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Two centuries later (when this Book
had become an official prayer book of
the Church of England) Thomas Bayes
was a non-conformist minister
(Presbyterian) who refused to use

Cranmer’s book
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“‘Bayesians address the question everyone is
iInterested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

-L.. Lyons

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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A few points

Objective part of Bayesian inference is encoded in Likelihood

L(data|theory)m(theory)

P(theory|data) = P(data)

- improvements in Likelihood is not Bayesian vs. Frequentist

Prior may be based on data n(theory) o< L'(data’|theory)n(theory)
- but it also depends on the initial prior 7n(theory)

In the same way that the “Bayesian calculus” allows for

propagation of belief, the measurements can be combined with
the likelihood function

Lot (data’|[theory) = L(data’|theory)L’(data’|theory)

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



Ideal scenario i
The ideal scenario for the interface between the data and the inference
to the fundamental lagrangian parameters is through a likelihood
function that accurately incorporates all the experimental systematics
and retains as much power in the data as possible

Fundamental o LHC Data
\ Lagrangian ‘ ‘ Likelihood

Functions

C y; \ Interpretation / - \ Data Modeling /

Is this feasible?

- It is the basic model on which Zfitter, GFitter, SFitter, Fittino,
MasterCode, Kismet, SuperBayes, etc. are based

- unfortunately, likelihood functions are usually simplistic and based
on a few 1-d measurements

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



Current scenario covrenron (Y
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Taken from the GFitter paper

23This procedure only uses the My value under consideration, where
Higgs-mass hypothesis and measurement are compared. It thus ne-
glects that in the SM a given signal hypothesis entails background hy-
potheses for all My values other than the one considered. An analysis
accounting for this should provide a statistical comparison of a given
hypothesis with all available measurements. 'This however would re-
| quire to know the correlations among all the measurement points (or
| better: the full experimental likelihood as a function of the Higgs-mass

pothesis), which are not provided by the experiments to date.|The
difference to the hypothesis-only test employed here is expected to
be small at present, but may become important once an experimental

Higgs signal appears, which however has insufficient significance yet

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



The situation 10 years ago... ((T"

Origins I: The First “Statistics in HEP” conference

WORKSHOP ON CONFIDENCE LIMITS

CERN, Geneva, Switzerland
17-18 January 2000 CERN 2000-005

Massimo Corradi
Does everybody agree on this statement, to publish likelihoods?
Louis Lyons

Any disagreement ? Carried unanimously. That’s actually quite an achievement for this Workshop.
...[Fred James wants to be able to calculate coverage, Don Groom wants to able to calculate goodness of fit]...

Cousins

I thought the point of unanimity was that publishing the likelihood function was a necessary con-
dition, not a sufficient condition.

But a practical problem remained: How to communicate multi-D likelihood?

http://indico.cern.ch/conferenceDisplay.py?confld=100458
Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



http://indico.cern.ch/conferenceDisplay.py?confId=100458
http://indico.cern.ch/conferenceDisplay.py?confId=100458

Outline
Information:
» What is the RooStats Project?
» What the workspace can do for SUSY/BSM Fits

» Real-life examples from the LHC

Example Use cases
» A critical look at the weak points in our current chain

Moving forward:

» Hard problems that can be solved with planning
» Making a clear request to the experiments (discussion)
» Preparing toy benchmark examples (discussion)

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



RooStats: Project info
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Started in 2005, when René Brun asked me to help
organize statistical tools in ROOT

- Main goals are to provide a common
framework for various statistical techniques
(Frequentist, Bayesian, Likelihood based,...)

We want tools to work with probability models of
arbitrary complexity (which implies interfaces, etc.)

- Decided to base tools on RooFit's data
modeling language and core interfaces

Initially an ATLAS/CMS project, but other
experiments are interested (LHCb, Fermi, ...)

- core developers

- K. Cranmer (ATLAS), Lorenzo Moneta
(ROQT), Gregory Schott (CMS), Wouter
Verkerke (RooFit)

- open project, you are welcome to contribute
- ~10 others contributing now, growing fast

Included since ROOT v5.22 (we are now on 5.27)

https://twiki.cern.ch/twiki/bin/view/RooStats/\WWebHome

RooStats has been a topic of
conversation in every combined ATLAS/
CMS statistics forum meeting

- In July, we showed the first toy
ATLAS/CMS Higgs combination using
the tools of RooFit/RooStats.

- See agenda:
http://indico.cern.ch/conferenceDisplay.py?confld=100458

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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Major Goals and Status (‘T’
Goal: Standardize interface for major statistical procedures so that they can work
on an arbitrary RooFit model & dataset and handle many parameters of interest
and nuisance parameters (systematics).

» Status: Done
- ConfintervalCalculator & HypoTestCalculator interface for tools

- they return Confidencelnterval and HypoTestResult

Goal: Implement most accepted techniques from Frequentist, Bayesian, and
Likelihood-based approaches

» Status: Done / Ongoing
- ProfileLikelihoodCalculator: (Likelihood) the method of MINUIT/MINOS
- FeldmanCousins: (Frequentist) a generalization of F-C that can incorporate systematics
- MCMCCalculator: (Bayesian) uses Metropolis-Hastings algorithm (native or BAT)
- HybridCalculator: (Bayesian/Frequentist Hybrid) used at LEP and Tevatron

Goal: Provide utilities to perform combined measurements

» Status: Partially done / Ongoing

- RooWorkspace allows one to save arbitrary RooFit model (even with custom code) into
a .root file. PDFs and DataSets have been extended to facilitate combinations.

- Same technology can aid in digital publiShiNg (e em—— today’s focus
Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010 10
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What goes in a Workspace g;m?;&gcf‘{

The workspace stores the full probability model and any data necessary to
evaluate the likelihood function

- it is the code necessary to evaluate the likelihood function at an arbitrary point
in the parameter space. It is not a big table of likelihood values!

- we are using the same ROQOT technology that the LHC experiments are using
to save their data

- well supported, and supports “schema evolution” / backwards compatibility

» the probability model also allows you to generate toy data for any given
parameter point

- necessary for frequentist methods, goodness of fit, coverage
» PDFs and functions can be extended by the user (source stored in workspace)

| will show some visualization of real-life LHC probability models. Let’s start with a
simple example:

Y
RooRealVar : x RooRealVar : u RooRealVar : o

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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RooFit: A data modeling toolkit

A major too

- Addition
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at BaBar. Fit complicated models with >100 parameters!

RooGaussian
gaussl

RooRealVar

glfrac

RooAddPdf
sum

RooGaussian
gauss2

RooRealVar

g2frac

RooArgusBG
argus

RooRealVar
meanl

RooRealVar RooRealVar
sigma X

RooRealVar
mean2

RooRealVar
argpar

RooRealVar

cutoff

Histogram of X \s y__X_y
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The RooFit/RooStats workspace e, @

PARTICLE PHYSICS '

g2 ROOT Object Browser
e Edit View Opsons lnspect

File View Options |_A RooPlot of "x"_|
Sweerat =] (2] [, gl <[ [8] )
All Folders Contents of "Y"ROOT Files/wspace.root"
(] mot
(_]PROOF Sessions I
D /use rive ke ke /oofit/'wo hkdir ‘

(_JROOT Fiks MyWorkSpace;1

-

Events /(0.2)
=]
o

RooStat’s Workspace can save in a file the

full likelihood model and the minimal data AN - | ‘ x
necessary to reproduce likelihood function. _ARooPlotof'm” |

-
—

The technology is generic, we decide how to
parametrize the model.

Being used by ATLAS/CMS for very
complicated models

Projection of profile likelihcod

Need this for combinations, exciting potential
for publishing results.

IITII 1’]]1] IIIIT-IITT‘T T‘]I't

AAAAAAAAAAAAAAAAA I“lA‘AA Lll AL _A hedod.
-008 -006 -004 002 0 . 0.04 006 008
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Extracting Contours from these results

The workspace can represent arbitrary models with many
parameters of interest and many nuisance parameters

This contour is NOT an ellipse!

3 1 | . Losasl
0 01 02 03 04 05 06 0.7 :08

One can plot 2-d contours, 1-d likelihood "
functions. : |

One can evaluate likelihood in N-d and use
to evaluate a theoretical model

Projectign of nll

™ ™77 ™7

--
o

If the model has nuisance parameters for
systematics, they will be included!

Easy to combine multiple measurements

o
wn -
T

o
T

4---1u44".--.ul,14,;-.£1uxiu. 2193l ]y d
01 02 03 04 05 06 0.7 08 09
frac

Taken from Wouter Verkerke, NIKHEF
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Examples of Real-Life LHC Models
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ATLAS H->yy e

Pseudorapidity categories (at least one converted photon)

(8) [7.8%]
1.87 GeV

(7) [8.2%]

(7) [8.2%)]
3.33 GeV

Events / 2 GeV

(3) [10.2%]
2.26 GeV

(6) [22.7%]
2.26 GeV

(4) [9.4%]
2.58 GeV

1 1 1 1 I 1 1 1 1 I 1
% 05 1
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3-channel top combination (@
The graph below represents this PDF

L(0Oyig, 2, aj) = H { ];[ [Pois(NiObS|N§f£)Gaus(jLSf,Gg) H Gaus(Oaj,l)]}
le{ee,uu,eu} \ ic€bins

jesyst

» where there are several relations between the expected means
in the different channels

3 observations from data
13 control samples

1 parameter of interest
13 nuisance parameters T
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4-channel ATLAS Higgs combination ggir;";;ggcs(?
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9 Channel ATLAS H->WW combination (‘T’

top level model

25 measurements from data parameter of interest
cBR

osmBRs

1 parameter of interest and 24 nuisance parameters =

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



Visualization of the ATLAS+CMS Workspace S5 %

The full model has tob level model
12 observables and P ATLAS part
~50 parameters

A
m ; A. ,/// /,b/ //,/// ///\ //A\Y YI ? \lz// w\\r—(ﬂ} }\\ NSl S uxuuuuﬁxu%,
V=="]
mo0uuummmmmommomom B A N G omnmmmmmmnmmmmm ShSehoopesss

:

parameter of interest
B cBR

osmBRs
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How to use the workspace o @
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Using the likelihood function stored in a o RO
workspace does not mean: 1/ open root file with workspace

// here you have to know name of workspace
. . . // you can qe: that by opening the file in root
> // and typing ".1s
becoming an expert in RooFit/RooStats 7« wpie “1s7
TFile f("A : bR

> ever USIng a ROOT prompt. RooWorks DO((“ W o (Room kspoce®) f.Get("w");

// now we need to get stuff out of the workspace
// we con see whot's inside with the Print() method

To get started, | have a simple example: s PrtO):

. . // the top-level POF is colled "model”™ in this case
- a C++ program with a main() RooAbsPdF® model = weopdf('eodel’;
// the only dataset is called "modelData
RooAbsData® dota = w->data( } );

- with a real Makefile that links to the

// from the PDF and the data we can create the likelihood function

RooFit and RooStats libraries in ROQT e i = Gontiiart mdelmcreateniCasta;

/7 now we need to know the paromnrs 1t depends on
cout << L

int main(int argc, char** argv) { RooArgSet® parameters = al1- wetParo-eters('duto)
paraneters->Print();
// get a pointer to the parameters

evaluatelikelihoodFunction(); RooRealVar® =1 = w->var(“m1");
RooRealVar® mZ = w->var('m2");

return 0; CW: <<
} CoUt <<

| for(int 1=0; 1<180; ++1){
The progra : mi->rendomize();
m me- >rondomze()
b : <anl->getVal()

- opens the ROOT file and gets the workspace << ", " << 2oogetialQ)

<<
<< nll- >9etVol() << endl

- gets the log-likelihood function }

- evaluates it at some random parameter points '

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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Graphical Models s:zr::‘f:;;:';?cf‘{

Given all these graphs, it's not
surprising that one might think there’s
an application for Graphical Models

» graphs are different, but let’s
discuss connection Directed Markov means

Graph of on/off model f(x) = fOa)fOelx)f (s x)f(ax)

X (x5 |x2,x3)f (X6 | x3,%5)F(x7 | Xa, X5, X6)-

Theory exists for deriving all conditional independencies and
exploiting local structure in graph for gross computational
simplifications in complex models. Has been successfully exploited
in Al, machine learning, and Bayesian statistics.

Steffen Lauritzen University of Oxford Statistical respondent

poaY

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010




A Critical Look at What We Are Doing Now
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Correlated systematics e, @8
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Clearly, several systematic effects will be correlated between the different
measurements, and this must be taken into account

» That means the likelihood function needs to be a function of nuisance
parameters.

Table 4: Endpoint positions for SU3 and SU4, in GeV. The first error is statistical, the second and third
are the systematic and the jet energy scale uncertainty, respectively. The theoretical values are also given

for ease of comparison to the left of the fitted values. The integrated luminosity assumed is 1 fb~! for
SU3 and 0.5 fb~! for SU4.

Endpoint | SU3 truth SU3 measured SU4 truth SU4 measured
ngge 501 517+30+£10+13 340 343+12+£3+9
m}}}zfl 249 265+ 17+£15+£7 168 161 £36+20£4
mg}?" 325 333 £6£6+£8 240 201 +£94+3+5

low)

i 418 4451111411 340 320+£8+3+8

| |

Current approach attempts to o1 02 0.

YT PETYY PR PTTT Peee
04 05 06 0.7 08
frac

» Not clear from a table like this if errors are anti-correlated

» The relationship can be non-trivial, not able to be represented by a
simple covariance matrix

Wouldn’t it be nice to be able to inflate the uncertainties and see what
happens? Especially, when results don’t agree.

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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Asymmetric Errors :‘:zr::‘f:;;;';?cf‘{

| see that several groups interpret asymmetric errors reported by
the experiments into a likelihood function:

» Of course, this is an ill-posed problem

» Rober Barlow considered 8 ways of doing this for cases in
HEP, and the results can vary significantly

. 1: Traditional Method wef . 8 Gaussian - linear V|

Split Gaussian with o above, -6 * —0s L © Same idea but change variance
i o_ below. ’; 3 —0.6 | : ¢ rather than o

: P fla) =1 with V=V +V'a
¢ Top curves show Poisson n = 5. )
:  Bottom curves show log Gaussian. _; | b v W=o_o4 Vi=oy—0o_

© Horizontal line shows [—o_, 04 ]

Black is true likelihood. Red is mode[.z :

: -7 E
¢ Right shows central region in detail. s £

:  Agreement fair in central region, not good outside. : Acceptable on log Gauss, Excellent on Poisson

Roger Barlow:PHYSTAT05 Asymmetric Statistical Errors ide Roger Barlow:PHYSTATO05 Asymmetric Statistical Errors

http://www.physics.ox.ac.uk/phystatO5/Talks/slides.pdf

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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Likelihoods from CLs S @
Because the experiments do not publish likelihoods, groups are often forced to
try to infer the likelihood from other information, like CLs+b

- The basis of this is that the CLs+», was based on a LLR test statistic, which
Is assumed to be distributed as a chi-square distribution but let’'s look more
closely

- what is the “LLR” exactly?
- Is it distributed as a chi-square distribution?

Statistical interpretation Higgs limits

¢ Stat. interpretation in global fit: 2-sided CLg,g *gr—

Experiments measure test statistics:

LLR =-2InQ, where Q=Lg, /L5

LLR is transformed by experiments into one-
sided CLg,z using toy-MC experiments

E| [ Dpirect Searches at LEP
Combined

- Sensitive to too few Higgs-like events
We transform 1-sided CLg,g into 2-sided CL?Sg, 5

- We measure deviations from the SM.

130 140 150 160 170 180 190 20
M, [GeV]

Tevatron, 5.4fb""

0
9
8
7
6 N\
5 ;5‘
=
3
2
1
9

- Eg. also interested in too many Higgs-like
. :
g I — : events.
b like 25 .
. 2 i i i9i
= ” = = 0 x? contribution calculated via inverse error

@ Transfer (single-sided) CLg, into e 26 function, assuming symmetric pdf : E A 1
(double-sided) x2: New: e.g. CLs+p for MSSM/2HDM/... ¢ S)2=Erf1(1-CL%,p) A i Efiterlt|

X3 = 2InvErf?(1 — 2CLs )

@ In the future (see below): Using HiggsBounds we can have x? for each model
with (pseudo)scalar particles

10

¢ Alternative treatments (thanks to fruitful g 3 % .
discussion with Tevatron people): ] i

: Use one-sided CLg,g: however, different 25 p E o speeman ]
@ Same for SUSY would be nice, but even more complicated.. .. : interpretation — want SM Higgs (not any Higgs) ’ | g e -
Directly use dx2 = LLR: Bayesian interpretation, : ‘ R T T

@ lacks pseudo-MC information M, [GeV]

P. Bechtle:  HiggsBounds SUSYFit 2010 Workshop 26.07.2010 Max Baak Global Fit of electroweak SM and beyond

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010 26



Three common “LLR” test statistics

We express cross-section as i+ = 0/osps for convenience.

Effect of systematics is parametrized by one or more “nuisance
parameters” denoted v .

- best fit point is: i1, ¥
+ best fit of nuisance parameters with u fixed is D (aka “profiled”)
In principle, s+b and b-only models can have different parametrizations

Three common test statistics used in the field are:

+ simple likelihood ratio (used at LEP, nuisance parameters flxed)

Qrep = Lsypy(p=1)/Ly(pr = 0)

- ratio of profiled likelihoods (used commonly at Tevatron)
Qrev = Lepo(p = 1,0)/Ly(p = 0,0")

- profile likelihood ratio (related to Wilks’s theorem)

A(M) — Ls—l-b(lua 5)/LS-I-I?(:LAL? ﬁ)

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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The LEP Test Statistic ',i:if,";;";;;;‘;‘,’cs(‘Tﬁ
The "LLR" used by LEP was Qrep = Lsyo(p=1)/Ly(uu = 0)
» This is definitely not distributed as a chi-square,

To get a chi-square distribution, the denominator needs to be the
best-fit point and the variable is non-negative

- (@) LEP
- — Observed my, =115 GeV/c?

.o
[y
[\

Expected for background

IREEREREE Expected for signal
plus background

0.

S
>
&

2 log(L(1)/L(max))

S
>
=

>
=
72!
=
Q
=
>
=
05
S
=
=
=
=

o
=)
=

10 15

-2In(Q) w=0o/0snm

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010




CENTER FOR

None are chi-square 522&‘;?;;‘;215(?
Not only are there three types of “LLR" test statistics around, but
» they have very different distributions

» the only one that is expected to be distributed as chi-square is the profile A(n)
- and even it is typically distorted because fits don’t allow a negative signal cross-section.

- S0 you should expect the CLs+b from Toy MC to be different by ~x2 from the assumed
distribution.

Forced to use approximations because we don’t have the true likelihood functions.

- Makes no sense to ignore these problems and focus the precision of the underlying
machinery of the lagrangian fitters

| CMS, 716k toys | B-toys CMS, 477k toys | CMS, 477k toys |
II\|III‘III IIIIIIII‘I\I\\\\\\\\II\

i L I I B 4 13
101? Btay datasets SB_toy ? 10 ; g

T TT |
—

[ —#— 8oy datasets
— st statistics on

- ] : 10'E
1072 = E 102 = E

107

10°¢ = 10%

103}

104 T g
E / 3 E 10_45

105L " of ] -
5 O % = 107
10‘6 :_I ||\|||I\|III|III| V‘ IH‘ L I-$ I_I 1 1 | | ‘ H | | | \_ :I L {1 | ‘ | I | ‘ Ll
-120-100-80 -60 -40 -20 0 20 40 -10 0 10 20 30 - 20 -15
test statistics, -2In QLEP test statistics, -2InQTEV test statistics, -2In A(u)
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Do the Intervals Cover?

Michael Bridges, KC, Farhan Feroz, Mike Hobson, Roberto Ruiz de Austri, Roberto Trotta

See also next talk by Yashar Akrami

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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Coverage comrnren WY

PARTICLE PHYSICS

Coverage is the probability that interval contains (covers) the true value
- Property of the method used to produce confidence/credible interval
- For any given data, the interval either covers or it doesn't
- Requires repeating the procedure on pseudo-data several times
Hard-core frequentist intervals “cover by construction”
- Neyman Construction, aka “Feldman-Cousins” in HEP
- Likelihood-based intervals are not guaranteed to cover
- Bayesian methods are not guaranteed to cover (not their goal)
| think of coverage as a calibration of our statistical apparatus

» How often do the intervals cover the true value?

» Is it really 95%7 3.5
3

4

2.5

What shevll be the Wiew ‘6'049;'; 2

1.5

OLjer'éfvg, | g‘ﬂYf,Ifﬂn :n:fy!.‘fs 13 -é'/lc 1

0.5

) o ¢ ’ 2o J ' 0
L""{’ FH,W“éué é . 0 10 20 30 40 50 60 70
-Jim Berger tan p
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Do our current intervals cover? g:irg;?;&'j;cs((%

To study this we considered a simplified model based on the ATLAS analysis of
the “SU3" benchmark point.

- Model: A multivariate Gaussian likelihood function based on the published
ATLAS covariance matrix SM. Is likelihood really a multi-variate Gaussian?

2/ ndf 40.11/45

"1 prob 0.679 Bridges et al (2010)
Endpoint 99.66 + 1.399
Norm.  -0.3882 : 0.02563 8 O O 1
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: Green: CMSSM prior ATLAS SU3 point

= Red: ATLAS likelihood
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Neural Nets for CMSSM (‘T’

Coverage studies are computationally intensive: 10,000 scans!

» use NN's to learn mapping from CMSSM <-> spectrum
- speeds up scans dramatically: O(10°)
Bridges et al (2009)
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Initial Coverage Result ((T//

Start by checking coverage of the weak-scale model:

» no pull-back to CMMS, parameters are mean of multivariate Gaussian
Bridges et al (2010) Bridges et al (2010)
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This “has to work”. If it didn’t, would be an algorithmic problem.
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Initial Coverage Result

When we pull back to the CMSSM params., we see significant over-coverage
» consistently with profiling, MCMC, Multinest, etc.

Bridges et al (2010) Bridges et al (2010)
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What is the source of the over-coverage?
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Effect of boundaries ::zr,z;gG;H:-;?cs((T*
The requirements that a CMSSM point is physical (LSP, EWSB, Tachions)
introduce boundaries in the parameter space.

- These boundaries mean convergence to a 2 distribution (Wilks) is slow

- leads to a higher cut-off on -2 In L ==> larger interval ==> over-coverage

Bridges et al (2010)

68%, 95% contours CMSSM, u>0 !
Green: CMSSM prior ATLAS SU3 pOint_E

= Red: ATLAS likelihood
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Checking “Validity” of Wilks

To check that this was the effect, we plot —21In A evaluated at true point

» Confirms expectation: distribution is not y? for CMSSM (is for weak-scale)

Bridges et al (2010) Bridges et al (2010)
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Moving Forward
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How will we model the data conren @Y

PARTICLE PHYSICS

The technology is general, but it is still up to the experiments to
decide how they will model the data.

- Thoughtful parametrization requires planning and clear requests
from groups like this

ATLAS
VBF H(120)—tt—Ih -
Ns=14TeV, 301fb" ]

2 / ndf 40.11/45
u F T prob 0.679
50F : Endpoint 99.66 + 1.399

C : Norm.  -0.3882: 0.02563
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A graphical representation

CENTER FOR
COSMOLOGY AND =
PARTICLE PHYSICS '

2 / ndf 40.11/45

Here is a graphical representation of
this model that outlines its structural
relationships
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Matrix Element Method as a Parametrization — == @
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Matrix-element likelihood:
Calculate probability directly

PARTICLE PHYSICS

Plevent z | SM) = P (z | process A) + P(z | process B) + ...

where

P(z | A) =] dy [M|26f fily2) = doy/dz

Parton(y) to detector(z) transfer function (TF)
describes parton-shower and
detector response in parametrized
form (Issue 2)

Matrix-element*PDFs for process A (Issue 2)

Integration over parton-level quantities

Kyle Cranmer (NYU)

OKC Prospects, Stockholm, Sept. 16, 2010
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Matrix Element Method as a Parameftrization s:zr,z:f.:;::;?cf‘f

Matrix-element likelihood:
Calculate probability directly

Plevent z | SM) = P (z | process A) + P(z | process B) + ...

where

P(z | A) =] dy [M|26f fily2) = doy/dz

Parton(y) to detector(z) transfer function (TF)
describes parton-shower and
detector response in parametrized
form (Issue 2)

Matrix-element*PDFs for process A (Issue 2)

Integration over parton-level quantities

Kyle Cranmer (NYU)
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Matrix Element Method as a Parameftrization s:zr,z:f.:;::;?cf‘f

Matrix-element likelihood:

With the same di-lepton mass Calculate probabiliy directly

dlSt”bUt'On, we Can elther P(event z | SM) = P (z | process A) + P(z | process B) + ...

where

» relate edge according to:

2 2
ms m o
meI% = mo |1 — L 1— X1
i X2 Mo mi
X2 l

» incorporate matrix element

P(z | A) =] dy [M|26f fily2) = doy/dz

Parton(y) to detector(z) transfer function (TF)
describes parton-shower and
detector response in parametrized
form (Issue 2)

Matrix-element*PDFs for process A (Issue 2)

techniques

Integration over parton-level quantities

- naturally, could include more
Kinematic info -> more power.
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Moving Forward '.i:ir,z‘;f;;::;?cf‘{

It seems the best way to move forward is to prepare some
workspaces corresponding to benchmark tests.

» This will be very helpful for comparison of different fitters
» a very simple multivariate Gaussian for degugging
» €J. a SUSY ”max, qllow, q|h|gh, q”thresh, q”edge example

2/ ndf 40.11/45
F 77T prob 0.679
501 Endpoint 99.66 + 1.399
C : Norm.  -0.3882= 0.02563
40F g Smearing 2.273 = 1.339

- start with only the measured edges

- could extend to the full shape

30

Entries/4 GeV/ 1 fb’

20}

» A Higgs example:

. h/H -> tau tau with both taus visible? Sl

L S T T T T T T

» the toy ATLAS+CMS combination? SRR e
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Asimoyv, Fisher, Wilks, Wald, Cramér, and Rao

Glen Cowan, KC, Eilam Gross, Ofer Vitells: [arXiv:1007.1727]
Ben Allanach, KC

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



From Wilks to Wald

Wilks only tells you the asymptotic distribution for the true point!

» for expected contours, one needs to know what distribution looks like
for other points

» Walds theorem: non-central chi-square with noncentrality parameter A

r ~ 0%1In L OlnL]| [OlnL
A= 2 B VT =8 | | 90O = Vo) = = [aeiaej] / de(w"g)[ 96, ] [ 06, ]
=
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The Asimov dataset coenror Y

PARTICLE PHYSICS

The name of the “Asimov” data set is inspired by the short story

Franchise, by Isaac Asimov.

Glen Cowan, KC, Eilam Gross, Ofer Vitells
http://arxiv.org/abs/1007.1727

“Multivac picked you as the most representative this year. Not the
smartest, or the strongest, or the luckiest, but just the most
representative. Now we don’t question Multivac, do we?”

Coincidentally, the story takes place in 2008, when we started to
formalize the properties of our “Asimov” Dataset
Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



http://arxiv.org/abs/1007.1727
http://arxiv.org/abs/1007.1727

The Fisher information metric CosmoLoGY AND (@

PARTICLE PHYSICS

Our theories are parametrized in some form convenient for our underlying
quantum field theories. But this parametrization is somewhat arbitrary, and

» phenomenology nearly constant in large regions and changes quickly in others.
» a metric (not prior) on the parameters which is inherited from observables
» invariant to reparametrizing observables, covariant to reparametrizing theory
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Spinoffs from the Asimov idea (‘T’

Calculating the Fisher info. matrix requires
an expectation over possible data.

Number of Events

10 =5 (2 020 (2 m20) o]

In many problems, this is too
computationally expensive to be useful.

We found that the curvature of the
likelihood function on the Asimov data
gives a very good estimate of gj

g:;(0) ~ ( (;Zi In LA(H)) (a% In LA(9)>

In Banff, two statisticians Earl Lawrence

and Richard Lockhart helped us see that

this curvature of this single Asimov dataset This also provides a convenient algorithm

can be seen as a numerical integration for determining for Jeffreys’s prior numerically,

calculating the expectation of the curvature.  but | know their are issues with numerics
and improper priors.

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010
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Proof: Curvature of Asimov Likelihood = Fisher Information CosmoLocy AND s

PARTICLE PHYSICS

In Banff, two statisticians Earl Lawrence and Richard Lockhart helped us see
that this curvature of this single Asimov dataset can be seen as a numerical
integration for calculating the expectation of the curvature.
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Conclusions covrenron (Y

PARTICLE PHYSICS

The RooStats project has reached a certain level of maturity and is rapidly being
adopted by the LHC experiments

» The toy ATLAS/CMS Higgs combination was a milestone for the project

The workspace technology that is so important for combinations (of different channels
within an experiment or between experiments) also provides enormous opportunity for
communicating experimental results to the fundamental lagrangian fitters.

» Given the effort that is going into making the RGE’s more precise and the fitting
techniques, we should make sure the inputs (likelihood functions) are sensible

Even if we get the likelihood right, we must remember that the intervals may not cover

» fundamental arguments aside, coverage is a useful and standard calibration
In order to move forward, we should

» agree on some useful benchmark examples and prepare the workspace for them
so different tools can start working on their interfaces to the workspace

» realize that a thoughtful parametrization of the model requires planning and clear
requests to the experimental community

Kyle Cranmer (NYU) OKC Prospects, Stockholm, Sept. 16, 2010



