
MSSM Model
Selection

Matt Dolan

Bayesian Inference and Particle Physics

Matthew Dolan

DAMTP
University of Cambridge

“That Scanning Conference”, Stockholm



MSSM Model
Selection

Matt Dolan

Bayesian Inference

Consider a hypothesis H, defined by parameters Θ
which describe some data D.
Bayes theorem:

Pr(Θ|D,H) =
Pr(D|Θ,H) Pr(Θ|H)

Pr(D|H)
, (1)

Pr(Θ|D,H) is the posterior probability distribution of the
parameters.
Pr(D|Θ,H) is the likelihood.
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Priors and Evidence

Pr(Θ|D,H) =
Pr(D|Θ,H) Pr(Θ|H)

Pr(D|H)
,

Pr(Θ|H) ≡ π(Θ) is the prior distribution.
The priors represent assumptions and knowledge
about the problem and parameter space before the
appearance of data.
Pr(D|H) ≡ Z is the Bayesian evidence.
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Parameter Estimation

Bayesian evidence unnecessary for parameter
estimation.

Pr(Θ1|D)

Pr(Θ2|D)
=

Pr(D|Θ1) Pr(Θ1)

Pr(D|Θ2) Pr(Θ2)

Need to specify priors and likelihood (data) to calculate
ratio of posteriors.
As data quality increases, the posterior will become
dominated by the likelihood and independent of the
priors
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Prior Independence in 2D Model Fits 1

Large Volume Scenario: IIB String theory model from
moduli stabilisation.
Soft breaking terms: m0 and tanβ.
Fit to ΩDMh2, plus usual suite of SM observables.
Posterior relatively independent of priors.
Agrees with profile likelihood.

1Allanach, Dolan and Weber, hep-ph/0806.1184
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Large Volume Scenario (Flat in Bµ)
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Large Volume Scenario (Flat in tan β)
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Large Volume Scenario: Profile Likelihood
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Bayesian Evidence

Pr(Θ|D,H) =
Pr(D|Θ,H) Pr(Θ|H)

Pr(D|H)
,

The Bayesian Evidence Pr(D|H) is

Z =

∫
L(Θ)π(Θ)dNΘ, (2)

To select between models compare their posteriors

Pr(H1|D)

Pr(H0|D)
=

Pr(D|H1) Pr(H1)

Pr(D|H0) Pr(H0)
=
Z1

Z0

Pr(H1)

Pr(H0)
, (3)
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Bayesian Evidence

Jeffreys’ scale for evaluating the strength of the log
evidence:

| log ∆Z| Odds Probability Remark
< 1.0 . 3 : 1 < 0.750 Inconclusive
1.0 ∼ 3 : 1 0.750 Weak Evidence
2.5 ∼ 12 : 1 0.923 Moderate Evidence
5.0 ∼ 150 : 1 0.993 Strong Evidence
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The MSSM and Breaking Supersymmetry2

We like SUSY because it solves the hierarchy problem,
dark matter candidate etc.
Experimental fact: SUSY is broken at low energies.

2AbdusSalam, Allanach, Dolan, Feroz, Hobson; 0906.0957
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The MSSM and Breaking Supersymmetry

We like SUSY because it solves the hierarchy problem,
dark matter candidate etc.
Experimental fact: SUSY is broken at low energies.
Mediation: SUSY broken in hidden sector,
communicated via messenger sector to visible sector.

(Hidden sector)
(Visible sector)

Supersymmetry
breaking origin

     MSSMFlavor-blind

interactions
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Mediation Mechanisms

Gravity Mediation

SUSY breaking via non-renormalisable terms in SUGRA
Lagrangian: CMSSM (4 d.o.f.).

Anomaly Mediation

SUSY broken via superconformal anomaly: mAMSB (3).

Gauge Mediation

SUSY breaking communicated via messenger gauge
multiplets: mGMSB (3)

Moduli Mediation

String theoretic Calabi-Yau moduli fields mediate SUSY
breaking: LVS (2)
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Aim

Calculate the evidence for these 4 different avatars of
the MSSM.
Use MultiNest, available as part of SuperBayes
package.
Need to specify priors and likelihood calculation.

Z =

∫
L(Θ)π(Θ)dNΘ,
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Priors

Linear priors (in tanβ): π(Θ1) = π(Θ2).
Log priors: flat in the logarithm of the parameter.
Natural priors3 are flat in B and µ. Related via Jacobian
factor to flat priors:

J =
MZ

2

∣∣∣∣∣ B
µ tanβ

tan2 β − 1
tan2 β + 1

∣∣∣∣∣ (4)

3Allanach et al, hep-ph/0705.0487
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The Likelihood

Direct search constraints from LEP/Tevatron.
Apply Gaussian constraints to experimental
observables.

logLi = −
χ2

i
2
− 1

2
log(2π)− log(σi)

Except DM relic density ΩDMh2, BR(Bs → µ+µ−) and
the Higgs mass mh



MSSM Model
Selection

Matt Dolan

The Likelihood

Direct search constraints from LEP/Tevatron.
Apply Gaussian constraints to experimental
observables.

logLi = −
χ2

i
2
− 1

2
log(2π)− log(σi)

Except DM relic density ΩDMh2, BR(Bs → µ+µ−) and
the Higgs mass mh



MSSM Model
Selection

Matt Dolan

Observables

Observable Observable
mW BR(B → Xsγ)

sin2 θl
eff BR(Bs → µ+µ−)

(g − 2)µ BR(B → Dτν)

ΩDMh2 R∆Ms

mh RBτν
Γtot

Z ∆0−
R0

l Rl23
A0

LR(SLD) mt

R0
b mb

R0
c mZ

A0,b
fb αM̄S

s (MZ )

A0,c
fb 1/αM̄S

Ab Ac



MSSM Model
Selection

Matt Dolan

Dark Matter Constraints

Symmetric DM constraint: Gaussian centered on
WMAP5 central value.
Asymmetric DM constraint: Half Gaussian centred on
WMAP5 central value
No DM constraint.

0.25
0.5

0.75
1

0.0343 0.1143 0.1943

L/
L m

ax

ΩDMh2

constraint
pure WMAP5



MSSM Model
Selection

Matt Dolan

Preference for µ > 0.

Table shows odds of likelihood of µ > 0 vs. µ < 0.

symmetric LDM

Model/Prior flat log natural
mSUGRA 3 11 1.5
mAMSB 4 12 1.5

LVS 25 22 13.5

Preference for µ > 0 weak under natural priors, and
moderate under log priors.
Strongest and most consistent for Large Volume
Scenario - the most constrained model.
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Model Selection

symmetric LDM

Model/Prior flat log natural
mSUGRA 3000 3000 30000
mAMSB 1.5 2 1

LVS 6000 7300 130,000

Normalised to natural priors mAMSB.
AMSB strongly disfavoured since DM relic density very
low due to degenerate wino triplet.
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Model Selection

Asymmetric LDM normalised to flat priors mSUGRA.

symmetric LDM

Model/Prior flat log natural
mSUGRA 3000 3000 30000
mAMSB 1.5 2 1

LVS 6000 7300 130,000
asymmetric LDM

mSUGRA 1 3 4
mAMSB 160 400 150

LVS 20 20 22
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Prior Dependence: AMSB (Linear Priors)
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Prior Dependence: AMSB (Natural Priors)
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Model Selection without WMAP

Log evidence without WMAP bound.
Normalised to mGMSB with natural priors.
Fits are dark matter dominated

Model/Prior flat log natural
mSUGRA 2.5 3 3
mAMSB 3 3 18
mGMSB 4 4.5 1

LVS 3 2 4.5
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Information Content

Constraining power of an observable measured using
Kullback-Leibler divergence

DKL(p, π) =

∫
p(Θ|D,H) log

p(Θ|D,H)

π(Θ)
dΘ. (5)

Quantifies the information gained in going from the
prior to the posterior.
Dark Matter constraint dominates, contributing between
around 60% for natural priors, up to 80% for flat priors
(in CMSSM).
Next most important is electroweak observables.
B-Physics contributions almost entirely given by
BR(B → sγ).
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mSUGRA without WMAP
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mSUGRA with symmetric WMAP
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Conclusions

Prior Dependence for models with more than 2D.
Preference for µ > 0 moderate at best.
Symmetric LDM : Large Volume.
Asymmetric LDM : AMSB.
No DM constraint: Inconclusive.
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Bonus slides!
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Best Fit Points (Asymmetric ΩDMh2)

AMSB: m0 = 312 GeV, m3/2 = 45 TeV, tanβ = 15.9.
GMSB: log(Mmess) = 7.1, Λ = 19.5 TeV, Nmess = 7,
tanβ = 15.9.
LVS: m0 =

m1/2√
3

= −A0√
3

= 189.2 GeV, tanβ = 11.6.

mSUGRA: m0 = 3338 GeV, m1/2 = 382 Gev,
A0 = 634 GeV, tanβ = 8.6.
MultiNest is optimised to efficiently calculate Bayesian
evidence not best-fit points.


