MSSM Model Selection

Matt Dolan

Bayesian Inference and Particle Physics

Matthew Dolan

DAMTP University of Cambridge

"That Scanning Conference", Stockholm

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(日) (日) (日) (日) (日) (日) (日)

P $r(\mathbf{D}|\mathbf{\Theta}, H)$ is the likelihood.

Priors and Evidence

MSSM Model Selection

$\Pr(\boldsymbol{\Theta}|\boldsymbol{\mathsf{D}},\boldsymbol{\mathit{H}}) = \frac{\Pr(\boldsymbol{\mathsf{D}}|\,\boldsymbol{\Theta},\boldsymbol{\mathit{H}})\Pr(\boldsymbol{\Theta}|\boldsymbol{\mathit{H}})}{\Pr(\boldsymbol{\mathsf{D}}|\boldsymbol{\mathit{H}})},$

• $Pr(\Theta|H) \equiv \pi(\Theta)$ is the prior distribution.

The priors represent assumptions and knowledge about the problem and parameter space before the appearance of data.

(日) (日) (日) (日) (日) (日) (日)

Pr($\mathbf{D}|H$) $\equiv \mathcal{Z}$ is the Bayesian evidence.

Priors and Evidence

MSSM Model Selection

 $\Pr(\boldsymbol{\Theta}|\boldsymbol{\mathsf{D}},\boldsymbol{\mathit{H}}) = \frac{\Pr(\boldsymbol{\mathsf{D}}|\,\boldsymbol{\Theta},\boldsymbol{\mathit{H}})\Pr(\boldsymbol{\Theta}|\boldsymbol{\mathit{H}})}{\Pr(\boldsymbol{\mathsf{D}}|\boldsymbol{\mathit{H}})},$

• $Pr(\Theta|H) \equiv \pi(\Theta)$ is the prior distribution.

The priors represent assumptions and knowledge about the problem and parameter space before the appearance of data.

(日) (日) (日) (日) (日) (日) (日)

Pr($\mathbf{D}|H$) $\equiv \mathcal{Z}$ is the Bayesian evidence.

Parameter Estimation

MSSM Model Selection

Matt Dolan

 Bayesian evidence unnecessary for parameter estimation.

$\Pr(\Theta_1 \mathbf{D})$	$\Pr(\boldsymbol{D} \boldsymbol{\Theta_1})\Pr(\boldsymbol{\Theta_1})$
$\Pr(\Theta_2 \mathbf{D})$ –	$\overline{\Pr(\mathbf{D} \Theta_2)\Pr(\Theta_2)}$

- Need to specify priors and likelihood (data) to calculate ratio of posteriors.
- As data quality increases, the posterior will become dominated by the likelihood and independent of the priors

Prior Independence in 2D Model Fits ¹

- Large Volume Scenario: IIB String theory model from moduli stabilisation.
- Soft breaking terms: m_0 and tan β .
- Fit to $\Omega_{DM}h^2$, plus usual suite of SM observables.
- Posterior relatively independent of priors.
- Agrees with profile likelihood.

¹Allanach, Dolan and Weber, hep-ph/0806.1184 ⊕ ► < ≡ ► < ≡ ► < ≡ ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < = ► < =

Large Volume Scenario (Flat in B_{μ})

MSSM Model Selection

Large Volume Scenario (Flat in tan β)

MSSM Model Selection

Large Volume Scenario: Profile Likelihood

MSSM Model Selection

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Bayesian Evidence

MSSM Model Selection

$$\Pr(\boldsymbol{\Theta}|\mathbf{D}, H) = rac{\Pr(\mathbf{D}|\boldsymbol{\Theta}, H)\Pr(\boldsymbol{\Theta}|H)}{\Pr(\mathbf{D}|H)},$$

The Bayesian Evidence $Pr(\mathbf{D}|H)$ is

$$\mathcal{Z} = \int \mathcal{L}(\boldsymbol{\Theta}) \pi(\boldsymbol{\Theta}) d^{N} \boldsymbol{\Theta}, \qquad (2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

To select between models compare their posteriors

$$\frac{\Pr(H_1|\mathbf{D})}{\Pr(H_0|\mathbf{D})} = \frac{\Pr(\mathbf{D}|H_1)\Pr(H_1)}{\Pr(\mathbf{D}|H_0)\Pr(H_0)} = \frac{\mathcal{Z}_1}{\mathcal{Z}_0}\frac{\Pr(H_1)}{\Pr(H_0)}, \quad (3)$$

Bayesian Evidence

MSSM Model Selection

$$\Pr(\boldsymbol{\Theta}|\mathbf{D},H) = rac{\Pr(\mathbf{D}|\boldsymbol{\Theta},H)\Pr(\boldsymbol{\Theta}|H)}{\Pr(\mathbf{D}|H)},$$

The Bayesian Evidence $Pr(\mathbf{D}|H)$ is

$$\mathcal{Z} = \int \mathcal{L}(\mathbf{\Theta}) \pi(\mathbf{\Theta}) d^N \mathbf{\Theta},$$
 (2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

To select between models compare their posteriors

$$\frac{\Pr(H_1|\mathbf{D})}{\Pr(H_0|\mathbf{D})} = \frac{\Pr(\mathbf{D}|H_1)\Pr(H_1)}{\Pr(\mathbf{D}|H_0)\Pr(H_0)} = \frac{\mathcal{Z}_1}{\mathcal{Z}_0}\frac{\Pr(H_1)}{\Pr(H_0)}, \quad (3)$$

Bayesian Evidence

MSSM Model Selection

Matt Dolan

Jeffreys' scale for evaluating the strength of the log evidence:

$ \log \Delta \mathcal{Z} $	Odds	Probability	Remark
< 1.0	\lesssim 3 : 1	< 0.750	Inconclusive
1.0	\sim 3 : 1	0.750	Weak Evidence
2.5	\sim 12 : 1	0.923	Moderate Evidence
5.0	\sim 150 : 1	0.993	Strong Evidence

²AbdusSalam, Allanach, Dolan, Feroz, Hobson; 0906.0957 🗉 🛌 🔊 🔬

²AbdusSalam, Allanach, Dolan, Feroz, Hobson; 0906.0957 🗉 🛌 🔊 🗨

The MSSM and Breaking Supersymmetry

MSSM Model Selection

Matt Dolan

- We like SUSY because it solves the hierarchy problem, dark matter candidate etc.
- Experimental fact: SUSY is broken at low energies.
- Mediation: SUSY broken in hidden sector, communicated via messenger sector to visible sector.

Supersymmetry breaking origin (Hidden sector)

Flavor-blind interactions

MSSM (Visible sector)

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Mediation Mechanisms

MSSM Model Selection

Matt Dolan

Gravity Mediation

SUSY breaking via non-renormalisable terms in SUGRA Lagrangian: CMSSM (4 d.o.f.).

Anomaly Mediation

SUSY broken via superconformal anomaly: mAMSB (3).

Gauge Mediation

SUSY breaking communicated via messenger gauge multiplets: mGMSB (3)

Moduli Mediation

String theoretic Calabi-Yau moduli fields mediate SUSY breaking: LVS (2)

Aim

- Calculate the evidence for these 4 different avatars of the MSSM.
- Use MultiNest, available as part of SuperBayes package.
- Need to specify priors and likelihood calculation.

$$\mathcal{Z} = \int \mathcal{L}(\mathbf{\Theta}) \pi(\mathbf{\Theta}) d^{N} \mathbf{\Theta},$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Priors

MSSM Model Selection

Linear priors (in tan β): $\pi(\Theta_1) = \pi(\Theta_2)$.

- Log priors: flat in the logarithm of the parameter.
- Natural priors³ are flat in B and μ. Related via Jacobian factor to flat priors:

$$J = \frac{M_Z}{2} \left| \frac{B}{\mu \tan \beta} \frac{\tan^2 \beta - 1}{\tan^2 \beta + 1} \right|$$
(4)

³Allanach *et al*, hep-ph/0705.0487

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Priors

MSSM Model Selection

- Linear priors (in tan β): $\pi(\Theta_1) = \pi(\Theta_2)$.
- Log priors: flat in the logarithm of the parameter.
- Natural priors³ are flat in B and μ. Related via Jacobian factor to flat priors:

$$J = \frac{M_Z}{2} \left| \frac{B}{\mu \tan \beta} \frac{\tan^2 \beta - 1}{\tan^2 \beta + 1} \right|$$
(4)

³Allanach *et al*, hep-ph/0705.0487

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Priors

MSSM Model Selection

- Linear priors (in tan β): $\pi(\Theta_1) = \pi(\Theta_2)$.
- Log priors: flat in the logarithm of the parameter.
- Natural priors³ are flat in *B* and µ. Related via Jacobian factor to flat priors:

$$J = \frac{M_Z}{2} \left| \frac{B}{\mu \tan \beta} \frac{\tan^2 \beta - 1}{\tan^2 \beta + 1} \right|$$
(4)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

³Allanach *et al*, hep-ph/0705.0487

The Likelihood

MSSM Model Selection

Matt Dolan

Direct search constraints from LEP/Tevatron.

 Apply Gaussian constraints to experimental observables.

$$\log \mathcal{L}_i = -\frac{\chi_i^2}{2} - \frac{1}{2}\log(2\pi) - \log(\sigma_i)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Except DM relic density $\Omega_{DM}h^2$, $BR(B_s \rightarrow \mu^+\mu^-)$ and the Higgs mass m_h

Except DM relic density $\Omega_{DM}h^2$, $BR(B_s \rightarrow \mu^+\mu^-)$ and the Higgs mass m_h

(日) (日) (日) (日) (日) (日) (日)

MSSM Model Selection

Matt Dolan

Observable	Observable
m _W	$BR(B \rightarrow X_s \gamma)$
$\sin^2 \theta'_{eff}$	$BR(B_s \rightarrow \mu^+ \mu^-)$
$(g-2)_{\mu}$	$BR(B \rightarrow D au u)$
$\Omega_{\rm DM} h^2$	$R_{\Delta M_s}$
m _h	$R_{B au u}$
Γ_Z^{tot}	Δ_{0-}
R_{l}^{0}	R ₁₂₃
$A^0_{LR}(SLD)$	m _t
R_b^0	m _b
R_c^0	m _Z
$A_{fb}^{0,b}$	$\alpha_s^{MS}(M_Z)$
$A_{fb}^{0,c}$	$1/\alpha^{MS}$
\mathcal{A}_{b}	\mathcal{A}_{c}

Dark Matter Constraints

MSSM Model Selection

Matt Dolan

- Symmetric DM constraint: Gaussian centered on WMAP5 central value.
- Asymmetric DM constraint: Half Gaussian centred on WMAP5 central value

No DM constraint.

Preference for $\mu > 0$.

MSSM Model Selection

Matt Dolan

Table shows odds of likelihood of $\mu > 0$ vs. $\mu < 0$.

	symmetric \mathcal{L}_{DM}		
Model/Prior	flat	log	natural
mSUGRA	3	11	1.5
mAMSB	4	12	1.5
LVS	25	22	13.5

- Preference for µ > 0 weak under natural priors, and moderate under log priors.
- Strongest and most consistent for Large Volume Scenario - the most constrained model.

Model Selection

MSSM Model Selection

> symmetric \mathcal{L}_{DM} Model/Prior flat natural log **mSUGRA** 3000 3000 30000 mAMSB 1.5 2 LVS 6000 7300 130.000

Normalised to natural priors mAMSB.

 AMSB strongly disfavoured since DM relic density very low due to degenerate wino triplet.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Model Selection

MSSM Model Selection

Matt Dolan

Asymmetric \mathcal{L}_{DM} normalised to flat priors mSUGRA.

	symmetric \mathcal{L}_{DM}		
Model/Prior	flat	log	natural
mSUGRA	3000	3000	30000
mAMSB	1.5	2	1
LVS	6000	7300	130,000
	asymmetric \mathcal{L}_{DM}		
mSUGRA	1	3	4
mAMSB	160	400	150
LVS	20	20	22

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Prior Dependence: AMSB (Linear Priors)

Prior Dependence: AMSB (Natural Priors)

Model Selection without WMAP

MSSM Model Selection

- Log evidence without WMAP bound.
- Normalised to mGMSB with natural priors.
- Fits are dark matter dominated

Model/Prior	flat	log	natural
mSUGRA	2.5	3	3
mAMSB	3	3	18
mGMSB	4	4.5	1
LVS	3	2	4.5

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Information Content

MSSM Model Selection

Matt Dolan

 Constraining power of an observable measured using Kullback-Leibler divergence

$$D_{\mathrm{KL}}(\boldsymbol{\rho},\pi) = \int \boldsymbol{\rho}(\boldsymbol{\Theta}|\mathbf{D},H) \log \frac{\boldsymbol{\rho}(\boldsymbol{\Theta}|\mathbf{D},H)}{\pi(\boldsymbol{\Theta})} d\boldsymbol{\Theta}.$$
 (5)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Quantifies the information gained in going from the prior to the posterior.
- Dark Matter constraint dominates, contributing between around 60% for natural priors, up to 80% for flat priors (in CMSSM).
- Next most important is electroweak observables.
- B-Physics contributions almost entirely given by $BR(B \rightarrow s\gamma)$.

Information Content

MSSM Model Selection

Matt Dolan

 Constraining power of an observable measured using Kullback-Leibler divergence

$$D_{\mathrm{KL}}(\boldsymbol{\rho},\pi) = \int \boldsymbol{\rho}(\boldsymbol{\Theta}|\mathbf{D},H) \log \frac{\boldsymbol{\rho}(\boldsymbol{\Theta}|\mathbf{D},H)}{\pi(\boldsymbol{\Theta})} d\boldsymbol{\Theta}.$$
 (5)

- Quantifies the information gained in going from the prior to the posterior.
- Dark Matter constraint dominates, contributing between around 60% for natural priors, up to 80% for flat priors (in CMSSM).
- Next most important is electroweak observables.
- B-Physics contributions almost entirely given by $BR(B \rightarrow s\gamma)$.

mSUGRA without WMAP

MSSM Model Selection

mSUGRA with symmetric WMAP

MSSM Model Selection

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Best Fit Points (Asymmetric $\Omega_{DM}h^2$)

MSSM Model Selection

Matt Dolan

- AMSB: $m_0 = 312 \text{ GeV}$, $m_{3/2} = 45 \text{ TeV}$, $\tan \beta = 15.9$.
- GMSB: log(M_{mess}) = 7.1, Λ = 19.5 TeV, N_{mess} = 7, tan β = 15.9.

• LVS:
$$m_0 = \frac{m_{1/2}}{\sqrt{3}} = \frac{-A_0}{\sqrt{3}} = 189.2 \text{ GeV}, \tan \beta = 11.6.$$

- mSUGRA: m₀ = 3338 GeV, m_{1/2} = 382 Gev, A₀ = 634 GeV, tan β = 8.6.
- MultiNest is optimised to efficiently calculate Bayesian evidence not best-fit points.

A D F A 同 F A E F A E F A Q A