

Direct detection: overview and issues for SUSY scans

Chris Savage

Oskar Klein Centre for Cosmoparticle Physics Stockholm University

- Direct detection: principles and techniques
- Experiments: current & future
- Issues
 - Energy resolution/detector behavior
 - Backgrounds
 - Halo models
 - Hadronic uncertainties
- Reconstruction examples

Principles and Techniques

Direct Detection

Goodman & Witten (1985)

• Elastic scattering of WIMP off detector nuclei $\frac{dR}{dE}(E,t) = \frac{1}{2m\mu^2} \sigma_0 F^2(q) \rho_0 \eta(E,t)$

$$\eta(E,t) = \int_{v_{\min}(E)}^{\infty} dv \, \frac{1}{v} f(v)$$

• Efficiencies, quenching, energy resolution, multiple elements

```
CDMS, EDELWEISS, CRESST,
ZEPLIN, XENON, LUX, COUPP,
CoGeNT, TEXONO, etc.
```


E: Recoil Energy (keV)

Annual Modulation

Drukier, Freese & Spergel (1986)

- Earth's motion
 - With disk (June) Against disk (December)

9/17/2010

Directional detection

- Determine direction of recoiling nucleus
 - A. Green (2010) $+90^{\circ}$ 180.0° -90° 0.002 0.004 0.006 0.008 0.01Recoil Rate(E_p>20keV)/kg⁻¹day⁻¹sr⁻¹
- Greater sensitivity to halo models

e.g. DRIFT

180.0°

Scattering Cross-Sections

 $\sigma_{SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2$ $f_p, f_n \Leftrightarrow \sigma_{SI,p}, \sigma_{SI,n}$

Spin-independent

- Scales as A²: Heavy elements have high sensitivity to SI interactions
- Common case: $f_p \approx f_n$ \Rightarrow only one independent parameter ($\sigma_{SI,p}$)

Spin-dependent

 $\sigma_{SD} = \frac{32\,\mu^2}{\pi} \frac{J+1}{I} \Big[a_p \big\langle S_p \big\rangle + a_n \big\langle S_n \big\rangle \Big]^2$

 $\mathbf{a}_{p}, \mathbf{a}_{n} \Leftrightarrow \sigma_{SD,p}, \sigma_{SD,n}$

- Scales with spin of nucleus: No increase with mass
- Sensitivity to two couplings depends on whether spin is carried by proton or neutron group
- Many isotopes have no spin

Experiments

XENON10: alternate analysis

P. Sorensen, IDM 2010

XENON10: 15 kg-days exposure

Future experiments

Next generation:

- XENON100, SuperCDMS, XMASS, + others
- XENON100 constraint is for next data set (full exposure ×10?)

Farther down the road:

 XENON1T, LUX/ZEPLIN 1T, CDMS 1T (not shown), + others

Issues

Likelihood

Goal for SUSY scans

Number of events: little sensitivity to m_{\chi} L(N | \mu) = P_{\lambda}(N | \mu) (Poisson)
Event energies: energy spectrum depends on m_{\chi} L(N, E_{k=1..N} | \mu,...) \propto P_{\lambda}(N | \mu) \propto f(E_k)

Modulation amplitudes: binned spectrum (chi-squared)

-2 \ln L(S_{m,k=1..N} | S_{th,k=1..N}) = \sum_{k=1..N} \frac{(S_{m,k} - S_{th,k})^2}{\sigma_k^2}

What is μ ? What is f? Do we *really* know E_k ?

Experimental issues

Detector physics, data cuts: not all recoil events observed/tagged (efficiencies)

Recoil energy E not directly measured: inferred from some observable(s) X

X = scintillation, ionization, phonons/heat

Energy calibration: use observable X to estimate E

- Very low energy events make direct calibration difficult
- Use high energy calibration events, extrapolate to lower energies
- Can be non-linear
- Reconstruction not possible on event-by-event basis?

Energy resolution: random fluctuations in X for given E

Atomic processes, low counting statistics, electronics, detector response,...

Warning: thresholds/events given as X or E', not E

Reconstructed energy E' not same as actual energy E

Finite energy resolution

- Example: XENON10
 - Naïve calibration: E = (2 keV)×S1
 - Observables S1 and S2 for multiple events at 2, 20 & 100 keV
 - Analysis threshold: E' > 4 keV (S1 > 2)
 ...some E = 2 keV events pass threshold!
- Larger issue for light WIMPs

 10^{3}

 10^{2} S2/S1

 10^{1}

 10^{4}

0

10

20

nuclear recoil band cut

40

S1 [PE]

50

60

70

S2 threshold

30

Energy calibration

- Example: XENON10
 - S1 ~ *L*_{eff}(E) E
 - Three different low energy
 extrapolations of Manzur (black) data

CS, Gelmini, Gondolo & Freese (2010) + work in progress

C !

e.g. quenching factors

Backgrounds

- Looking for low energy recoil events in a detector. Also produced by:
 - Electron recoils: electrons, γ 's
 - Nuclear recoils: neutrons
- Many sources of backgrounds: cosmic rays, Argon, radioactive contaminants, …
- Most of experimental work involves reducing/characterizing backgrounds: shielding, discrimination, limiting radioactive contamination, ...
- Determining the backgrounds is difficult!

$$\Rightarrow$$
 backgrounds

Backgrounds

- Backgrounds are often poorly known or simply not characterized at all
- Even when backgrounds are estimated, there may be concerns about reliability of estimates
- Typical analyses assume arbitrary unknown background: Yellin's Maximum Gap/Optimum Interval method
 - Defines a p-value used for excluding parameters at some C.L.
 - No likelihood defined!
- SUSY scans: need likelihood, which depends on background (need both background rate and spectrum)

$$\mu = \mu_{S} + \mu_{B} \qquad f(X) = w f_{S}(X) + (1 - w) f_{B}(X)$$

Aalseth et al. (2010)

Local Halo: Density

Binney & Tremaine (1987)

Kamionkowski & Kinkhabwala (1998)

- No direct measurement of $\rho_0 \Rightarrow$ Estimates only
 - Galactic rotation: ~ 0.3 GeV/cm³ [canonical]
- Smooth halo

 Spherical: 	0.2 - 0.4	Jungman, Kamionkowski & Griest (1996) Weber & de Boer (2009)	
	$\begin{array}{c} 0.39 \pm 0.03 \\ 0.43 \pm 0.11 \pm 0.10 \end{array}$	Catena & Ullio (2009) Salucci et al. (2010)	
Elliptical:	0.2 – 0.7 GeV/cm ³	Gates, Gyuk & Turner (1995)	

- DM density near disk 1-41% higher than shell average Pato et al. (2010)
- Substructure: clumps, tidal streams, dark disk?
- Hierarchical formation:

Small as 0.04 GeV/cm³ possible, but likely \geq 0.2 GeV/cm³

Kamionkowski & Koushiappas (2008)

9/17/2010

C Savage - Direct Detection

Local Halo: Velocity Distribution

Canonical halo model:

isotropic, isothermal sphere (shift by disk rotation speed v_{rot})

- Canonical: $v_0 = v_{rot} = 220 \text{ km/}_s$, $v_{esc} = 650 \text{ km/}_s$
- Reid (2008): v_{rot} = 254 ± 16 km/s Bovy, Hogg & Rix (2009) [236 ± 11 km/s] McMillan & Binney (2009) [wide range]
- NFW: $V_0 \neq V_{rot}$
- Smith et al. (2007): v_{esc} = 544 km/s (498 608 km/s at 90% CL) Caveat: assumes v_{rot} = 220 km/s
- Non-Maxwellian, anisotropic?
- Structure: dark disk, cold flows

Halo models + direct detection: see various works by Anne M. Green

 $f(\mathbf{v}) \sim e^{-\mathbf{v}^2/v_0^2} \left. \theta \left[v_{esc} - |\mathbf{v}| \right] \right]$

Local Halo: m_{χ} - σ reconstruction

Strigari & Trotta, JCAP 11, 019 (2009)

 Reconstructing mass and cross-section with/without including halo uncertainties (what if assumed local density is off by ×2?)

Actual

0, 3, 7 astrophysical parameters in fit

density assumed to be ×**0.5**, **1**, **2** of actual

9/17/2010

C Savage - Direct Detection

Scattering Couplings

$$f_{Tq}^{N} \equiv m_{q} \left\langle N \left| \overline{q} q \right| N \right\rangle$$

$$f_{TG}^N = 1 - \sum_{u,d,s} f_{Tq}^N$$

 $\begin{array}{l} \textbf{Spin-independent} \\ \langle N|qq|N\rangle \text{: hadronic matrix elements} \\ \Leftrightarrow \Sigma, \ \sigma_0 \end{array}$

Spin-dependent

 Δ_q : polarized parton densities (quark spin contribution)

SUSY

Hadronic/Standard Model

Couplings to Nucleons

Spin-independent

 $\langle N|qq|N\rangle$: hadronic matrix elements

$$\sigma_0 \equiv \frac{1}{2} (m_u + m_d) \langle N | (\overline{u}u + \overline{d}d - 2\overline{s}s) | N \rangle$$

36 ± 7 MeV Borasoy & Meissner (1997)

 $\Sigma \equiv \frac{1}{2} (m_u + m_d) \langle N | (\overline{u}u + \overline{d}d) | N \rangle$

Ellis, Olive & CS (2008)

Spin-dependent

 Δ_a : polarized parton densities

Strange quark Δ_s :

 -0.09 ± 0.03 Alekseev et al. (2007) [COMPASS]

 π -nucleon sigma term Σ (from πN scattering) 36 MeV Naïve model ($\langle N|ss|N\rangle = 0$) 45 ± 8 MeV Gasser, Leutwyler & Sainio (1991), Knecht (1999) 64 + 8 MeV **Cheng-Dashen Point** Pavan, Arndt, Strakovsky & Workman (2002) Lattice calculation 63 + 21 MeV Andre Walker-Loud (private correspondence) 47 + 9 MeV Young & Thomas (2009) C Savage - Direct Detection

See: Bottino et al. (2002), Ellis et al. (2005)

37

Individual Uncertainties

CMSSM benchmark model C					University
from Ellis, Olive & CS (2008)		$\sigma_{SI,p}$ (pb)	$\sigma_{SD,p}$ (pb)	$\sigma_{SI,n}$ / $\sigma_{SI,p}$	$\sigma_{SD,n} / \sigma_{SD,p}$
Fiducial values:		2.85 ×10 ⁻⁹	2.19×10 ⁻⁶	1.029	1.28
$m_u^{\prime}/m_d^{\prime}$	0.553 ± 0.043	±3.5%	~ 0.	$\pm 0.08\%$	~ 0.
m_s / m_d	18.9 ± 0.9	±5.2%	~ 0.	$\pm 0.07\%$	~ 0.
σ_0	$36 \pm 7 \text{ MeV}$	+34% -27%	-	+1.2% -0.7%	-
Σ	$64 \pm 8 \text{ MeV}$	+45% -32%	-	+0.7% -0.4%	-
a ₃	1.2695 ± 0.0029	-	±0.5%	-	±0.06%
a ₈	0.585 ± 0.025	-	±2.2%	-	±4.2%
Δ_{s}	-0.09 ± 0.03	-	+14% -12%	-	+30% -21%

Combined Uncertainties (Confidence Intervals)

CMSSM benchmark models from Ellis, Olive & CS (2008)

Confidence Intervais)				
С	L	Μ		
2.9 ×10 ⁻⁹	2.4 ×10 ⁻⁸	1.3×10^{-10}		
$(1.7 - 4.9) \times 10^{-9}$	$(1.2 - 4.0) \times 10^{-8}$	$(0.8 - 2.0) \times 10^{-10}$		
$(0.8 - 6.5) \times 10^{-9}$	$(0.5 - 6.0) \times 10^{-8}$	$(0.4 - 2.8) \times 10^{-10}$		
2.2 ×10 ⁻⁶	1.8×10 ⁻⁶	2.4 ×10 ⁻⁸		
$(1.9 - 2.5) \times 10^{-6}$	$(1.6 - 2.0) \times 10^{-6}$	$(2.2 - 2.6) \times 10^{-8}$		
$(1.6 - 2.8) \times 10^{-6}$	$(1.4 - 2.3) \times 10^{-6}$	$(2.0 - 2.9) \times 10^{-8}$		
1.029	1.042	1.026		
1.020 - 1.042	1.028 - 1.065	1.018 - 1.037		
1.015 - 1.066	1.020 - 1.114	1.013 - 1.056		
1.28	1.15	1.02		
1.00 - 1.65	0.93 - 1.44	0.85 - 1.22		
0.78 - 2.14	0.75 - 1.80	0.71 - 1.46		
770	77	187		
480 - 1350	46 - 151	121 – 319		
320 - 2730	30 - 373	83 - 616		
	Litervals C 2.9×10^{-9} $(1.7 - 4.9) \times 10^{-9}$ $(0.8 - 6.5) \times 10^{-9}$ 2.2×10^{-6} $(1.9 - 2.5) \times 10^{-6}$ $(1.6 - 2.8) \times 10^{-6}$ 1.029 1.020 - 1.042 1.015 - 1.066 1.28 1.00 - 1.65 0.78 - 2.14 770 480 - 1350 320 - 2730	C L 2.9×10^{-9} 2.4×10^{-8} $(1.7 - 4.9) \times 10^{-9}$ $(1.2 - 4.0) \times 10^{-8}$ $(0.8 - 6.5) \times 10^{-9}$ $(1.2 - 4.0) \times 10^{-8}$ $(0.8 - 6.5) \times 10^{-9}$ $(1.2 - 4.0) \times 10^{-8}$ 2.2×10^{-6} 1.8×10^{-6} $(1.9 - 2.5) \times 10^{-6}$ $(1.6 - 2.0) \times 10^{-6}$ $(1.6 - 2.8) \times 10^{-6}$ $(1.6 - 2.0) \times 10^{-6}$ 1.029 1.042 $1.020 - 1.042$ $1.028 - 1.065$ $1.015 - 1.066$ $1.020 - 1.114$ 1.28 1.15 $1.00 - 1.65$ $0.93 - 1.44$ $0.78 - 2.14$ $0.75 - 1.80$ 770 77 $480 - 1350$ $46 - 151$ $320 - 2730$ $30 - 373$		

C Savage - Direct Detection

Reconstruction examples

CMSSM and direct detection

- Y. Akrami, J. Conrad, J. Edsjö, CS, P. Scott (work in progress)
- CMSSM scans with future DD results only
 - DarkSUSY + SuperBayeS (MultiNest)
- Future experiments
 - XENON1T: number of events and spectrum (Xe, neutron odd)
 - CDMS1T: number of events and spectrum (Ge, neutron odd)
 - COUPP1T: number of events only (CF3I, proton odd)
 - Includes typical energy resolutions, thresholds, efficiencies, etc.
 - Includes backgrounds at target levels (~ 2 events), known spectrum
 - Does not yet include hadronic and halo uncertainties (*in progress*)

CMSSM and direct detection: benchmarks

9/17/2010

C Savage - Direct Detection

CMSSM and direct detection: XENON1T

Cohar

9/17/2010

C Savage - Direct Detection

Heavy WIMPs: identical spectrum \Rightarrow degeneracy along fixed ($\rho_0/m\chi$) $\sigma_{SI,p}$

CMSSM and direct detection: Complementarity

Cohart

centre

CMSSM and direct detection: Complementarity

Expected events:

	SI	SD
XENON1T	219.5	23.5
CDMS1T	142.4	4.8
COUPP1T	298.7	448.1

- XENON1T/CDMS1T spectrum:
- XENON1T/CDMS1T number of events: poor constraint on SD cross-sections
- COUPP1T breaks SD degeneracy

WIMP mass SI cross-section

CMSSM and direct detection: Complementarity

Cohart

centre

30

Conclusions/final thoughts

Direct detection beginning to push into interesting SUSY regions

- Useful addition to collider, indirect detection results for constraining SUSY models
- However, there are various issues to be addressed and limitations to be aware of
 - **Detector behavior:** simple treatment may be OK in some cases (for now)
 - **Backgrounds:** need to push experiments for estimates (if available), otherwise Bayesian treatment?
 - Halo model: directional detection might help
 - Hadronic uncertainties: irrelevant for experimentalists, but an issue for SUSY scanning

C Savage - Direct Detection