micrOMEGAs : A tool for dark matter studies

G. Bélanger LAPTH

G. B, F. Boudjema, A. Pukhov, A. Semenov hep-ph/0112278, hep-ph/0405253, hep-ph/0607059, arXiv:08032360[hep-ph]

Outline

- Motivation
- Relic density
- Dark matter candidates
- Indirect detection
- Direct detection
- Outlook

Motivation

- Strong evidence for dark matter
- CMB (WMAP+SDSS) gives precise information on the amount of dark matter
- Most attractive explanation for dark matter: new weakly interacting particle
- Cosmological measurements strongly constrains models of cold dark matter
- Need for a precise and accurate computation of the relic density of dark matter
- Public codes that compute relic density in MSSM

Neutdriver, micrOMEGAs, DarkSUSY, Isatools, SuperIso(2009)
 and many private codes: SSARD (Olive), Roszkowski, Drees ...

- Many models for new physics whose main motivation is to solve the hierarchy problem also have a dark matter candidate symmetry that ensures that lightest particle is stable
- R-parity like symmetry introduced to avoid rapid proton decay or guarantee agreement with electroweak precision
- Examples:
 - MSSM and extensions, UED, Warped Xtra-Dim, Little Higgs, Extended Higgs
- Need for a tool that provide precise calculation of the relic density of dark matter in a wide variety of models micrOMEGAs_2.0
- To uncover the nature of dark matter : need complementary detection method both from astroparticle and colliders
- Comprehensive tool for dark matter studies : relic density, direct detection, indirect detection, cross section at colliders and decays: micrOMEGAs_2.2
 next release micrOMEGAs_2.4

Relic density of wimps

- In early universe WIMPs are present in large number and they are in thermal equilibrium
- As the universe expanded and cooled their density is reduced through pair annihilation
- Eventually density is too low for annihilation process to keep up with expansion rate
 - Freeze-out temperature
- LSP decouples from standard model particles, density depends only on expansion rate of the universe

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \left[n^2 - n_{eq}^2 \right]$$

$$\frac{dY}{dT} = \sqrt{\frac{\pi g_*(T)}{45}} M_p < \sigma v > (Y(T)^2 - Y_{eq}(T)^2)$$

Solving numerically, get present day abundance $Y(T_0)$ and

$$\Omega_{LOP}h^2 = \frac{8\pi}{3} \frac{s(T_0)}{M_p^2 (100 (\text{km/s/Mpc}))^2} M_{LOP} Y(T_0) = 2.742 \times 10^8 \frac{M_{LOP}}{GeV} Y(T_0)$$

Weakly interacting particle gives roughly the right annihilation cross section to have $\Omega h^2 \sim 0.1$, so-called 'WIMP miracle'

$$\Omega_X h^2 \approx \frac{3 \times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle}$$

Typical annihilation cross-section at FO

 $<\sigma v>= 3 \times 10^{-26} \mathrm{cm}^3/\mathrm{sec}$

Coannihilation

- If M(NLSP)~M(LSP) then $\chi + X \rightarrow \chi' + Y$ maintains thermal equilibrium between NLSP-LSP even after non standard particles decouple from standard ones
- Relic density depends on rate for all processes involving LSP/NLSP → SM
- All particles eventually decay into LSP, calculation of relic density requires summing over all possible processes

$$<\sigma v>=\frac{\sum\limits_{i,j}^{\infty}g_ig_j\int\limits_{(m_i+m_j)^2}ds\sqrt{s}K_1(\sqrt{s}/T)p_{ij}^2\sigma_{ij}(s)}{2T(\sum\limits_i g_im_i^2K_2(m_i/T))^2}$$
Exp(- Δ M)/T

- Important processes are those involving particles close in mass to LSP, for example up to 3000 processes can contribute in MSSM
- Need for automation

micrOMEGAs

micrOMEGAs_2.0..

- A generic program to calculate DM properties in any model
- Assume some "R-parity ", particles odd/even under R (odd particles: ~)
- Need to specify model file in CalcHEP notation : particles, variables, vertices, functions (do by hand or with LanHEP)
- After the model is implemented and checked with CalcHEP
 - Code then automatically looks for "LSP"
 - Computes all annihilation and coannihilation cross-sections
 - Complete tree-level matrix elements for all subprocesses
 - Automatically check for presence of resonances and improves the accuracy near pole
 - Numerical solution of evolution equation and calculation of relic density with non-relativistic thermal averaging and proper treatment of poles and thresholds
 - Gondolo, Gelmini, NPB 360 (1991)145
 - coannihilation : Edsjo, Gondolo PRD56(1997) 1879

• Includes and compiles relevant channels only if needed (Beps)

$$B = \frac{K_1((m_i + m_j)/T)}{K_1(2m_{LOP}/T)} \approx e^{-X\frac{(m_i + m_j - 2M_{LOP})}{M_{LOP}}} > B_{\epsilon}$$

- Calculates the relic density for any LSP (even charged)
- Computes σv , v->0 for LSP,LSP annihilation \rightarrow indirect detection
- Automatically compute elastic scattering rate on nucleon/nucleus
- CalcHEP is included: computes all 2->2 processes and 1-> 2,3 decays at tree-level
- Some facilities provided for pp collisions
- Interactive link to CalcHEP
- For new models : constraints and auxiliary routines must be provided by
- C code

Dark matter models

- Models distributed
 - MSSM
 - NMSSM (with C. Hugonie, hep-ph/0505142)
 - CPV-MSSM (with S. Kraml, hep-ph/0604150)
 - Right-handed neutrino (with G. Servant, arXiv:0706.0526)
 - Little Higgs (A. Belyaev)
- Other models
 - SUSY N=2 (with K. Benakli et al arXiv:0905.1043)
 - Mixed sneutrino (with M. Kakizaki, S. Kraml, E.K. Park arXiv:1008.0580)
 - UED (with M. Kakizaki, in progress)
- From other groups
 - Scalar DM (Lopez-Honorez et al., S. Su)
 -

MSSM model file

MSSM-Specific features

- Independent parameters of model are physical parameters of SHLA, flexibility: any model for which the MSSM spectrum can be calculated with an external code can be incorporated easily
- Input parameters to micromegas can be specified at the weak scale or at the GUT scale using some SpectrumCalc program, includes CMSSM, non-univ. SUGRA, AMSB
- Uses SUSY Les Houches Accord
- Radiative corrections to masses can be important SUSY masses and Higgs masses (via spectrum calculator)
- Package includes other constraints (developed for MSSM) not automatic

b->s γ (NLO), (g-2) $_{\mu}$, B_s-> $\mu\mu$, B-> $\tau\nu$, $\Delta\rho$

Higgs sector

General CP conserving effective potential

$$\begin{aligned} V_{eff} &= (m_1^2 + \mu^2) |H_1|^2 + (m_2^2 + \mu^2) |H_2|^2 - [m_{12}^2 (\epsilon H_1 H_2) + h.c.] \\ &+ \frac{1}{2} [\frac{1}{4} (g^2 + g'^2) + \lambda_1] (|H_1|^2)^2 + \frac{1}{2} [\frac{1}{4} (g^2 + g'^2) + \lambda_2] (|H_2|^2)^2 \\ &+ [\frac{1}{4} (g^2 - g'^2) + \lambda_3] |H_1|^2 |H_2|^2 + [-\frac{1}{2} g^2 + \lambda_4] (\epsilon H_1 H_2) (\epsilon H_1^* H_2^*) \\ &+ (\frac{\lambda_5}{2} (\epsilon H_1 H_2)^2 + [\lambda_6 |H_1|^2 + \lambda_7 |H_2|^2] (\epsilon H_1 H_2) + h.c.) \end{aligned}$$

- Higgs masses computed with high precision, available either in FeynHiggs or via spectrum calculator, with the effective potential have a consistent gauge invariant way of taking these corrections into account
- λ's include higher order corrections, extracted from Higgs masses and mixings (Boudjema, Semenov, hep-ph/0201219)

Higgs sector

• QCD corrections to Higgs couplings to fermion pairs (m $_{b~eff}$ (2M $_{LSP})) a=\alpha/\pi$

$$M_{eff}^{2}(Q) = M(Q)^{2} \left[1 + 5.67a + (35.94 - 1.36n_{f})a^{2} + (164.14 - n_{f}(25.77 - 0.259n_{f}))a^{3} \right]$$

- SUSY-QCD correction to Higgs->bb, effective Lagrangian, relevant at large $tan\beta$
 - Guasch, Hapfliger, Spira, hep-ph/0305101

$$\mathcal{L}_{eff} = \sqrt{4\pi\alpha}_{QED} \frac{m_b}{1 + \Delta m_b} \frac{1}{2M_W \sin \theta_W} \left[-Hb\bar{b}\frac{\cos\alpha}{\cos\beta} \left(1 + \frac{\Delta m_b \tan\alpha}{\tan\beta} \right) + iAb\bar{b}\tan\beta \left(1 - \frac{\Delta m_b}{\tan\beta^2} \right) + hb\bar{b}\frac{1}{\cos\beta} \left(1 - \frac{\Delta m_b}{\tan\alpha\tan\beta} \right) \right]$$

Why improved couplings matter

Extensions of MSSM

- Spectrum calculation, constraints on models: make use of existing programs develop independently, when possible interface with SLHA2
 - NMSSM
 - relies on NMSSMTools (NMSPEC and NMHDECAY) for spectrum calculation, indirect constraints (B physics, g-2, Higgs collider constraitns)
 - Ellwanger, Gunion, Hugonie
 - CPVMSSM:
 - interface to CPSuperH (J.S. Lee et al) for spectrum calculation, effective Higgs potential and constraints: edm, Bphysics
 - Interface to Higgs bounds for LEP/Tevatron Higgs constraints (next release)

Indirect detection

- Annihilation of pairs of DM particles into SM : decay products observed
- Searches for DM in 4 channels
 - Antiprotons (Pamela)
 - Positrons/electrons from galactic halo/center (Pamela, ATIC, Fermi..)
 - Photons from galactic halo/ center (Egret, Fermi, Hess..)
 - Neutrinos from Sun (IceCube)
- Rate for production of e^+ , p, γ
 - $\begin{array}{ll} & Dependence \ on \ the \ DM \\ & distribution \ (\rho) not \ well \ known \\ & in \ center \ of \ galaxy \end{array}$

Particle spectrum

- Photon/positron.. production in decay of SM + R-even new particles
- dN/dE : basic channels ff, VV, VH, HH
 - Tables extracted from Pythia6.4 from 10GeV-5TeV
 - For particles of unknown mass (H,Z'..) compute 1->2 decay recursively until only basic channels
- Vector particle polarisation
 - In MSSM only transverse W's lead to harder positron spectrum
 - Determine degree of polar : reconstruct angular distribution from $\chi\chi \rightarrow Wev$
 - Decay tables for W_T and W_L

Particle spectrum

- Computation of σv involves 2-> 2 tree level processes with higher order effects
- Radiative emission, 2->3 process
 - FSR included in Pythia, radiation from internal lines also should be included
 - Remove p-wave suppression in MSSM ($\chi \chi -> e^+e^-\gamma$)
 - Large enhancement when t-channel mass close to m(LSP), enhancement $m_{\chi}^{2}/(m_{T}^{2}-m_{\chi}^{2})$
 - Photon spectrum : option to request all 3-body processes
 - Subtraction procedure from Pythia: no double counting
- Monochromatic gamma rays $(\gamma\gamma,\gamma Z)$ loop process but distinctive signature
 - in micromegas_2.4 for MSSM

Photons

• Impact of 3 body final state

MSSM stau coan scenario

Dark matter profile

- Integral over line of sight depends strongly on the galactic DM distribution
- DM profile parametrisation

$$\rho_s(r) = \rho_\odot \left[\frac{r_\odot}{r}\right]^\gamma \left[\frac{1 + (r_\odot/a)^\alpha}{1 + (r/a)^\alpha}\right]^{\frac{\beta - \gamma}{\alpha}}$$

• Einasto profile

$$F_{halo}(r) = \exp\left[\frac{-2}{\alpha}\left(\left(\frac{r}{r_{\odot}}\right)^{\alpha} - 1\right)\right]$$

- N-body simulation
- Different halo profile rather similar except in center of galaxy

Halo model	α	β	γ	a (kpc)
Isothermal with core	2	2	0	4
NFW	1	3	1	20
Moore	1.5	3	1.5	28

$$r_{\odot} = 8 \text{ kpc}$$

 $\rho_{\odot} = 0.3 \text{ GeV.cm}^{-3}$

Antiprotons and positrons from DM annihilation in halo

M. Cirelli, Pascos2009

$$\frac{\partial N}{\partial t} - \nabla \cdot [K(\mathbf{x}, E) \nabla N] - \frac{\partial}{\partial E} [b(E) N] = q(\mathbf{x}, E)$$

diffusion Energy losses Source

Propagation of cosmic rays

• For Charged particle spectrum detected different than spectrum at the source

$$\frac{\partial N}{\partial t} - \nabla \cdot \left[K(\mathbf{x}, E) \nabla N \right] - \frac{\partial}{\partial E} \left[b(E) N \right] = q(\mathbf{x}, E)$$

- Charged cosmic rays deflected by irregularities in galactic magnetic field
 For strong magnetic turbulence effect similar to space diffusion
- Energy losses due to interactions with interstellar medium
- Convection driven by galactic wind and reacceleration due to interstellar shock wave
- For positron, antiproton : solution propagation equations based on semianalytical two-zone model
 - Lavalle, Pochon, Salati, Taillet, astro-ph/0603796

Propagation

• Positrons: dominated space diffusion and energy loss (synchroton radiation, Inverse Compton scattering)

$$-\nabla \cdot (K(E)\nabla\psi_{e^+}) - \frac{\partial}{\partial E} (b(E)\psi_{e^+}) = Q_{e^+}(\mathbf{x}, E)$$
$$K(E) = K_0\beta(E) (\mathcal{R}/1 \text{ GV})^{\delta}$$

- Antiprotons: energy loss negligible
 - Negative source term (annihilation of antiproton in interstellar medium)
 - Galactic wind, convective velocity: V_c

$$\left[-K(E)\nabla^2 + V_c \frac{\partial}{\partial z} + 2(V_c + h\Gamma_{tot}(E))\delta(z)\right]\psi_{\bar{p}}(E, r, z) = \frac{\sigma v}{2} \frac{\overline{\rho^2}(r, z)}{M_{\chi}^2} f_{\bar{p}}(E)$$

• Propagation parameters constrained by B/C

Propagation

• Choice of diffusion parameters

Model	δ	$K_0 \; (\rm kpc^2/Myr)$	$L (\mathrm{kpc})$	$V_C(\rm km/s)$
MIN	0.85	0.0016	1	13.5
MED	0.7	0.0112	4	12
MAX	0.46	0.0765	15	5

Donato et al

• Strong impact on the predictions

Model 1
$\mu = -440, M_A = 1000$
$M_2 = 800, M_0 = 2500$
$A_t = A_b = 1000$
$\tan \beta = 10$

• At low energies solar modulation effect

Comparison micrOMEGAs/DarkSUSY for positron spectrum

 $\delta = 0.6, K_0 = 0.03607 \text{ kpc}^2/\text{Myr}, L = 4 \text{ kpc} \text{ and } V_C = 10 \text{ km/s}.$

Direct detection

- Elastic scattering of WIMPs off nuclei in a large detector
- Measure nuclear recoil energy, E_R
- Would give best evidence that WIMPs form DM
- Two types of scattering
 - Coherent scattering on A nucleons in nucleus, for spin independent interactions
 - Dominant for heavy nuclei
 - Spin dependent interactions only on one unpaired nucleon
 - Dominant for light nuclei

Direct detection

- Typical diagrams
- Higgs exchange often dominates

For Dirac fermions Z exchange contributes to SI and SD

WIMP- Nucleon amplitude

- For any WIMP, need effective Lagrangian for WIMP-nucleon amplitude *at small momentum* ~100MeV,
- Generic form for a fermion
- $\mathcal{L}_{F} = \lambda_{N} \overline{\psi}_{\chi} \psi_{\chi} \overline{\psi}_{N} \psi_{N} + i\kappa_{1} \overline{\psi}_{\chi} \psi_{\chi} \overline{\psi}_{N} \gamma_{5} \psi_{N} + i\kappa_{2} \overline{\psi}_{\chi} \gamma_{5} \psi_{\chi} \overline{\psi}_{N} \psi_{N} + \kappa_{3} \overline{\psi}_{\chi} \gamma_{5} \psi_{\chi} \overline{\psi}_{N} \gamma_{5} \psi_{N} \psi_{N} + \kappa_{4} \overline{\psi}_{\chi} \gamma_{\mu} \gamma_{5} \psi_{\chi} \overline{\psi}_{N} \gamma^{\mu} \psi_{N} + \xi_{N} \overline{\psi}_{\chi} \gamma_{\mu} \gamma_{5} \psi_{\chi} \overline{\psi}_{N} \gamma^{\mu} \gamma_{5} \psi_{N}$
 - For Majorana fermion only 2 operators survive at small q²
 - First need to compute the WIMP quark amplitudes
 - normally computed symbolically from Feynman diagrams+ Fierz
 - Automatic approach (works for all models)
 - Effective Lagrangian for WIMP-quark scattering has same generic form as WIMP nucleon

WIMP quark effective Lagrangian

		WIMP	Even	Odd
		Spin	operators	operators
S	SI	$0 \\ 1/2 \\ 1$	$\frac{2M_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\overline{\psi}_{q}\psi_{q}}{\overline{\psi}_{\chi}\psi_{\chi}\overline{\psi}_{q}\psi_{q}}$ $2M_{\chi}A_{\chi,\mu}A_{\chi}^{\mu}\overline{\psi}_{q}\psi_{q}\psi_{q}$	$i(\partial_{\mu}\phi_{\chi}\phi_{\chi}^{*}-\phi_{\chi}\partial_{\mu}\phi_{\chi}^{*})\overline{\psi}_{q}\gamma^{\mu}\psi_{q}$ $\frac{i(\partial_{\mu}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi$
S	D	$\frac{1/2}{1}$	$ \frac{\overline{\psi}_{\chi}\gamma_{\mu}\gamma_{5}\psi_{\chi}\overline{\psi}_{q}\gamma_{\mu}\gamma_{5}\psi_{q}}{\sqrt{6}(\partial_{\alpha}A_{\chi,\beta}^{*}A_{\chi\nu} - A_{\chi\beta}^{*}\partial_{\alpha}A_{\chi\nu})}_{\epsilon^{\alpha\beta\nu\mu}\overline{\psi}_{q}\gamma_{5}\gamma_{\mu}\psi_{q}} $	$-\frac{1}{2}\overline{\psi}_{\chi}\sigma_{\mu\nu}\psi_{\chi}\overline{\psi}_{q}\sigma^{\mu\nu}\psi_{q}$ $i\frac{\sqrt{3}}{2}(A_{\chi\mu}A^{*}_{\chi\nu}-A^{*}_{\chi\mu}A_{\chi\nu})\overline{\psi}_{q}\sigma^{\mu\nu}\psi_{q}$

• Operators for WIMP quark Lagrangian, extract automatically the coefficients for SI and SD –

$$\hat{\mathcal{L}}_{eff}(x) = \sum_{q,s} \lambda_{q,s} \hat{\mathcal{O}}_{q,s}(x) + \xi_{q,s} \hat{\mathcal{O}}'_{q,s}(x)$$

- In micrOMEGAs: evaluate coefficients numerically using projection operators
- Add all projection operators as new vertices in the model
- Compute χq-χq scattering element at zero momentum transfer
- Interference between one projection operator and effective vertex- single out SI or SD contribution

$$\lambda_{q,e} + \lambda_{q,o} = \frac{-i\langle q(p_1), \chi(p_2) | \hat{S}\hat{\mathcal{O}}_{q,e} | q(p_1), \chi(p_2) \rangle}{\langle q(p_1), \chi(p_2) | \hat{\mathcal{O}}_{q,e} \hat{\mathcal{O}}_{q,e} | q(p_1), \chi(p_2) \rangle}$$

- Use quark and anti-quark scattering elements to split even/odd contributions
- The projection operators are added to the model file by micrOMEGAs
- Warning: in the model file must include couplings proportional to light quark masses (eg. Hqq coupling)

WIMP-quark to WIMP-nucleon

- Coefficients relate WIMP-quark operators to WIMP nucleon operators
 - Extracted from experiments
 - Source of theoretical uncertainties
- Example, scalar coefficients, contribution of q to nucleon mass

$$\langle N|m_q\overline{\psi}_q\psi_q|N\rangle = f_q^N M_N \qquad \lambda_{N,p} = \sum_{q=1,6} f_q^N\lambda_{q,p}$$
$$f_Q^N = \frac{2}{27} \left(1 - \sum_{q\leq 3} f_q^N\right)$$

- Can be defined by user
- Different coefficients can lead to one order magnitude correction in cross section

- Scalar coefficients extracted from ratios of light quark masses, pion-nucleon sigma term and σ_0 (size of SU(3) breaking effect)
- Large uncertainty in s-quark contribution

Nucleon	f _{Tu}	f _{Td}	f _{Ts} [24]	f _{Ts} [25]	f _{Ts} [20, 26]
n	0.023	0.034	0.08	0.14	0.46
р	0.019	0.041	0.08	0.14	0.46

- Lattice calculations have provide new estimates of those coefficients soon should help reduce uncertainties
- For example varying coefficients within this range can in the MSSM lead to almost one order of magnitude change in cross section
 - Bottino et al hep-ph/0010203, Ellis et al hep-ph/0502001

WIMP-nucleon to WIMP-nucleus

• Rates (SI and SD) depends on nuclear form factors and velocity distribution of WIMPs + local density

• Modularity and flexibility: can change velocity distribution, nuclear form factors, quark coefficients in nucleon

Outlook/Conclusion

- Complete indirect detection: – Neutrino capture in Sun/Earth
- Pursue implementation of new models
- Alternative cosmological scenarii (with S. Bailly)
- Incorporating one-loop for dominant processes in MSSM beyond improved Higgs vertices
- To understand the nature of dark matter clearly need information and cross checks from cosmology, direct and indirect detection as well as from collider physics, micrOMEGAs : one of the public tools available to perform these analysis, only one that apply to wide variety of DM models
- Download: micromegas_2.4
 - http:://lappweb.in2p3.fr/lapth/micromegas

About Sloops

(Fawzi could not be here)

Why one-loop

- Relic abundance extracted from cosmological measurements about 10-15% accuracy, will improve with Planck (few percent)
- Tree-level computation of annihilation cross sections might not be precise enough to constrain cosmological scenario after reconstruction of fundamental parameters of particle physics model
- (SUSY)-QCD corrections are expected to be large, EW ones could be large

Then for an accurate and reliable relic density prediction at one-loop order we need :

- $\rightarrow\,$ A coherent renormalisation scheme and a choice of input parameters.
- \rightarrow To generate counter-terms, for SUSY gigantic task.
- \rightarrow To compute a huge amount of loop diagrams.
- \rightarrow Loop Integrals library to handle Gram determinant when $v \rightarrow 0$.
- $\rightarrow\,$ To deal with IR and collinear divergencies $\rightarrow\,$ include bremsstrahlung.
- \rightarrow To evaluate many processes entering $\langle \sigma v \rangle$.
- SloopS: an automatic code for computation of one-loop diagrams in the MSSM
 Baro, Boudjema, Semenov : arXiv:0710.1821

One-loop processes relevant for DM

One-loop calculation EW + QCD corrections

- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma \gamma, Z\gamma, gg$: Boudjema, Semenov, Temes, Phys. Rev. D72, 055024 (2005)
- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow ZZ, W^+W^-$: Baro, Boudjema, Semenov, Phys. Lett. B660 (2008) 550 Baro, Boudjema, Chalons, Sun Hao, Phys. Rev. D81 (2008) 015005
- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \tau^+ \tau^-$, $b\bar{b}$: Baro, Boudjema, Semenov, Phys. Lett B660 (2008) 550
- Co-annihilation with τ̃: Baro, Boudjema, Semenov, Phys. Lett B660 (2008) 550,

QCD corrections

- Co-annihilation with \tilde{t} Freitas Phys. Lett. B652 (2007) 280
- Annihilation into massive quarks Hermann, Klasen, Kovarik Phys. Rev. D79 (2009)

Herrmann, Klasen, Phys. Rev. D76 (2007) 117704 Herrmann, Klasen and Kovarik, Phys. Rev. D80 (2009) 085025

Sloops

- Evaluation of one-loop diagrams including a complete and coherent renormalisation of each sector of the MSSM with an OS scheme.
- Modularity between different renormalisation schemes.
- Non-linear gauge fixing.
- Handles a large number of Feynman diagrams.
- Checks : results UV, IR finite and gauge independent.

http://code.sloops.free.fr/

RADIATIVE CORRECTIONS-RENORMALISATION

DIVERGENCES

Due to perturbative development in the coupling constant.

REGULARISATION

Isolate infinite parts in loops

- UV : In Λ_{UV} with cut-off, 1/ε_{UV} poles in DR.
- IR : ln λ_{IR} with cut-off, 1/ε_{IR} poles in DR.

A WORD ABOUT INFRARED DIVERGENCIES

- Originate from
 - \hookrightarrow Massless gauge bosons (γ, g) coupling to on-shell external legs.
 - Soft and collinear regions of integration over boson momenta (appear as double log ln²(λ_{IR}) or 1/ε²_{IR}).
- Adding real emission remove unphysical dependency in the cut-off λ_{IR} or $1/\epsilon_{IR}^2$.
- Integration over 3-particles phase space can be complicated.
- Usually for DM calculation 2 → 2 processes are enough, but if real corrections ≃ vertex corrections, 2 → 3 processes should also be included.
- If c.m energy √s ≫ M_V, EW bosons behave like a photon ⇒ Mass singularities in soft and collinear logs ∝ ln²(s/M_W²)

ON-SHELL RENORMALISATION OF THE MSSM SECTORS

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : $M_{A^0}, t_{eta} = v_2/v_1$. Several definitions for δt_{eta} :

- DR : δt_β is a pure divergence
- MH : δt_β is defined from the measurement of the mass m_H
- $A^0 \tau \tau : \delta t_\beta$ is defined from the decay $A^0 \to \tau^+ \tau^- (vertex \propto m_\tau t_\beta)$

SFERMIONS SECTOR

Input parameters : 3 sfermions masses $m_{\tilde{d}_1}, m_{\tilde{d}_2}, m_{\tilde{u}_1}$ and 2 conditions for $A_{u,d}$

NEUTRALINOS/CHARGINOS SECTOR

Input parameters : 2 charginos $m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^{\pm}}$ and 1 neutralino $\tilde{\chi}_1^0$

Second example : annihilation into $b\overline{b}$

- Mixed case : bino-higgsino
- Important A⁰-exchange in s-channel
 m_{x˜1}⁰ = 106 GeV, m_{A⁰} = 300 GeV
- $\sigma v = a + bv^2$
- δt_{β} scheme dependency
- Important corrections to $A^0 \rightarrow b\overline{b}$ vertex \rightarrow anomalous dimension, Δm_b
- Modified Yukawa coupling implemented in micrOMEGAs

$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow b\overline{b}$	$A_{ au au}$	$\overline{\mathrm{DR}}$	MH
δa/a EW	-1%	+3%	+31%
$\delta a/a~QCD$	-26%	-26%	-26%
$\delta b/b EW$	-1%	+3%	+29%
$\delta b/b$ QCD	-30%	-30%	-30%

- Baro, Boudjema, Chalons, Sun Hao, Phys. Rev D81 (2008) 015005
- Most difficult channels : Gauge invariance plays a prominent role.

Parameter	M_1	M_2	μ	t_{β}	M_3	Μ _{Ľ, Q}	Ai	M_{A^0}
Value	400	350	-250	4	1000	650	0	800
$\tilde{\chi}_1^0 = 0.11\tilde{B} - 0.31\tilde{W} - 0.70\tilde{H}_1^0 - 0.63\tilde{H}_2^0$								

- Bulk of corrections to the s-wave coefficient
- Small δt_β scheme dependence
- QCD corrections to $u\bar{d}\simeq$ 3 %
- Bump = \(\tilde{\chi}_1^{\pm t}\) threshold in boxes, not present at Tree-Level
- a + bv² expansion doesn't work anymore at 1-L

ANNIHILATION INTO GAUGE BOSONS : LIGHT-WINO

 $\begin{array}{c|c} & A_{\tau\tau} & \overline{\mathrm{DR}} & \mathsf{MH} \\ \hline \delta\Omega h^2/\Omega h^2 & -1.9\% & -1.9\% & -1.9\% \end{array}$

- At 1-L new feature appear for v → 0 : Coulomb effect
- Possible to capture its one-loop manifestation
- Degeneracy lifted between processes
- Large corrections
- Almost no δt_{β} scheme dependence
- Strong cancellations between QCD/EW corrections

CONCLUSIONS AND PERSPECTIVES

- Importance of radiative corrections in the relic density calculations, can be very large.
- Need to control them to be able to extract informations from it and to constrain the underlying cosmological scenario.
- For some cases scheme dependence.
- For a heavy neutralino scenarios taking into account 2 → 3 processes is necessary.
- Large corrections due to soft/collinear logs and Sommerfeld enhancement.
- Corrections can be even larger for Indirect Detection, rate and spectra for specific signatures.
- In all cases for $\Omega_{\chi} h^2 @ 1-2\% \Rightarrow$ one-loop corrections mandatory.
- Study of the dependency of the results on the chargino/neutralino renormalisation scheme.
- Improve the interface with micrOMEGAs.