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Motivation |: fast thermalization at RHIC

There are significant evidences that relativistic heavy ion collision program at RHIC
(now also at the LHC) created strongly coupled quark-gluon plasma (sQGP).

Successful description of experimental data is based on hydrodynamic simulations
of an almost perfect fluid of n/s =0 (1/4m) starting on very early (< | fm/c).

Heinz (2004)

~ 10 fm

,thermalized™ after < | fm/c
This very fast ,,thermalization” is a puzzle!!!

the stress tensor Is described by hydrodynamics

Holographic media seem to always ,,thermalize” that quickly. This leads to questions

- (AdS/CFT and gravity) understand mechanisms ensuring fast ,,thermalization” on the gravity side;
- (Phenomenology) derive predictions for HIC ,,thermalization” assuming strong coupling.
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Motivation ll: close-limit approximation

Holographic thermalization Is a process in which a part of spacetime, dual to a non-
equilibrium state, evolves to become (a patch of) a static black hole™.

I the non-equilibrium state Is described by a slightly perturbed black hole solution,

thermalization process Is captured by QNMs/linearized Einstein’s equations (easy).
Horowitz & Hubeny (1999)

RHIC lowest ONM of AdS BH
0.5 fm/c x 350 MeV =T tiso = 0.63 T/ [Im(frequency)| = O(1)

Existing studies of holographic thermalization are however based on solving
numerically time-dependent Einstein’'s equation in the nonlinear regime (hard).
Chesler & Yaffe (2008, 2009, 2010), Heller, Janik & Witaszczyk (201 1) and other studies

In black hole mergers, as soon as single horizon forms, linearized Einstein’s equations

give a good approximation of radiation pattern at infinity (close-limit approximation)
Price & Pullin (1994)
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Motivation lll: going beyond ,,the Vaidya paradi

9
gm

The general lore Is that time-dependent black branes require complicated numerics

Omnipresent toy-model in the Iiterature I1s the AdS-Vaidya spacetime

singularity

M (v)

ds? = 2drdv — r? (1 — ) dv® + r?dr?

o . 1 .
This Is a solution of R, — §Rgab — 694 = T, With pure AdS

(v <0)
T*° of non-dynamical null dust (' 8, ® 8, = %M'(U) Oy ® Dy ),

AdS
Schwarzschild

_ (v>0)

(0 = z) Arepunoq gpy

e.g M(v)= %(1 + tanh v /vg)
The main issues with the AdS-Vaidya are

- It 1s not dynamical ( we can take any M(v) as long as M'(v)>0 )

- confusing ,,instantaneous thermalization™ of local observables and no hydro tall

Can one one do better by simple means, at least iIn some cases!
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Motivation IV: simplifying gravity description

Ultimate goals of holographic thermalization pheno

Fluctuated MC-KLN, Pb-Pb, 2.76 TeV; Npart=200

- e N
g & 8

dE [dyd® r(GeV [ fm?)
N
S

Collide 3-dimensional ,,heavy nuclei”  Understand the imprint of color field
using 4+ | D numerical relativity in AdS fluctuations on the initial data for hydro

Current state of the art
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Zan O,uz
- ° Chesler & Yaffe (2010)
Collision of two infinite sheets

using 2+ 1D simulation in AdS
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Key question

How complicated is holographic thermalization?

or more concretely, to which extend do solutions of linearized
Einstein’s equations (,,easy”) reproduce the full nonlinear result (hard)?

If some aspect of it is linear, this might lead to significant simplifications.
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Holographic thermalization setup
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AdS/CFT correspondence and thermalization

From applicational perspective AdS/CFT is a tool for computing correlation functions
in certain strongly coupled gauge theories, such as N =4 5YM at large N. and A

In its simplest instance, considered also here, AdS/CFT maps the dynamics of the
stress tensor of a holographic CFT+3 into (| +4)-dimensional asymptotically AdS
geometry being a solution of ,

Ray — §R9ab —6Ggar, =0

Of interest are geometries which interpolate between far-from-equilibrium states at
the boundary at initial time tini and thermalized ones at (some) larger time tiso

O p— '
sr =t The stress tensor Is read off from near-
boundary expansion of dual solution
Skenderis et al. (2000)

Minkowski spacetime

[y

bulk of AdS ter 1zatl
Ul o The criterium for (local) thermalization

s that the stress tensor is to a good
accuracy described by hydrodynamics

7=\/r V¥
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Setup (field theory)

The field theory dynamics of interest Is isotropization of stress tensor (without
any sources).  he matter fills the whole spacetime and is translationally invariant.

The most general stress tensor retaining (for simplicity) SO(2) symmetry reads
(Tyw) = diag {€(t), PL(t), Pr(t), Pr(t);
Imposing conservation and tracelessness (CFT!) reduces it to

1 1 1 1 1
2AP(t), —e+ §AP(t), —€+ —AP(t)}

<T,LLI/> = dlag {6, §€ — § 3 2 2

Field theory state In this sector of dynamics is thus specified by the energy density ¢
(constant in time) and a single function of time measuring pressure anisotropy AP(t)

There are two simplifying features intrinsic to this setup:
|) The final configuration is known precisely from the start;
2) Due to translational invariance no hydrodynamic modes are excited.

Thermalization criterium is thus based on the smallness of pressure anisotropy AP(¢)
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Setup (gravity side)
The symmetries of boundary stress tensor dictate the following metric ansatz
ds* = — fudt® + 2fydtdr + frpdr® + X2e *Pda] + X%eP (drs + dx3)

where there is a redundancy in the choice of fi(t,r), fit(t,r) and fr(t,r)

Following Chesler and Yaffe (2008) we choose fi(t,r)=1 and f+(t,r)=0 being
generalized ingoing Eddington-Finkelstein coordinates.

ds* = 2dtdr — Adt® + X?e *Pda] + X2e” (dxs + dxi)

The coordinates are regular at the horizon and extend also behind it. Ingoing radial
light rays propagate along curves of constant t, x!, x?, x>,

The unique regular time-independent solution of Einstein’s equations with negative

cc Is isotropic and Is just the usual AdS-Schwarzschild black brane reading
Janik & Witaszczyk (2008)

), X=r and B=0

A patch of this solution will be the end point of studied isotropization process.
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Solving Einstein’s equations in time ¢ avafe 2008)

Let's look closer at Einstein’s equations

dynamical equations (EOMs) if obeyed at const. r + EOMs constraints
— N I 9y2 then obeyed everywhere T :
0 (X)) +2¥ ¥ —2% < yed EVEryw O:Z+§(BQE—A’E)

0 = %(B)+2(XB+B'Y)
. . 4
0 = A" +3B'B—12Y'%/¥% +4 [if obeyed at const.t + EOMs
then obeyed everywhere

h:@mum+%A@ﬂ@M@”)

1
0=3"+Z(B)°%

(h" = 0ph(t,r)

. . 1
On a constant t slice ¥ and B are related by a constraint " + §(B’)2Z =0. As B
appears quadratically (important later on), we choose it to characterize initial state.

B i1s not completely arbitrary - it needs to satisfy near-boundary (large r) expansion
with AdS asymptotics (no sources - flat boundary metric, see the next slide).

Once B and ¥ are known on a given time slice, one can use EOMs to obtain first
1 ,then B and finally A. Having those guys one can solve B and ¥ for 8;B and ;%
and choose your favorite finite difference scheme for making a step in time

The only remaining issue Is the choice of the bulk cut off for radial integration. By
trials and errors we put it behind the event horizon on the inrtial time hypersurface.
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What’s new?

Holographic isotropization was considered before In Chesler and Yaffe (2008)

ds? = —dt? + eBo®) da:i + e 2Bo(?) dxﬁ

By(t) = 2 ¢[1 — tanh(¢/7)]

g | 1 15 2 25 3 35 4
7T | 023 031 041 0.52 0.65 0.79 0.94
TisoT| 0.67 0.68 0.71 092 12 1.5 18
Tio/T| 30 22 1.7 18 1.8 19 1.9

TABLE I: Final equilibrium temperature 7" and isotropization
time Tiso (in units of T 1! or 7), for various values of ¢. The
isotropization time Tis, is the time at which the pressures
deviate from their equilibrium values by less than 10%.
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FIG. 1: Energy density, longitudinal and transverse pressure, FIG. 3: Area elements of the true event horizon and the
all divided by N2 /272, as a function of time for ¢ = 2. apparent horizon as a function of time.

The key innovations of our paper are

- clean separation between creation of non-equilibrium state and its subsequent equilibration

- evolving large number of initial states (O(2000) vs. O(10) in all previous studies!)

- detalled comparison with linearized gravity and quasinormal modes decomposition
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Generating a large number of states
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Specifying initial states: near boundary behavior

Near-boundary expansion of warp-factors to O(1/r%) takes the form

1 L, 2 L (3 1 5
- — — e, 2= 1l — — N
B=- {b4(t)+ (1) + 5 b () + 508 (1) + . ()’ + and
1 2 3
A= ’)"2 {1 — T—4(1,4 — %bzl(t)Q _ Wbél(t)bil(t) + }
h e—iN2a d AP(t) = : N2by(t
where ¢ = -5 Ncas an ()—@04()-

The inrtial state In the bulk contains information about all time derivatives of pressure

anisotropy at a given instance of time!
see Beuf, Heller, Janik & Peschanski (2009) for a similar observation for the Bjorken flow

But that Is not enough to solve the dynamics, e.g. Bini = |/r™4:

3B(zp) - _ :

(blue curve: pressure anisotropy)




Specifying initial states: bulk analysis

As the near-bdry analysis turns out to be not enough, we have to solve for the bulk

Let's look again at Einstein’s equations

dynamical equations (EOMes) f obeyed at const. r + EOMs ~ constraints
— Nk /' 9y2 then obeyed everywhere .1 :
0 E(E) + 23 Z. 2] | < Y YW 0=3+ (B2 — A'S)
0 = X(B) +35(X¥B+B'Y) 2

1
. . < N\ - 1\2
A" +3B'B - 125/ 8/%% +-4 |if obeyed at const.t + EOMs 0=2"+ 9 (B)"%

then obeyed everywhere

- 1
(A" = 0Oph(t,r), h=0ih(t,r)+ §A(t, r)O-h(t, 7))

0

On a given slice 1t is sufficient to know ¥ or B and the energy density (a4).

Due to ¥ + %(B’)2E = 0 and AdS asymptotics (X ~ r), & goes to O for some r > 0.

Numerical studies indicate that it is a curvature singularity (need to be behind EH).

We also found that for a given initial profile B there seems to be a minimal value of
the energy density for which this singularity is covered by the event horizon.
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Obtaining representative set of initial states
Setting up initial states at tini and letting them evolve unforced Is more generic than

quenching and can be used to obtain a variety of behaviors
see Heller, Janik & Witaszczyk (201 1) for a similar approach to the holographic Bjorken flow
B..(z)/=*

|0 examples of initial states
encoded geometrically
including once supported
mostly in the UV, mostly in the
IR, In the middle and spread

- evenly between UV and IR

0.0f nl ni_, - »‘\ : l‘(,%
(z=1/r)

In order to produce a large set of |n|t|a| data (and so hopefully a good statistics) we

1.0+

\
N\
Y

l) without any loss of generality fix units by setting a4=1;

2) generate B as the ratio of two [0th order polynomials with random coefficients modulo
minimal subtraction necessary for having AdS asymptotics; normalize B in a convenient way;
3) run simulation for a given B and store data increasing at each run B |.15-folds until we obtain
profiles close to ,,maximally far-from-equilibrium ones” (typically multiplication is repeated ~ 8x);

4) return to step 2);
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Thermalization

18/35



Typical holographic thermalization process

AN
Future ﬁ
horizon N
+
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/ —
Theory: < >
N\ Initial S
\ state O
\ | %
N
\ @,
NUNES
.

Curvature (BH subtracted)

10

Numerical
experiment:
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Linearized Einstein’s equations
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Linearized approximation

Let's look yet again at Einstein’s equations

dynamical equations (EOMes) if obeyed at const. r + EOMs constraints
— N 'y 932 then obeyed everywhere .01 . .
0 2(2)4—22 Z. 2] | < Y YW 0=31+ (B2 — A'Y)
0 = X(B)+3(XB+B'Y) 21
. . < R w7/ /2
0 = A" +3B'B—12%'%/%° +-4 |if obeyed at const. t + EOMs 0=2"+ Q(B )"

then obeyed everywhere
All the equations, but one, are quadratic in B.

This implies that at the linear order A and ¥ are that of AdS-Schwarzschild (and so
do not evolve) and B undergoes decoupled dynamics captured by the equation

: : : . 4
0 = S(B)Y +2(X'B+B'S), where S=rand h=ah+2r21- T 9

2 r4

The solutions of interest are such that satisty AdS boundary condition (no sourcing
= flat boundary metric).

In the following we will scan through a large set of initial data (B's at t=0) and
compare solutions of linearized Einstein’s equations with solutions of the non-linear

problem focusing mostly on predictions for dual stress tensor operator
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Time evolution of pressure anisotropy (L/NL)

As = 32%
Bupax = 0.74

"

[ ]
M
!JJ
o
(P
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Evolution of 10 sample prof‘les

Bini(2)/2"
L.of ﬂ Linearized Einstein’'s equations
- again do a surprisingly sood
o< job In reproducing boundary
\ stress tensor (dotted curves in
/ << the plot below)
00— 02 oy 0.6 8 10~
_— \ (z=1/r)
_osl /

Event horizon

0.8 e G
;;06‘ /
0.4/
0'7 2 a 2 2 M 2
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
T 1




Isotropization time as a function of initial entropy

Ui :
> results of the analysis of
@ : .
| o - @ | 210 different initial states
3.0t v 9. '.'-..: :
i, 9B -:.‘:4_ & ?.;: o
't e, AP(L > tio )| < 0.1€(2)
: WIS SE ST
"(): NP Y
L5t JRR The closer initial entropy to
Lol the final one, the faster the
N ¢ thermalization (in units of a4 ~
| initial=final energy density)
S04 08 06 07 08 09 10

| e Relative difference in
o1} < TIN thermalization time obtained
- | Y s e from linearized and full
04 0.5 0.6 Tl 0B DRI SO e . -
L7~ At Einstein’s equation does not

» . exceed 30% !l
02 " Apa(0)Y3/Agg (c0)t/?
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Linearized gravity and quasinormal modes

Quasinormal modes arise here as solutions of the same equation for B

: : : . 4
0 = X(B)+2(XB+B'Y), where E:ramjh:8m+%ﬂa—(ﬂp

)0, 1

r

with B written as €*“*f(r) and satisfying ingoing bdry conditions at EH

This leads to complex frequencies with Im(w)>0 and so to the exponential decay.

- 3

20 ’ — real
— imaginary

ZiZ
LO/-h

= - - a— Re(w z; 0
-20 -10 0 10 20

.-

Note that none of the modes carries momentum (follows from homogeneity)
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Connection with quasinormal modes

IR profile: middle (spread) profile: UV profile:
Bini(z) = 1.6 (z/zh)20 Bini(z) = 2 (z/zh)4 Bini(z) = 400 (Z/Zh)4 exp (—20 z/zp)
Anisotropy
1500} .
nonlinear: Of
gravity Al 1000
o o
) l _ A
4 500}
\ f 0
. 4 al 4¥\]z,—‘ ) B, T reerverwr s
1.0 1.2 02 04 06 08 10 1.2 0.050.100.150.200.25
Tt Tt Tt

Quasinormal modes fit using the |0 lowest modes (least squares fit to Bin):

15000
10000

5000

~ 5000

~10000 ¢

15000




Corrections to linearized Einstein’s equations
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Linearized approximation in the bulk

We saw that linearized gravity reproduces well (T..) also when As = 0(50%)
But As is not included at first order: A(t,r) = Agu(t,r) and S(t,r) = Spu(t,r) then.
That Is the chief motivation for going to the third order:

iInearized gravity

v

B = €6B; + €26Bs + O(e*)

AP/E

idea: do better than
linearized gravity

NLO correction to AP(t) ol Ao

02 04 06 08 10 12

leading order modification of EH posrtion

A= Apy(t,r) + 20 Ay + O(e*)

\ iqea; qo be’ttel”lthan
leading order modification of EH ay linearized gravity
> = ZBH(t,T) -+ 62522 + 0(64)
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Linearized approxmatlon in the bulk / NLO AP(t)

Often works very well, e.g. B;,i(2) = 5(z/zh) sin (8 z/zh)

AP ( ) Entropy event horizon (blue) and apparent horizon (red). Dashed lines, 2nd order aproxs
10 =

= t

| st+3rd
™~ full 29/35




Holographic isotropization simplified?
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Mathematica code for simplified isotropization

3sB11i0d (e, 2] 1 1 1 3681109 g, 2
sl _H) | e =236811% (e, 2] - 882100 (¢, 2) 4 — 26811 (¢, 2) - gl L]
2z 2 2 2 iz

(saf®¥ (e, 2], B2 ¥ [t, 2], B2tV (¢, 3], BV (¢, 2], Balt, 2]}]

ogns = Simplify nmuoet[( o 881103 e, :]) (-2/12),

-3{1+32%|8nje, 2] -2{-3+72')Ba®Y e, 2] -2 (-142)Bai®%¥ (¢, 2] -328a %[, 2] - 227 Bn¥P [, 2]
sols = ¥DSolve[{ogns = 0, Ba(0, 2] = 0.BexeSin(fz], Ba[t, O] = O}, Ba, {t, 0, 4}, (=, O, 1,005}, MaxStepSize + 0.001, AccuracyGoal + 8, PrecisionGoal - #)

'}. PlotLabel +» “First Order of s']

0 B

v

sollt --loln[{-; (o[+* matt, =) /. sola, 2])* - 6Diéx22(x, 2], 2} - S2D[ 8X22(¢, 2), 2, 2] = O, SX22(t, ee] w O, 8522'%V (¢, ce] = o}, &r22, (t, 0, 4}, {=, ee, 1.003}, A

WorkisgPrecision + 8, MaxStepSize + 0.01, AccuracyGoal «+ 8, PrecisicaGoal -« l]

rlot3p[Evaluate [8222 ([t x, 2] /. solzt], (¢, 0, 1), {2, ee, 1}, PlotRange «+ All, AxesLabel «» {"t", "2, "412 (t,2)"), AxeaOrigia -> (0, O, 0}, PlotLabel + "Seccad order of 417)

029

solal « A

-loln[
3 (6233225, =] /. w0lEt)
{-

1 1
-32? (4x22(¢, 2) /. mollt) - : 2 A2V (e, 2) -3D((6X22 (¢, 2) /. solrt), 2) - 32 D((4X22 (¢, 2) /. molDt), 2) + - 2? an2'® (e, 2) -

3
;o[-’un, %) /.w0ln, 5] o[a’ #alt, 3] /. soln, t] - I = D[(6222[%, 3] /. wOLIT), ¥, &] = O, EAZ[t, ee] « O, SA2™V [¢, ce] » o}, 6A2, (v, O, 4), (%, ee, 1.008),

WorkingProcision « 8, PrecisionGoal « 8, AcouracyGoal + 8, MaxStepSize « o.ox]

PlotID[Bvaluate [ (AA2(t, =] /. s0lal)], (5, 0, 4), (=, ve, 1.003), PlotRange -+ All, AxeslLabel «+ {“t", "=, “8A2 (t,2)"), AxesOrigin -> {0, O, 9), PlotLabel + “Second ocrder of A") 5A2
Secoaderderof A
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Comments and thoughts
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Wider applicability of linearized gravity

Holographic isotropization we considered I1s an example in which

- we know the final state from the start and it Is obvious to expand around this particular background

- dissipation is built-in by the final state horizon

These features are special
- In general we are Interested In expanding plasmas, diluting with time In a way determined by dynamics

- the natural starting point IS NEITHER Poincare patch of NOR AdS-Schwarzchild

NDSolve is unlikely to help then, but it Is possible to make progress

Ais
no -
S r-

e
' : : S & &
Now: k. | ,g" AR ongoing work on the boost-invariant flow with David
d VaF ' ' F = o' ., ! ! ' . . ., .
; M Mateos, Wilke van der Schee and Michat Spalinski
L e ¢ 3 L4 &
L:-V'?!‘ o K
0.0 E‘ l_' ‘. Azt
Fluctuated MC-KLN, Pb-Pb, 2.76 TeV; Npart=200

)1)

r(GeV /fn

Future: 2
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Summary
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Summary

General theme: AdS/CFT leads to short thermalization times
0.5 fm/c x 350 MeV =T t, = 0.63

Novelty |: we verified this on a large set on initial condrtions (more than 2000!.

Novelty Il: quite surprisingly, linearized gravity reproduces well both qualitative and
quantitative (within 30%) the dynamics of the stress tensor of isotropizing plasmalll

Message: sometimes no need for hardcore numerics, NDSolve will do the jobl!

Future: use linearized gravity to get a handle on much more complicated dynamics.
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