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Introduction

®* Higher spin gravity is an (apparently) consistent
theory that sits “midway” between low energy

field theory and string theory (vsiiev)

infinite towers of fields

nonlocal dynamics
huge enlargement of gauge symmetry

®* Extra symmetry provides soluble examples of
AdS/CFT CorrespOndence (Klebanov/Polyakov; Gaberdiel/Gopakumar; ...)

can we gain insight into the big problems of
quantum gravity? ,



3D HS Gravity

Extension of Chern-Simons formulation of
Ordlnary graVIty Wlth A< O (Achucarro, Townsend / Witten)
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* Replacing SL(2) by a larger algebra that contains
SL(2) yields a higher spin gravity theory

®* Ordinary 3D gravity is a consistent subsector

example: SL(3) describes ordinary gravity
coupled to a massless spin-3 field (campoleoniiet. al)

Juv ™ Tr(eueu) ? PaBy ™~ Tr(e@eﬁe’}/)
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Gauge symmetry includes coord. transformations
under which g, and ¥as~y transform as tensors, as
well as spin-3 gauge transformations under which
9uv transforms in novel way

e.g. Ricci scalar not gauge invariant



® Just as SL(2) gravity has asymptotic Virasoro
symmetry, HS theories have asymptotic W-
algebras containing higher spin currents

(Henneaux/Rey; Campoleoni et. al.)

* Pure HS theory contains no propagating degrees
of freedom.



Maltter

* Attempt to introduce scalar matter via equation
dC +AC —-CA=0

For gauge group SL(2) (or other finite dimension group)
this leads to an unfamiliar finite dimensional system

For appropriate infinite dimensional gauge group get
Klein-Gordon equation when evaluated in AdS

* Above construction appears in linearized version
of full nonlinear Vasiliev equations (prokushkin, vasiliev)

Mass of scalar, and its interactions, fixed by gauge
symmetry



Higher spin gauge algebra: hs(i)
®* Introduce ¥1,2 and the Moyal product:
(W) * 9(ys) = €% f(ya)g(y)

Y1, y2]s = 21

y' =y

®* Elements of hs(1/2) are symmetric, even degree
polynomials V3 ~ gystmtys—m-1

SL(2) generated by:
Ly = —iy% , Lo= —%ylyz , L_1= —iy%

* General case of hs()\) obtained from deformed
commutator: [vi,y2]. =2i(1+vk), A= (1+v)/2
hs(N) = SL(N) 7



Scalar wave eguation

. :
* AdS: A = ePVidz + Vidp V2 — ], V2=
A =ePV2,dz — V2dp s 0

= ds? =dp? + e?’dzdz

® Scalar equation: dC + AC —-CA=0
C=2 s Om(a*)Vy,

ms m

plug in and solve recursively. Lowest component is
constrained to obey:

V2 - (A2 —1)|CL =0

KG equation with: m? = \? — 1



®* Higher spin deformation of background leads to
higher derivative scalar wave equation
e_g_: A= eprdz + V02dp — nengQ?’dZ
A =ePV2,dz — Vidp

= ds® =dp® +e*Pdzdz , pzzz ~ ne*’

scalar equation: [V2Z —4ne=2,9% — (A2 - 1)]C} =0

* Solution of generalized wave equation leads to
AdS 3-point correlation functions:

(O4(22) 0 (22) T (25)) = = LA L2 (212 ) (04 (21) O (22))

2137223
O_ ~ standard quantization (Ammon, P.K., Perlmutter)

O, ~ alternate quantization



BIVEUIY

®* Gaberdiel and Gopakumar conjecture duality
between bulk hs[A] theory and Wx minimal
model CFT

SU(N)s®SU(N)1 _ _N_
SU(N) ety k,N =00, A=iry fixed

c~ N(1—\?)

various checks based on symmetries, spectrum, etc.
e.g.:

(O (22) 0 (23) T (25)) = EH— & L2 (22 ) (O4(21) 0 (22))

much of the challenge in proving duality involves
defining the bulk theory at the fully quantum, non-
perturbative level 10



Black Holes

* Black hole solutions carrying higher spin charge
have been ConStr'UCted (Gutperle, P.K; P.K., Perlmutter)

* Solutions contribute to generalized partition
functions  z(g, ;) = Tr [e AHFE 1:Q0)]

®* Partition function extracted from bulk matches
that of dual CFT in high temperature regime

(P.K., Perlmutter; Gaberdiel, Hartman, Jin)

®* Main subtlety involves interpretation of
spacetime solution. Non-obvious causal

structure due to higher spin gauge invariance
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Building HS Black Holes

* BTZ:
A= (e!Ly — 2Ze PLL_q)dzt 4 Lodp ' BTZ
A= —(epL_l — 2%6_’92[/1)0!33_ — Lodp L =M=J pF _ M+J

47 4

®* Now add in spin-3 chemical potential. Ward
identity analysis establishes:

A_ AU M€2PW2 _I_ S
chiral spin-3 chemical potential — \ spin-3 generator
* Expect this to induce spin-3 charge: A4, ~ e 22WW_,

In hs() case expect infinite number of charges to be

induced, due to nonlinear symmetry algebra
12



Smoothness conditions

® ordinary gravity: relation between (M,Q) and

their conjugate potentials (T,u) fixed by
smoothness at Euclidean horizon

/G) :

horizon

®* Inapplicable for HS black holes, since even
existence of event horizon is a gauge dependent
statement. Need a new gauge invariant

condition

13



Thermodynamics

AGRI {e‘”gi(’r“raw)}

* holonomy condition implies integrability:
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oa Ot
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InZ(r,0) = 57 |1 = 375 + 57 Se=g 7= 27~ (A\2—4)2 72

validfor: + -0, a =0, % fixed

first few terms found to agree with CFT computation
based on modular properties of partition function

( Gaberdiel, Hartman, lJin)
14



Holonomy condition

® gauge invariant information captured by
holonomies of CS gauge fields

H=Pe$A, H=PeA

* We demand that holonomy around Euclidean
time circle should be in center of gauge group

® Gives precisely enough information to fix all
charges in terms of the potentials, and allows for
a consistent thermodynamic interpretation

15



Causal structure

®* Metric for non-rotating case takes form
ds? = dp? — F(p)dt* + G(p)dd?
F(p), G(p) > 0

p=—00 p=+oo

traversable wormhole: AdSs \ AdSs

* But when holonomy conditions are obeyed, one
can find a true black hole metric somewhere on

th |S ga uge Orblt (Ammon, Gutperle, P.K., Perlmutter)
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Probing causual structure

® Qur “black hole” metrics either look like

traversable wormholes or black holes, depending
on choice of gauge

* To map out physical causal structure we can
compute AdS/CFT two-point functions of probe
scalars, and look for lightcone singularities

Black hole causal structure:

’ G(x,y) nonsingular

V? +

17



Scalar two-point function

* Elegant approach to obtaining scalar bulk-
boundary propagator: start from propagator
at A = A = 0, then gauge transform to physical
solution < (Giombi/vin)

- int: A Z 0 C — o spacetime dependence
starting point: = = U, —

gauge transform: A=g 'xdg, A=7 'xdg
C=qgl%xcxg
bulk solution: G(zM) = Tr(C)
purely algebraic procedure

18



bulk-boundary propagator

®* Construct universal A=0 gauge propagator
highest weight state of hs(A): V2. xcy =0

V§ *cx = = (57) cx

dimension of CFT operator

A=1/2: v = (F)T s

m yl

highest weight states: c_ = e WYz | ¢ =y % e W12 x5

These give bulk-boundary propagator with source
point at origin along boundary

Constructing physical gauge propagator now becomes

exercise in star product gymnastics "



Examples

Pure AdS: G_(p,2,2) = Tr[ 17¢°YT x @~ V1Y2 4 g~ 17€ "YQ}

_, 1/2
= (=)

* AdS with spin-3 deformation ¢z== ~ ne®

i 2 2p 4
G—(‘O,Z,E) :Tr[ezchyl Ju1et3 Y1 x e —ly1y2 x e 420 Py2:|

_, 1/2
— (e—_2i+|z|2) 2 2?%”{1/4@)

. (14+2ze?P)?
y= 8uz3etr

yields scalar 2-point function for CFT deformed by
dimension (3,0) operator
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Black holes: thermal periodicity

®* establish general conditions for scalar
propagator to exhibit thermal periodicity

define: A= A.(p)z+ AE(P)E (gauge parameters for
A=A (p)z + Z—(p)i stationary background)

scalar master field propagator: C(p,2,z) e ™™ xcx el
holonomies: H = e27(rA:+74z) T = 2n(tA:474s)

if #=H and H lies in center of gauge group, then:
C(p,z+2n1,Z2+ 277) = C(p, 2,2)

* for known black holes at L =1/2: H = —27i6®(y)

21



propagator for HS black hole

®* Black holes of hs(A) theory only known
perturbatively in hs chemical potential

* Similarly, propagator must be worked out
perturbatively. Divergences would indicate
change in causal structure

f| rst o rd er correction: 1E§-ri’_ [::"u::::u:'-:.l'lE (27) (—4(Z + Z)(cosh(4Z) — 2) — sinh(47))

+ 4e**7Tsinh(4Z) (—4(Z + Z)sinh(4Z) 4 2(cosh(4Z) — 1))

— (4e**77)? sinh?(2Z) (4(Z + Z)(cosh(4Z) + 2) — 3sinh(42)) ]

i PR pr— P L Py T . N A _:I-'I'
% (cosh(2Z2) cosh(2Z2) + 4e“?77 sinh(2Z) sinh(27))

7 =iz

®* only singularities are on light cone for single
sided correlator. 22



Open issues

* subleading corrections to entropy
* phase structure

( Banerjee et. al.
* effect of light states

* black holes formed from collapse?

* higher dimensions

23
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