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Motivation

I Hairy black holes are commonplace in Anti-de Sitter space.

I Charged, asymptotically AdS black holes can develop charged
scalar hair below a critical temperature → holographic
superconductors: [Gubser; Hartnoll, Herzog & Horowitz]

I Consistent embeddings in supergravity: [Gubser, Herzog, Pufu &

Tesileanu; Gauntlett, Sonner & Wiseman]

I Results of a broader sweep depend sensitively on the
truncation: [Denef & Hartnoll; Donos & Gauntlett; Aprile, Roest & Russo]

? Are there any generic features in the landscape of consistent
holographic superconductors?



This talk

Aim: Delve deeper into a wider family of consistent truncations.

Outline:

1. Truncation and the normal phase

2. Fluctuations and marginal modes

3. Open questions



Truncation

I Take the bosonic sector of N = 8 SO(6) gauged supergravity
in 5D: [Pernici, Pilch & van Nieuwenhuizen; Gunaydin, Romans & Warner]

I Truncate down to the metric, 15 gauge fields and 20 scalars
that saturate the Breitenlohner-Freedman bound.

I Write the adjoint SO(6) indices in matrix form: (Aµ)ij and
Tij with detT = 1.
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Normal phase

Three-charge family of asymptotically AdS5 black branes:
[Behrndt, Cvetic & Sabra]
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Multiple black brane branches

Work in the grand canonical ensemble with generic ratios of the
chemical potentials
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Local thermodynamic stability

I This black brane family is not thermodynamically stable
everywhere: [Chamblin, Emparan, Johnson & Myers; Cvetic & Gubser;

Cai & Soh; Harmark & Obers]

I Necessary condition for local thermodynamic stability:

detH ∝ 2− q1 − q2 − q3 + q1q2q3 > 0, H =
∂2ε

∂s∂ρI

I Note: not a sufficient condition.



Examples

Gibbs free energy density for the various black brane branches that
exist at fixed generic µI (left) or at µ1 = µ2 = µ3 (right):
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I At fixed µI we find a minimum temperature for the existence
of a thermodynamically stable dominant branch of solutions.

I Equal-charge brane (RN) is thermodynamically unstable and
subdominant below a minimum temperature!



Visualise minimum temperature surface

Minimum temperature T̂ for which the dominant branch is
thermodynamically stable:

p2

p1

p1 ≡
µ1 + µ2 − 2µ3√
6
√
µ21 + µ22 + µ23

, p2 ≡
µ1 − µ2√

2
√
µ21 + µ22 + µ23



Marginal modes

I Seek time-independent solutions that are regular at the
horizon and normalisable at the AdS boundary.

I Fluctuations of the gauge field at the boundary are required to
vanish so that the chemical potentials are not perturbed.

I Such marginal modes indicate new branches of
superconducting and normal black brane solutions.

I Consider general µI .



Class of fluctuations

I Fluctuate the 15 gauge fields and 20 scalar fields

T = T0e
χ(r) , trχ = 0 ; A = (A0 + α(r))dt

I Background is block diagonal ⇒ fluctuations in different 2×2
blocks do not couple.

I These do not source metric fluctuations if

trχII = trσαII = 0 general qI∑
I

trχII =
∑
I

trσαII = 0 two/three equal qI



Class of fluctuations

I Work with linear combinations. For scalar fluctuations:

φ
(−)
IJ φ

(+)
IJ

I = J charged neutral
I 6= J charged charged

I Various special cases of diagonal charged modes considered by
[Aprile, Roest & Russo].

I All other modes couple to gauge field fluctuations in general.

I For neutral diagonal modes, need to include other blocks with
two/three equal qI .

I When qI = qJ , φ
(±)
IJ satisfies same EOM as φ

(±)
II .



Sector (−): results

I Superconducting branch always exists in the region of the
normal phase that is thermodynamically stable.

I Off-diagonal modes have lower critical temperatures than
diagonal modes, except along loci of equal chemical potential
for which they have the same temperature.



Sector (−): slice at µ1 = µ2
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Sector (−): full scan
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Sector (+) and Gubser-Mitra instabilities

I Only find marginal (+) modes along loci of equal chemical
potential, for which these modes are all neutral.

I Interpret as zero modes moving within family of black branes.

I Find analytically, e.g.
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I Can populate entire minimum temperature surface, involving
gravitational fluctuations in general.

I Anticipate a true instability associated with these modes.



Open questions

This system:

I Nonlinear construction of branches and comparison of their
free energy with that of the normal phase.

I Do the condensate curves for off-diagonal modes bend the
right way and are they preferred? Are spatially modulated
phases preferred?

Problems with consistent truncations:

I A subdominant solution in a given theory can appear as a
dominant solution in a consistent truncation of that theory.

I Work in the full 10D or 11D theory, or keep all KK modes?

I What is the true ground state?


