

SUFISUSY and Phenomenology

by

Ben Allanach (University of Cambridge) Talk outline

- Context
- How SOFTSUSY works
- SOFTSUSY Update
- Comparison with other spectrum generators

Cambridge Orking grow

Please ask questions while I'm talking

Spectrum and decays

- ISASUSY, SOFTSUSY, sPHENO, SUSPECT calculate the MSSM spectrum.
- **CPsuperH**, **FeynHiggs** do Higgs mass spectrum and decays with of CP violating MSSM
- NMSPEC does the CNMSSM spectrum, NMHDECAY gives the decays widths etc
- PYTHIA, Herwig++, ISASUSY, SPHENO and SUSYHIT do decays of Higgs and SUSY particles in MSSM.

cience & Technology

SUSY Les Houches Accords

A set of physics conventions and an ASCII format to allow all of the codes exchange information about SUSY masses, mixings, decays and couplings.

Block MODSEL # Select model

- # sugra
- # Standard Model inputs Block SMINPUTS
 - # alpha_em^(-1)(MZ) SM MSbar

2.78438e-05

13

particle

~mu R-

'mu R-->~chi 10,mu-;

'mu R-->~chi 1-,nu mu;

#

Block MINPAR # SUSY breaking input parameters

- 1_00000000000000000e+01 3 # tanb
- Block MASS # Mass spectrum

2000013

2

- # PDG code mass
 - 1000021 6.095696841990128e+02 <u></u>#~q

1000022

- # Width PDG
- supersymmet DECAY Cambridge 0.9638490 Working grout 0.0361508 2 -1000024 14

Science & Technology Facilities Council

SOFTSUSY and Phenomenology

B.C. Allanach – p. 4

supersymmetry

Cambridge

Working group

Killer Inference for Susy METeorology

http://users.hepforge.org/~allanach/benchmarks/kismet.html

Fits to future collider data

• Assume edge measurements from some SUSY point: what constraints exist on the phenomenological MSSM?

Science & Technology

Facilities Counci

SOFTSUSY and Phenomenology

SOFTSUSY Program

- The updated **SOFTSUSY** manuals (one RPV, one RPC) can be found on the SOFTSUSY homepage
- Written in C++ with emphasis on generlisability and speed
- Fine-tuning calculation provided
- Stand-alone, no external packages required.
- Latest version is 3.1.5
- Full 3-family flavour dependence of Yukawa and soft terms but *real* parameters only
- R_p conserving and R_p violating couplings.

ence & Technology

• Options for: user defined SUSY breaking boundary conditions, mSUGRA, mAMSB, SOFTSUSY and Phenomenology mGMSB, non-universal mSUGRA

Science & Technology Facilities Council

SOFTSUSY

SOFTSUSY is an MSSM spectrum generator. Like 3 other public spectrum generators, it predicts MSSM masses and couplings consistent with weak-scale data and an assumed high-scale boundary condition on SUSY breaking.

The Problem

 $M_{GUT} \sim 10^{16} {
m GeV}$

 $M_{SUSY} \sim \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$

 $M_Z = 91 \text{ GeV}$

Theory boundary condition on SUSY breaking parameters

Renormalisation group equations

Match electroweak symmetry breaking, calculate sparticle masses

Match to Standard Model data on gauge/Yukawa couplings

SOFTSUSY and Phenomenology

Theory Boundary Condition

This is a condition on the SUSY breaking parameters eg:

- *mSUGRA*: common scalar mass m_0 , common gaugino mass $M_{1/2}$, common trilinear scalar coupling A_0 at electroweak gauge unification scale
- *mAMSB*: common scalar mass m_0 , gravitino mass $M_{3/2}$
- *mGMSB*: Number of messengers n₅, mass of messengers M_{Mess}, SUSY scale Λ: sets scale of SUSY breaking

nce & Technolog

pMSSM: Weak scale SUSY breaking terms: most general MSSM

Renormalisation Group Equations

Tell us how to calculate masses etc at *another energy* scale Q via differential equations, eg:

5th order Runge-Kutta with adaptive step-size is used in practice as it's *fast*

Electroweak Symmetry Breaking

We have H_1^0 , H_2^0 in the Standard Model, and we must make sure that their VEVs give M_Z correctly:

$$< H_1^0 >^2 + < H_2^0 >^2 = 4 \frac{M_Z^2}{g'^2 + g_2^2}$$

We also input the ratio of VEVs

 $\tan\beta = < H_2^0 > / < H_1^0 >,$

and this fixes the other one. The Higgs potential must have a minimum corresponding to these VEVs, and this fixes 2 Higgs potential parameters (μ , m_3).

Ofking groun

Higgs Potential Minimisation

Done at $M_S \sim \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$ as it tends to minimise scale dependence, so higher loops hopefully smaller there. User may change this, though.

$$\mu^{2} = \frac{1}{2} \left(\tan 2\beta \left[m_{\bar{H}_{2}}^{2} \tan \beta - m_{\bar{H}_{1}}^{2} \cot \beta \right] - M_{\bar{Z}}^{2} \right),$$

$$m_{3}^{2} = \frac{s_{2\beta}}{2} \left(m_{\bar{H}_{1}}^{2} + m_{\bar{H}_{2}}^{2} + 2\mu^{2} \right).$$

Corrected by loop tadpoles, which depend in turn on μ . Use iteration to determine it, then calculate m_3^2 .

ience & Technology

Calculating Sparticle Pole Masses

We must add radiative corrections^a to the Born-level masses that we have in the Lagrangian to get pole sparticle masses:

ence & Technology

This is a complicated part of the calculation, since all (s)particles can be in the loops. The two stops mix, and you have to calculate the mass eigenstates.

^aBagger, Matchev, Pierce and Zhang, NPB491 (1997) 3

Standard Model Data

We match the model to SM gauge couplings $(G_{\mu}, \alpha_{em}, M_Z)$, Yukawa couplings. But the values obtained in SM are got without sparticles, so we must subtract their radiative corrections

All of these radiative corrections depend on sparticle masses and couplings.

Thresholds

Loops involving sparticles renormalise masses/couplings at 1-loop level have two pieces: logarithmic (ISAJET) and finite. SOFTSUSY includes both (in leading-log approximation)

- All one-loop (important) MSSM corrections included.
- Additionally, added 2-loop QCD corrections to m_t and m_b
- All full one-loop flavour diagonal corrections are included

Ofking grow

Level of Approximation

- MSSM RenormalisationGroupEquations: Full 2-loop, below M_Z we have 3-loop QCD⊗1-loop QED
- Thresholds: 1-loop for most things, some 2-loop terms for Higgs': zero-momentum limit of h_t^4 , $h_t^2 g_3^2$, $h_b^2 g_3^2$, h_b^4 , $h_b^2 h_t^2$, h_τ^4 , $h_\tau^2 h_b^2$ corrections.
- Higgs potential: 1-loop plus same 2-loop terms as Higgs',
- Gauge couplings: 1-loop MSSM corrections and leading (top) 2-loop corrections

ence & Technology

 $m_{ll}^2(max) = \frac{(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\chi_1^0}^2)}{m_{\tilde{z}}^2}$

Science & Technology Facilities Council

Q: Can we measure enough of these to pin SUSY^{*a*} down?

^aBCA, Lester, Parker, Webber, JHEP 0009 (2000) 004

SOFTSUSY and Phenomenology

B.C. Allanach-p. 19

Other Observables

Often more complicated, eg m_{llq} edge:

$$\frac{(m_{\tilde{q}}m_{\tilde{l}} - m_{\chi_2^0}m_{\chi_1^0})(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)}{m_{\chi_2^0}m_{\tilde{l}}}$$

Also m_{lq}^{high} , m_{lq}^{low} , llq threshold ^a, $M_{T_2}^2(m) = \min_{\not p_1 + \not p_2 = \not p_T} \left[\max \left\{ m_T^2(p_T^{l_1}, \not p_1, m), m_T^2(p_T^{l_2}, \not p_2, m) \right\} \right]$

 $\max_{\mathrm{Phenomenology}} [M_{T_2}(m_{\chi_1^0})] = m_{\tilde{l}}] \text{ for dislepton production.}$

The Codes

- IsaSugra: £77 H Baer, F E Paige, S D Protopescu and X Tata, hep-ph/001086
- SoftSusy: C++ BCA, CPC 143 (2002) 305
- SusPect: £77 A Djouadi, J L Kneur and G Moultaka, hep-ph/0211331
- SPheno: £90 W Porod, CPC 153 (2003) 275

IsaSugra re-sums logs in sparticle mass splittings by having step functions in RGEs. The others all include finite terms ~ $1/(16\pi^2)(m_{\tilde{p}_1}/m_{\tilde{p}_2})$.

Fitting to SUSY Breaking Model

- Experimenters pick a SUSY breaking point
- They derive observables and errors after detector simulation
- We fit^{*a*} this "data" with our codes

^aBCA, S Kraml, W Porod, JHEP 0303 (2003) 016

Science & Technology Facilities Council

Cambridge

Reasons For Spectrum Differences

Q: Which couplings/masses to use in *L*?

$$m_{\tilde{t}}^{pole} = m_{\tilde{t}}^{tree}(Q) + \alpha_s \mathcal{L}(m_{\tilde{t}}^{pole}, m_{\tilde{g}}, m_t, Q),$$

A: The pole mass? The tree mass? $\alpha_s(Q)$? $\alpha_s(m_{\tilde{t}})$? The difference is of higher order. The codes make different choices, corresponding to differences at higher orders.

Higgs

Higgs are important because of:

- LEP2 constraints: $m_h > 114.4 \text{ GeV}$
- Discriminating variable between eg mGMSB, mAMSB, mSUGRA
- It's a handle on $\tan \beta = v_u/v_d$.

Fortunately^{*a*}, \overline{DR} computation is under control, eg SPS1a^{*b*} $m_0 = 100, m_{1/2} = 250, A_0 = -100, \tan \beta = 10, \mu > 0$

mass	SoftSusy	SPheno	SuSpect
m_h	112.1	112.2	112.1
m_A	406.2	405.7	405.6

^aBCA, A Djouadi, J-L Kneur, W Porod, P Slavich, *to appear* ^bBCA *et al*, EPJ C25 (2002) 113

Science & Technology Facilities Council

Cambridge

	SPS1a	SPS2	SPS4	SPS8
$SuSpect^{\overline{DR}}$	112.1	116.8	114.1	115.4
FeynHiggs ^{OSa}	113.8	118.3	116.1	117.3

softsusy and Phenomenology einemeyer, Hollik, Weiglein, CPC 124 (2000) 76

B.C. Allanach – p. 25

Higgs Meteorology

Figure 1: Including (LHS) or not including (RHS) the

LEP2 direct Higgs mass constraints on the CMSSM.

SOFTSUSY and Phenomenology

B.C. Allanach – p. 26

Cambridge Supersymmetry

Working groun

http://kraml.home.cern.ch/kraml/comparison/

BCA, S Kraml in hep-ph/0402295

↓ ↓ ↓ Science & Technology Facilities Council

Cambridge

BCA, Hetherington, Parker, Webber, arXiv:hep-ph/0005186

 $\frac{1}{2}M_Z^2 = \frac{m_{H_1}^2 - m_{H_2}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$

SOFTSUSY and Phenomenology

B.C. Allanach – p. 28

Science & Technology Facilities Council

al

High $\tan \beta$

BCA, Belanger, Boudjema, Pukhov, Porod, hep-ph/0402161. Baer et

 Ωh^2 Ωh 10 10 SoftSUSY 10 10 $\tan\beta = 52$ 10^2 10 $\tan\beta = 52$ $M_0 = 1500 \text{GeV}$ $M_0 = 1500 \, \text{GeV}$ $M_{1/2} = 1300 \text{GeV}$ -310 10 2000 500 1000 1500 4.1 4.2 4.3 4 4 m₀(GeV) $M_{1/2}(GeV)$

Figure 2: High $\tan \beta$ region. Full: SoftSusy, dotted: SPheno, dashed: SuSpect. Get annihilation into A.

Uncertainties in Relic Density

Bulk region: $\tilde{B}\tilde{B} \to Z, h \to l\bar{l}$. Coannihilation: $\tilde{\tau}\chi_1^0 \to \tau + X$

Focus Point

Figure 4: Focus point region. Full: SoftSusy, dotted: SPheno, dashed: SuSpect. Higgsino LSP annihilates into ZZ/WW

SOFTSUSY and Phenomenology

Summary

Want to do this with LHC+ILC data:

Science & Technology Facilities Council

supersymmetry

Cambridge

Summary II

- There is now a bewildering multitude of codes for calculating SUSY related observables.
- There has been some organisation and consolidation between them, notably in the form of *Les Houches Accords*.
- Current theoretical errors in spectrum calculation are present but not *too bad*, but more loops are being calculated.

ence & Technology

Other literature

R. R. de Austri, R. Trotta and L. Roszkowski, arXiv:0705.2012, including some NNLO $b \rightarrow s\gamma$ pieces. susyBayes

Matrix Element Generators

- Feyn Arts/Feyn Calc
- Additional hard jets *cannot* be modelled reliably using the parton shower you need to simulate the matrix element.
- SMADGRAPH, compHEP, calcHEP, GRACE do SUSY and more general models at tree level. 2 to 4 possible. BRIDGE can be used to remember spin information in the decays.
- WHIZARD, SUSYGEN polarisation included for e^+e^-
- **PROSPINO** does NLO-QCD sparticle production

ience & Technology

Ofking grou

Event Generation

- Can pass matrix-element generated events to event generators with the (original) *Les Houches Accord*
- **PYTHIA** used extensively. Includes RPV. phase-space decays. **ISAJET** too.
- HERWIG maintains spin info down cascade decays. RPV too.
- SHERPA matches up ME with more standard event generation. Structure of LHC Events
- Shift toward C++

SOFTSUSY and Phenomenology

cience & Technology acilities Council

Ofking grow