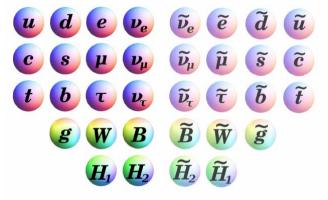


Laboratoire de Physique Subatomique et de Cosmologie

The MSSM with a degenerate Higgs mass matrix


Sylvain Fichet LPSC Grenoble

Based on JHEP 1008:096 (arXiv:1007.0321) and JHEP 0908:011 (arXiv:0906.2957) with Felix Brümmer, Sabine Kraml, Ritesh Singh, Arthur Hebecker

Sylvain Fichet, LPSC

The MSSM with DHMM

• Low energy, softly broken supersymmetry is well motivated.

- But the minimal SM extension has $\mathcal{O}(100)$ parameters coming from the susy breaking.
- After recquiring no CP violation and no FCNCs : $\mathcal{O}(20)$
- To reduce the number of parameters, one can :
 - Use « ad hoc» assumptions, like for the CMSSM
 - Assume a peculiar mechanism of susy breaking mediation like gauge/anomaly/ gaugino/radion mediations
 - And/or assume models for underlying UV physics

Intro

• MSSM Higgs potential :

$$V_{Higgs} = \begin{pmatrix} H_1^* & H_2 \end{pmatrix} \begin{pmatrix} |\mu|^2 + m_{H_1}^2 & B_{\mu}^* \\ \uparrow & B_{\mu} & |\mu|^2 + m_{H_2}^2 \end{pmatrix} \begin{pmatrix} H_1 \\ H_2^* \end{pmatrix} + (\text{quartic terms})$$

supersymmetric susy breaking

- Common assumption (e.g. CMSSM): $m_{H_{1,2}}^2 = m_0^2$ at GUT scale.
- Here instead : $|\mu|^2 + m_{H_1}^2 = |\mu|^2 + m_{H_2}^2 = \pm B_{\mu} \quad (m_1^2 = m_2^2 = \pm m_3^2)$

Origin : MSSM Higgses from a GUT chiral adjoint ϕ :

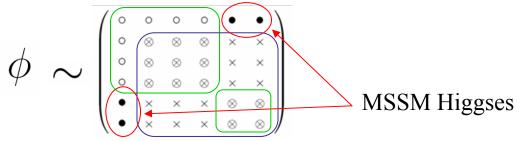
$$\operatorname{Ad}(G) = (\mathbf{1}, \mathbf{2})_{-1/2} \oplus (\mathbf{1}, \mathbf{2})_{1/2} \oplus \dots$$

$$\phi = H_1 \oplus H_2 \oplus \dots$$

If $\overline{\phi} - \overline{\phi}$ (or $\phi + \overline{\phi}$) massless at tree level, then : $V \supset m^2 \operatorname{tr}(\phi + \overline{\phi})^2 \supset m^2(H_1 + \overline{H}_2)(\overline{H}_1 + H_2)$ $= m^2 |H_1|^2 + m^2 |H_2|^2 + m^2 (H_1H_2 + h.c.)$ $m_1^2 = m_2^2 = m_3^2 = m^2$ (or $m_1^2 = m_2^2 = -m_3^2 = m^2$)

Sylvain Fichet, LPSC

For which reason $\phi - \overline{\phi}$ could be massless ? (or $\phi + \overline{\phi}$)

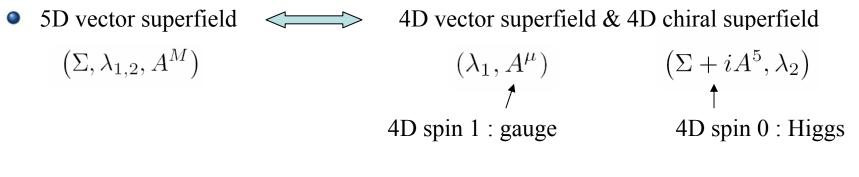

UV models

In models with (SUSY) composite Higgs :

- CFT with spontaneously broken approximate global symmetry : composite pGBS identified as Higgses , massless at tree level.
- Example : Holographic GUT [Nomura Poland Tweedie '06] CFT has $SU(6) \rightarrow SU(4) \times SU(2) \times U(1)$ spontaneously and coupled to an elementary sector with $SU(5) \times U(1)' \supset SU(6)$ weakly gauged (explicit breaking).

5D description (with gauge-gravity correspondence)

• A slice of AdS^5 (warped) with SU(6) spontaneously broken by ϕ on the IR brane and explicitly broken by boundary conditions on UV brane.



• The imaginary part of ϕ (half of the d.o.f.) contains the pGBs

so $\phi - \overline{\phi}$ massless \implies DHMM

UV models

In models of SUSY gauge-Higgs unification :

5D gauge invariance : no mass term for $A^5 \sim \phi - \overline{\phi} \implies \mathbf{DHMM}$

- Concrete example : SU(6) gauge-Higgs unification in (flat) 5D [Burdman Nomura '03]
- and also a large class of heterotic string models with anisotropic compactification [Antoniadis Gava Narain Taylor hep-th/9405024, Brignole Ibanez Munoz hep-th/9607405, Ratz @SUSY10 ...]

Can the MSSM with DHMM be realistic ?

DHMM at low energy Low energy analysis

Electroweak symmetry breaking : 2 necessary conditions to get EWSB at low scale $m_1^2 m_2^2 - m_3^4 < 0$, $m_1^2 + m_2^2 - 2m_3^2 > 0$.

→ The RGEs must turn the DHMM equalities into these inequalities !

- To check this, get a full spectrum and impose more constraints :
 need a numerical code and assume a scenario
- Code modification : impose $m_{H_{1,2}}^2 = \varepsilon_H B_\mu |\mu|^2$ at high energy with $\varepsilon_H = \pm 1$ (done in SuSpect, SoftSusy, and Spheno)
- Phenomenology of a specific, complete model of SUSY Gauge-Higgs unification.
 [Brümmer SF Kraml Hebecker '09]
- We investigated **2 representative scenarios** : [Brümmer SF Kraml Singh '10]
 - Universal soft terms (like « CMSSM with DHMM»)
 - Vanishing first two generations (like in SUSY Gauge-Higgs unification)

Sylvain Fichet, LPSC

The MSSM with DHMM

• Constraints : electroweak symmetry breaking and

Observable	Limit
m_h	> 114.4
m_t	173.1 ± 1.3
m_W	80.398 ± 0.025
SUSY mass limits	LEP bounds

Observable	Limit
${ m BR}(b o s \gamma)$	$(3.52 \pm 0.34) \times 10^{-4}$
$\mathrm{BR}(B_s \to \mu^+ \mu^-)$	$\leq 5.8 \times 10^{-8}$
Δa_{μ}^{SUSY}	$\leq 4.48 \times 10^{-9}$
Ωh^2	0.1131 ± 0.0034

• Likelihoods:
$$L_2(x, x_0, dx) = \exp\left[-\frac{(x-x_0)^2}{2 dx^2}\right]$$
 $L_1(x, x_0, dx) = \frac{1}{1 + \exp[(x-x_0)/dx]}$

Priors : - flat prior

- naturalness prior (disfavouring fine-tuned points) : 1/c

$$c = \max_{i} \left| \frac{\partial \ln m_Z}{\partial \ln a_i} \right|$$

• ~10x10^6 MCs for $\overline{\varepsilon_H} = \pm 1$, $\mu > 0$ using SOFTSUSY, and MICROMEGAS to compute observables.

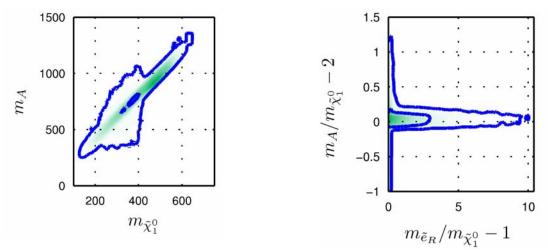
DHMM at low energy Relic density constraint

- Strongest constraint (with EWSB) : dark matter
 Assuming DM is only neutralino LSP : generically too high relic density
 meeds enhanced annihilation.
- Annihilation of bino component through pseudoscalar Higgs exchange (Higgs funnel) :

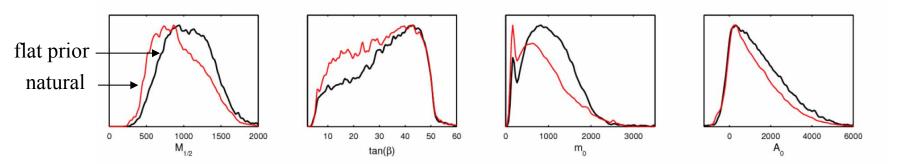
Efficient for $m_A \sim 2m_{\tilde{\chi}^0_1}$

 $\begin{array}{c|c} \tilde{\chi}_1^0 & & \overline{b} \\ & & A \\ & & & \\ \tilde{\chi}_1^0 & & b \end{array}$

• Coannihilations with sleptons :

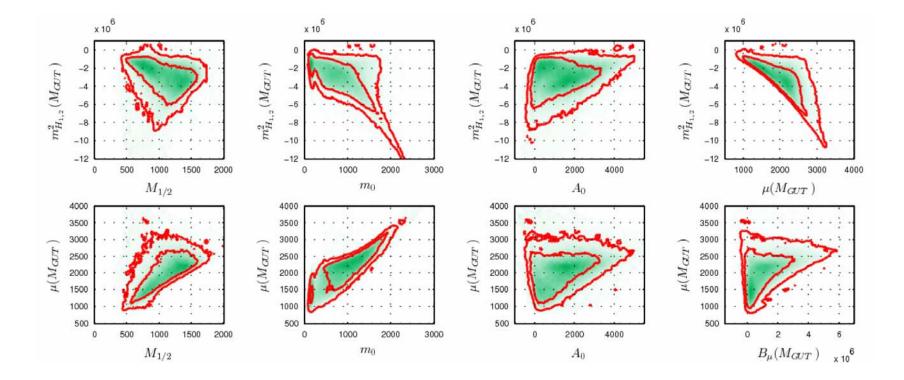

Efficient for $m_{\tilde{e},\tilde{\tau}} \sim m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_1^0} < 500$ GeV

• Annihilation of higgsino component through χ^{0} , χ^{\pm} , Z exchange :

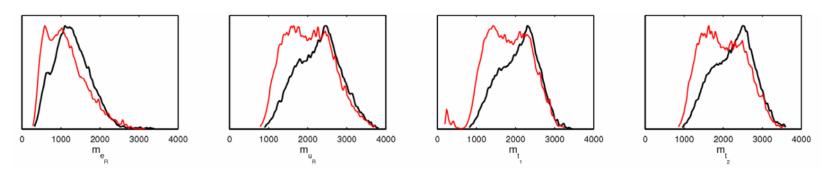

Efficient for $f_H \gtrsim 0.25$

• Dark matter annihilation mechanisms :

Mainly Higgs funnel, and slepton coannihilation

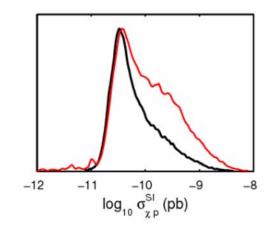


• UV parameters : 1D posterior pdfs, $\varepsilon_H = 1$



DHMM at low energy Some results for universal soft terms

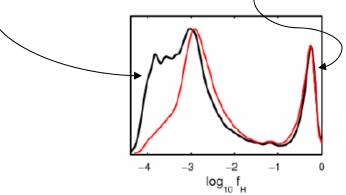
• UV parameters : 2D posterior pdfs, 68-95% contours (flat prior), $\varepsilon_H = 1$ In green : profile likelihood

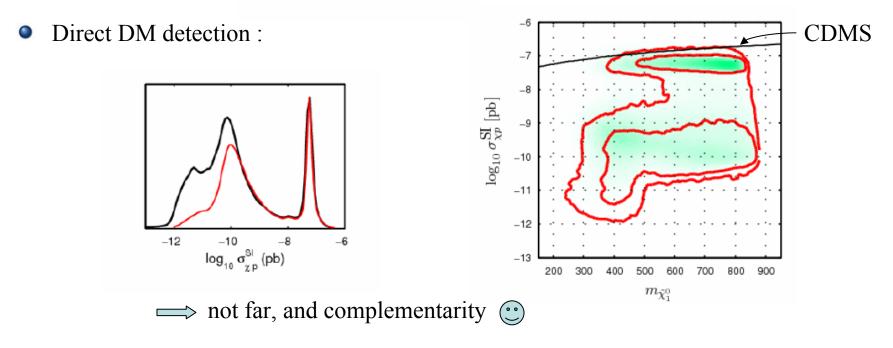


- Collider :
 - squarks and gluino are ~ below 3 TeV, so can be discovered at LHC 14 TeV on the whole parameter space.

- SFOS dilepton signal $\tilde{\chi}_2^0 \to \tilde{\ell}^{\pm} \ell^{\mp} \to \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$ on ~ half of the parameter space.
- $\tilde{\chi}_2^0 \rightarrow h \tilde{\chi}_1^0$ dominant on the remaining part.
- Direct DM detection : current bound around 10^{-7} pb(SI).

 \implies not within reach.

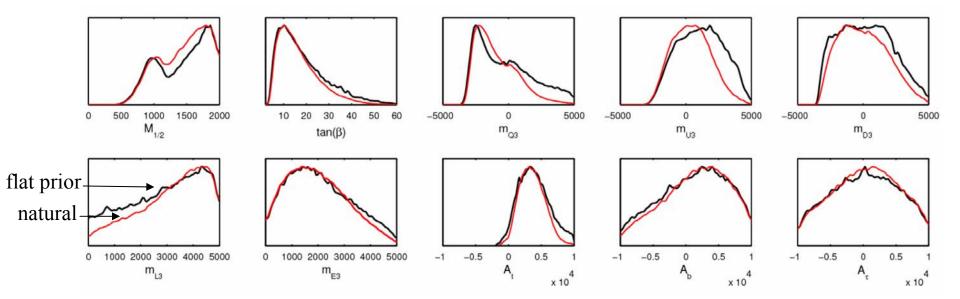

10


Sylvain Fichet, LPSC

DHMM at low energy Some results for vanishing first generations

• Dark matter annihilation mechanisms :

Higgs funnel, and higgsino component annihilation



Sylvain Fichet, LPSC

11

• UV parameters : 1D posterior probability density functions (pdfs), $\varepsilon_H = 1$

• Collider : SFOS dilepton $\tilde{\chi}_2^0 \to \tilde{\ell}^{\pm} \ell^{\mp} \to \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$ on the whole parameter space.

Can the MSSM with DHMM be identified ?

- Spectrum with DHMM quite similar to other models... **no striking feature**
- If we knew the whole spectrum → bottom-up reconstruction But we have only the LHC...
 But we just want to test equalities.

• An attempt :

Use Bayesian evidence to test equalities $m_1^2 = m_2^2$, $m_2^2 = m_3^2$, $m_1^2 = m_3^2$ i.e use the Savage-Dickey density ratio to test (separately) the hypothesis

$$\Delta m_{12}^2 = m_{H_1}^2 - m_{H_2}^2 = 0$$

$$\Delta m_{13} = (|\mu|^2 + m_{H_1}^2) - B_\mu = 0$$

$$\Delta m_{23} = (|\mu|^2 + m_{H_2}^2) - B_\mu = 0$$
 (giving factorizable prior to these parameters)

Conclusion :

- Different classes of interesting UV models (SUSY Gauge-Higgs unification, SUSY composite Higgses) give the MSSM with DHMM ($m_1^2 = m_2^2 = \pm m_3^2$)
- Viable phenomenology can be achieved for various scenarios
 Dominant constraints : EWSB and dark matter
- The investigated scenarios have good discovery potential for LHC at 14 TeV

To do :

• Find methods to test the DHMM relation

14

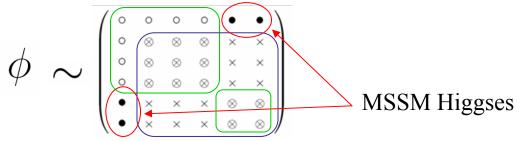
Thank you for your attention !

More

DHMM at low energy A discrimination study

A study case : we tried to fit a benchmark point of SUSY GHU with the CMSSM, assuming a realistic set of data that the LHC could provide.
 [Les Houches BSM working group report '10]

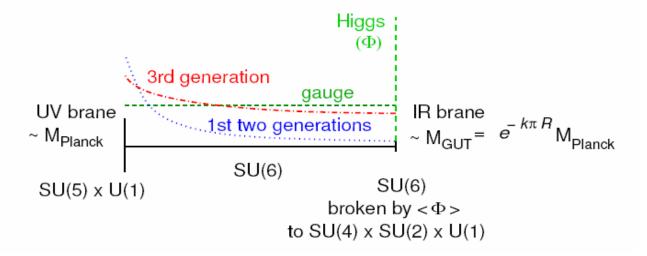
- Conclusions (for this benchmark point) :
- Sparticle masses alone are not sufficient
- If the heavy Higgs sector is known, B-physics observables permit the discrimination.


UV models

In models with (SUSY) composite Higgs :

- CFT with spontaneously broken approximate global symmetry : composite pGBS identified as Higgses , massless at tree level.
- Example : Holographic GUT [Nomura Poland Tweedie '06] CFT has $SU(6) \rightarrow SU(4) \times SU(2) \times U(1)$ spontaneously and coupled to an elementary sector with $SU(5) \times U(1)' \supset SU(6)$ weakly gauged (explicit breaking).

5D description (with gauge-gravity correspondence)


• A slice of AdS^5 (warped) with SU(6) spontaneously broken by ϕ on the IR brane and explicitly broken by boundary conditions on UV brane.

• The imaginary part of ϕ (half of the d.o.f.) contains the pGBs

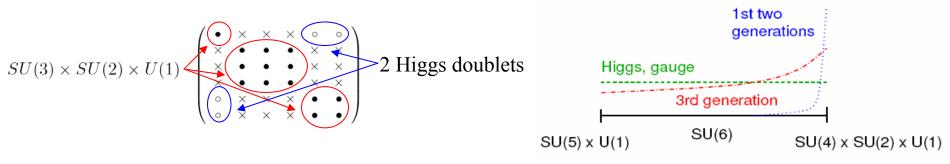
so $\phi - \overline{\phi}$ massless \implies DHMM

• Gauge and matter fields in the bulk

Hierarchical soft terms structure dictated by profiles

• Other model : Partially Supersymmetric composite Higgs [Gripaios Redi '10]

Spectrum of ESUSY (More Minimal SSM) [see talk by A. Lessa]


UV models

In models of SUSY gauge-Higgs unification :

• 5D vector superfield \iff 4D vector superfield & 4D chiral superfield $(\Sigma, \lambda_{1,2}, A^M)$ (λ_1, A^μ) (λ_1, A^μ) $(\Sigma + iA^5, \lambda_2)$ \uparrow 4D spin 1 : gauge
4D spin 0 : Higgs

5D gauge invariance : no mass term for $A^5 \sim \phi - \overline{\phi} \implies \mathbf{DHMM}$

- Example : SU(6) gauge-Higgs unification in (flat) 5D [Burdman Nomura '03]
 - Boundary conditions select the SM gauge fields and Higgses in the 5D adjoint

Higgs and matter in the bulk : 1st two generation soft terms are suppressed
 Again a different spectrum

5

Why such sign combinations ?

• We have :
$$B\mu(M_Z) < m_1^2(M_Z) \sim m_1^2(M_{GUT}) = |B\mu(M_{GUT})|$$

> 0 EWSB RGE GHU
(convention)

• And $B\mu$ dominated by $16\pi^2 \frac{d}{dt} B\mu = \mu (6A_t |y_t|^2 + 6g_2^2 M_2) + ...$

 \implies The overall sign of this RGE is fixed by $\operatorname{sgn}(\mu)$

For a given ε_H , only one $\operatorname{sgn}(\mu)$ is allowed.

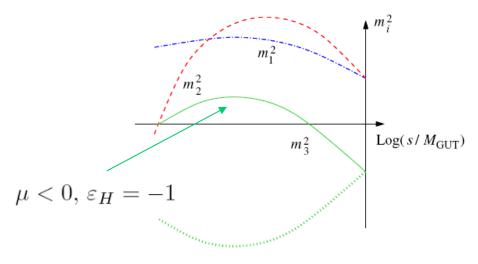
Sylvain Fichet, LPSC

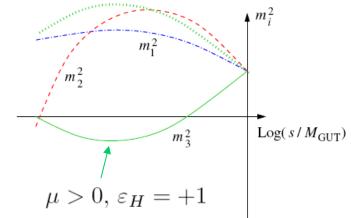
RGE analysis

Which sign combination is selected?

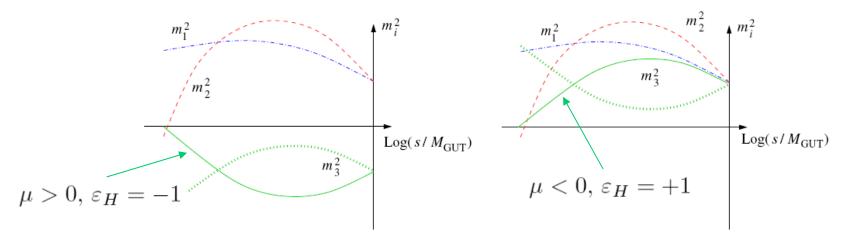
Need to study $16\pi^2 \frac{d}{dt} B\mu = \mu (6A_t |y_t|^2 + 6g_2^2 M_2) + \dots$

• A_t is dominated by the gluino mass : $16\pi^2 \frac{d}{dt} A_t = \frac{32}{3}g_3^2 M_3 + 6g_2 M_2 + ...$


 \implies A_t strongly decreases when E decreases


- A_t can become sufficiently negative to compensate M_2 and invert the running of $B\mu$
- This behaviour is roughly universal ۲

 \implies Only the initial value $A_t(M_{GUT})$ matters.


RGE analysis

• If $A_t(M_{GUT})$ large and positive :

• If $A_t(M_{GUT})$ small or negative :

How to calculate the spectrum of such models ?

Use a spectrum calculator... (SuSpect) [hep-ph/0211331]

...but the pattern of inputs and constraints is different from other models :

• Usually : μ and $B\mu$ calculated from the 2 equations of Higgs potential minization. at each iteration.

$$\mu^{2} = \frac{1}{2} \left(\tan 2\beta \left(m_{H_{u}}^{2} \tan \beta - m_{H_{d}}^{2} \cot \beta \right) - M_{Z}^{2} \right)$$
$$B\mu = \frac{1}{2} \sin 2\beta \left(m_{H_{d}}^{2} + m_{H_{u}}^{2} + 2\mu^{2} \right)$$

- But in our model : μ , $B\mu$, $m_{H_u}^2$, $m_{H_d}^2$ fixed from high scale relation...
- First solution : compute $\tan \beta$ and M_Z at each iteration.

But unstable for $\tan \beta \gtrsim 15$! (Potential fix : fixed point => dichotomy)

- Second solution : Simply impose $m_{H_{u,d}}^2 \equiv \varepsilon_H B \mu - \mu^2$ at high energy.

 \implies input parameters : $\tan\beta$, $M_{1/2}$, $\operatorname{sgn}(\mu)$...

+ matter sector parameters (in the 5D model : 2 mixing angles ϕ_Q and ϕ_L)

Sylvain Fichet, LPSC