, z, \overline{z}) = \text{Tr}\left[e^{\frac{i}{4}ze^{\rho}y_{1}^{2}} * e^{-iy_{1}y_{2}} * e^{-\frac{i}{4}\overline{z}e^{-\rho}y_{2}^{2}}\right]$ $= \left(\frac{e^{-\rho}}{e^{-2\rho} + |z|^{2}}\right)^{1/2}$

heta AdS with spin-3 deformation $arphi_{\overline{z}\overline{z}\overline{z}}\sim \mu e^{4
ho}$

$$G_{-}(\rho, z, \overline{z}) = \text{Tr}\left[e^{\frac{i}{4}ze^{\rho}y_{1}^{2} - \frac{\mu\overline{z}e^{2\rho}}{16}y_{1}^{4}} * e^{-iy_{1}y_{2}} * e^{-\frac{i}{4}\overline{z}e^{-\rho}y_{2}^{2}}\right]$$

$$= \left(\frac{e^{-\rho}}{e^{-2\rho} + |z|^{2}}\right)^{1/2} \times \sqrt{\frac{2y}{\pi}} e^{y} K_{1/4}(y)$$

$$y = -\frac{(1+z\overline{z}e^{2\rho})^{2}}{8\mu\overline{z}^{3}e^{4\rho}}$$

 yields scalar 2-point function for CFT deformed by dimension (3,0) operator

Black holes: thermal periodicity

establish general conditions for scalar propagator to exhibit thermal periodicity

define:
$$\Lambda = A_z(\rho)z + A_{\overline{z}}(\rho)\overline{z} \qquad \text{(gauge parameters for stationary background)}$$

$$\overline{\Lambda} = \overline{A}_z(\rho)z + \overline{A}_{\overline{z}}(\rho)\overline{z} \qquad \text{stationary background)}$$

- scalar master field propagator: $C(\rho, z, \overline{z}) \propto e^{-\Lambda} \star c \star e^{\overline{\Lambda}}$
- holonomies: $H=e^{2\pi(\tau A_z+\overline{\tau}A_{\overline{z}})}$, $\overline{H}=e^{2\pi(\tau\overline{A}_z+\overline{\tau}\overline{A}_{\overline{z}})}$

if $\overline{H} = H$ and H lies in center of gauge group, then:

$$C(\rho, z + 2\pi\tau, \overline{z} + 2\pi\overline{\tau}) = C(\rho, z, \overline{z})$$

• for known black holes at $\lambda = 1/2$: $H = -2\pi i \delta^{(2)}(y)$

propagator for HS black hole

- Black holes of $hs(\lambda)$ theory only known perturbatively in hs chemical potential
- Similarly, propagator must be worked out perturbatively. Divergences would indicate change in causal structure

first order correction:

$$\begin{split} &\frac{i\alpha e^{\rho/2}}{16\tau^2} \Big[\cosh^2(2\overline{Z}) \left(-4(Z+\overline{Z})(\cosh(4Z)-2) - \sinh(4Z) \right) \\ &\quad + 4e^{2\rho}\tau \overline{\tau} \sinh(4\overline{Z}) \left(-4(Z+\overline{Z})\sinh(4Z) + 2(\cosh(4Z)-1) \right) \\ &\quad - (4e^{2\rho}\tau \overline{\tau})^2 \sinh^2(2\overline{Z}) \left(4(Z+\overline{Z})(\cosh(4Z)+2) - 3\sinh(4Z) \right) \Big] \\ &\quad \times \left(\cosh(2Z)\cosh(2\overline{Z}) + 4e^{2\rho}\tau \overline{\tau} \sinh(2Z)\sinh(2\overline{Z}) \right)^{-5/2} \;, \end{split}$$

$$Z = \frac{iz}{4\tau}$$

only singularities are on light cone for single sided correlator.

Open issues

subleading corrections to entropy

phase structure

(Banerjee et. al.

effect of light states

black holes formed from collapse?

higher dimensions