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Why does statistics matter?

• Advanced statistical methods are required for a number of reasons: 

• Efficiency: naive approaches become quickly ineffective even for moderate 
dimensional parameter spaces

• Data sets complexity: upcoming data sets (most notably LHC) require complex 
modelling for their interpretation 

• Weak signals: often discoveries are made in the small sample regime (e.g., 
direct detection), where statistics does matter

• Multi-messenger approach: cross-correlating probes further increases the 
complexity of their joint parameter space (incl astro nuisance parameters)
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Exploration with “random scans”

• Points accepted/rejected in a in/out 
fashion (e.g., 2-sigma cuts)

• No statistical measure attached to 
density of points: no probabilistic 
interpretation of results possible, 
although the temptation cannot be 
resisted...

• Inefficient in high dimensional 
parameters spaces (D>5) 

• HIDDEN PROBLEM: Random scan 
explore only a very limited portion of 
the parameter space! 

C. F. Berger, J. S. Gainer, J. L. 
Hewett, and T. G. Rizzo, 
Supersymmetry Without 
Prejudice, JHEP 02 (2009) 023, 
[arXiv:0812.0980

check this for random scan of the 
pMSSM

One recent example: 
Berger et al (0812.0980)

pMSSM scans 
(20 dimensions)
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Random scans explore only a small fraction of the 
parameter space

• “Random scans” of a high-
dimensional parameter space only 
probe a very limited sub-volume: 
this is the concentration of 
measure phenomenon.

• Statistical fact: the norm of D 
draws from U[0,1] concentrates 
around (D/3)1/2 with constant 
variance 

1

1
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Geometry in high-D spaces

• Geometrical fact: in D dimensions, most of the volume is near the boundary. The 
volume inside the spherical core of D-dimensional cube is negligible. 

Volume of cube

Volume of sphere

Ratio Sphere/Cube

1

1

Together, these two facts mean that random scan only explore a very small 
fraction of the available parameter space in high-dimesional models.
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2D scans

Roszkowski et al (2001)

Determining constraints on SUSY models is a multi-dimensional problem. Even in one of 
the simplest cases, the CMSSM, there are four 4 parameters (M0, M1/2, A0, tanβ) as well as 
SM parameters (e.g. Mtop, Mb) The traditional strategy in the field was to carry out “2D 
scans” by fixing the other relevant parameters to certain values. 
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Dependency on SM (nuisance) parameters

Mtop=170 GeV Mtop=180 GeV

There is also a strong dependence on the important SM parameters! 
(which are known only with limited accuracy)
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Impact of top mass on the relic abundance

Roszkowki et al (2007)

Changing Mtop within ±1σ has dramatic consequences for the predicted relic 
abundance: this parameter cannot be fixed to its central value.
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Solution: global fits

       5 

Carry out a simultaneous fit 
of all relevant SUSY and SM 
parameter to the experimental 
data/constraints.

Marginalize (= integrate) or 
maximise along the hidden 
dimensions to obtain  results 
that account for the multi-
dimensional nature of the 
problem.  
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       Wmap blobs today

The “WMAP strips”

       6 

       WMAP strips a few years ago

0306219 [hep-ph] 

In 2D scans, enforcing the 
cosmological relic abundance 
results in narrow “allowed 
regions” (the “WMAP strips”), 
whose location changes with 
the value of the fixed 
parameters. 

Once fixed parameters are 
included and hidden 
dimensions accounted for, 
WMAP strips widen to 
become “WMAP blobs”
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Bayesian methods on the rise

       11 

The frequentist approach (= probability as frequency, based on the 
likelihood) is naturally suited to particle physics. Bayesian methods are 
being imported from astrophysics, where they are the norm:
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P (θ|d, I) = P (d|θ,I)P (θ|I)
P (d|I)

For parameter inference it is sufficient to 
consider

P (θ|d, I) ∝ P (d|θ, I)P (θ|I)

posterior ∝ likelihood× prior
prior

posterior

likelihood

!
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o
b
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y 
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posterior likelihood prior

evidence 

θ: parameters
d: data
I: any other external information, 
or the assumed model

Bayes’ theorem
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The matter with priors 

• In parameter inference, prior dependence will in principle vanish for strongly 
constraining data. 

THIS IS CURRENTLY NOT THE CASE EVEN FOR THE CMSSM! 

Priors 

Likelihood (1 datum) 

Posterior after 1 datum Posterior after 100 data 
points 

Prior 

Likelihood 

Posterior 

Data 
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Global fits in the LHC era

O. Buchmueller,!R. Cavanaugh,!A. De Roeck,!J.R. Ellis,!
H.Flacher,!S. Heinemeyer,!G. Isidori,!K.A. Olive,

!F.J. Ronga,!G. Weiglein

MasterCode

SuperBayeS

Fittino

S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, 
F. Feroz,!M.P. Hobson

H. Flächer, M. Goebel, J. Haller, 
A. Höcker, K. Mönig, J. Stelzer

P. Bechtle,!K. Desch,!M. Uhlenbrock,!P. Wienemann

F. Feroz, L. Roszkowski,!R. Ruiz de 
Austri,!R. Trotta

Sfitter

R. Lafaye!,!M. Rauch,!T. Plehn,!D. Zerwas!

GFitter
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The general Bayesian solution

• Once the RHS is defined, how do we evaluate the LHS?

• Analytical solutions exist only for the simplest cases (e.g. Gaussian linear model)

• Cheap computing power means that numerical solutions are often just a few clicks 
away! 

• Workhorse of Bayesian inference: Markov Chain Monte Carlo (MCMC) methods. A 
procedure to generate a list of samples from the posterior. 

P (θ|d, I) ∝ P (d|θ, I)P (θ|I)
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MCMC estimation

• A Markov Chain is a list of samples θ1, θ2, θ3,... whose density reflects the 
(unnormalized) value of the posterior 

•  A MC is a sequence of random variables whose (n+1)-th elements only depends on 
the value of the n-th element 

• Crucial property: a Markov Chain converges to a stationary distribution, i.e. one that 
does not change with time. In our case, the posterior. 

• From the chain, expectation values wrt the posterior are obtained very simply: 

P (θ|d, I) ∝ P (d|θ, I)P (θ|I)

�θ� =
�

dθP (θ|d)θ ≈ 1
N

�
i θi

�f(θ)� =
�

dθP (θ|d)f(θ) ≈ 1
N

�
i f(θi)
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Reporting inferences

• Once P(θ|d, I) found, we can report inference by: 

• Summary statistics (best fit point, average, mode)

• Credible regions (e.g. shortest interval containing 68% of the posterior probability 
for θ). Warning: this has not the same meaning as a frequentist confidence 
interval! (Although the 2 might be formally identical)

• Plots of the marginalised distribution, integrating out nuisance parameters (i.e. 
parameters we are not interested in). This generalizes the propagation of errors: 

P (θ|d, I) =
�

dφP (θ, φ|d, I)
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What does x=1.00±0.01 mean?

• Frequentist statistics (Fisher, Neymann, Pearson): 
E.g., estimation of the mean μ of a Gaussian distribution from a list of observed 
samples x1, x2, x3...
The sample mean is the Maximum Likelihood estimator for μ:

μML = Xav = (x1 + x2  + x3 + ... xN)/N

• Key point:
in P(Xav), Xav is a random variable, i.e. one that takes on different values across an 
ensemble of infinite (imaginary) identical experiments.  Xav is distributed according to 
Xav ~ N(μ, σ2/N) for a fixed true μ
The distribution applies to imaginary replications of data.

P (x) = 1√
2πσ

exp
�
− 1

2
(x−µ)2

σ2

�

Notation : x ∼ N(µ, σ2)

20Thursday, 16 September 2010



Roberto Trotta 

What does x=1.00±0.01 mean?

• Frequentist statistics (Fisher, Neymann, Pearson): 
The final result for the confidence interval for the mean

P(μML - σ/N1/2 < μ < μML + σ/N1/2) = 0.683

• This means: 
If we were to repeat this measurements many times, and obtain a 1-sigma distribution 
for the mean, the true value μ would lie inside the so-obtained intervals 68.3% of the 
time

• This is not the same as saying: “The probability of μ to lie within a given interval is 
68.3%”. This statement only follows from using Bayes theorem.
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What does x=1.00±0.01 mean?

• Bayesian statistics (Laplace, Gauss, Bayes, Bernouilli, Jaynes): 

After applying Bayes therorem P(μ |Xav) describes the distribution of our degree of 
belief about the value of μ given the information at hand, i.e. the observed data. 

• Inference is conditional only on the observed values of the data. 

• There is no concept of repetition of the experiment. 
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Favoured regions:
likelihood-based approach

• Due to the weak nature of constraints, different scanning techniques and statistical 
methods will generally give different answers

• Likelihood-based methods: determine the best fit parameters by finding the 
minimum of -2Log(Likelihood) = chi-squared 

• Markov Chain Monte Carlo (MCMC) 

• MCMC and Minuit as “afterburner”

• Simulated annealing

• Genetic algorithm 

• Determine approximate confidence intervals: 
Local Δ(chi-squared) method

θ

χ2

∆χ2 = 1

! 68% CL
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Favoured regions:
Bayesian approach

• Use the prior to define a metric on parameter space. 

• Bayesian methods: the best-fit has no special status. Focus on region of large 
posterior probability mass instead. 

• Markov Chain Monte Carlo (MCMC) 

• Nested sampling

• Hamiltonian MC 

• Determine posterior credible regions: 
e.g. symmetric interval around the 
mean containing 68% of samples 

SuperBayeS
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Marginalization vs profiling (maximising) 

Marginal posterior:

P (θ1|D) =
�

L(θ1, θ2)p(θ1, θ2)dθ2

Profile likelihood: 

L(θ1) = maxθ2L(θ1, θ2)

θ2

θ1

Best-fit 
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile 
likelihood

Best-fit Posterior 
mean

Marginal posterior

} Volume effect
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Marginalization vs profiling (maximising) 

θ2

θ1

Best-fit 
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile 
likelihood

Best-fit Posterior 
mean

Marginal posterior

} Volume effect

Physical analogy:  (thanks to Tom Loredo) 

P ∝
�

p(θ)L(θ)dθ

Q =
�

cV (x)T (x)dVHeat: 

Posterior: 
Likelihood  = hottest hypothesis
Posterior = hypothesis with most heat
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RGE

Non-linear
numerical
function

via SoftSusy 2.0.18 
DarkSusy 5.0 

MICROMEGAS 2.2 
FeynHiggs  2.5.1 

Hdecay 3.102 

Constrained MSSM analysis pipeline 

4 CMSSM parameters 
θ = {m0, m1/2, A0, tanβ}

(fixing sign(μ) > 0)

4 SM “nuisance
parameters” 

Ψ={mt, mb,αS, αEM }

Observable
quantities

fi(θ ,Ψ)

CDM relic abundance
BR’s

EW observables
g-2

Higgs mass
sparticle spectrum

(gamma-ray, neutrino,
antimatter flux, direct 
detection x-section)

Data: 
Gaussian likelihoods 

for each of the Ψj 
(j=1...4)

Data: 
Gaussian likelihood

(CDM, EWO, g-2, b→sγ, ΔMBs)

other observables have 
only lower/upper limits

Physically acceptable?
EWSB, no tachyons, 

neutralino CDM 

YES

NO

Likelihood = 0
SCANNING ALGORITHM 

Joint likelihood function
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Global CMSSM scans 

• Bayesian approach led by two groups (early work by Baltz & Gondolo, 2004):

• Ben Allanach (DAMPT) and collaborators (Allanach & Lester, 2006 onwards)

• Ruiz de Austri, Roszkowski & RT (Ruiz de Austri et al, 2006 onwards) 
+ Feroz & Hobson (MultiNest), + Silk (indirect detection), + Strigari (direct detection), + Martinez et al (dwarfs), + de 

los Heros (IceCube), + Bertone et al (pMSSM), + Cranmer (LHC coverage)

SuperBayeS public code available from: superbayes.org

Allanach & Lester (2006) Ruiz de Austri, Roszkowski & RT (2006)

See also: Ellis et al (2004 onwards), Buchmuller et al (2008, 2009), Scott et al (2009), Akrami et al (2009)
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Key advantages of the Bayesian approach

• Efficiency: computational effort scales ~ N rather than kN as in grid-scanning 
methods. Orders of magnitude improvement over grid-scanning.

• Marginalisation: integration over hidden dimensions comes for free.  

• Inclusion of nuisance parameters: simply include them in the scan and 
marginalise over them. 

• Pdf’s for derived quantities: probabilities distributions can be derived for any 
function of the input variables (crucial for DD/ID/LHC predictions)
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• Implements the CMSSM, but can be easily extended to the general MSSM  

• New release (v 1.50) in June 2010: linked to SoftSusy 2.0.18, DarkSusy 5.0, 
MICROMEGAS 2.2, FeynHiggs  2.5.1, Hdecay 3.102.

• Includes up-to-date constraints from all observables, plotting routines, statistical 
analysis tools, posterior and profile likelihood plots. Fully parallelized, MPI-ready, 
user-friendly interface

• MCMC engine (Metropolis-Hastings, bank sampler), grid scan mode, multi-modal 
nested sampling aka MultiNest (Feroz & Hobson 2008) 
A full 8D scan now takes less than 2 days on 8 CPUs.

www.superbayes.org
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The future: “instantaneous” 
inference with neural networks 

• Standard MCMC
(SuperBayeS v1.23, 2006) 
720 CPU days 

• MultiNest 
(SuperBayeS v1.5, 2010)
16 CPU days
speed-up factor: ~ 50

m1/2 (GeV)

m
0 (G

eV
)

Bridges et al (2009)

68%, 95% contours

Black: SuperBayeS pdf

Blue: Neural Network

true value

280 300 32050

100

150

200

250

300

Simulated LHC data

PRELIMINARY• SuperBayeS+Neural Networks
(Bridges, Cranmer, Feroz, 
Hobson, Ruiz & RT, in prep)
15 CPU minutes 
speed-up factor: 70’000
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Nested sampling 

x1

L(x)

0

1

2
!

!

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where 〈·〉 denotes the expectation value with respect to the posterior)

〈m〉 ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

〈f(m)〉 ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

Feroz et al (2008), arxiv: 0807.4512, Trotta et al (2008), arxiv: 0809.3792 

(animation courtesy of David Parkinson)

X(λ) =
�
L(θ)>λ P (θ)dθ

An algorithm originally aimed primarily at the Bayesian evidence computation (Skilling, 2006):

P (d) =
�

dθL(θ)P (θ) =
� 1
0 X(λ)dλ
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The MultiNest algorithm

• MultiNest: Also an extremely efficient sampler for multi-modal likelihoods! 
Feroz & Hobson (2007), RT et al (2008), Feroz et al (2008)

Target Likelihood Sampled Likelihood 
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CMSSM today: likelihood-based results

MasterCode

Best fit points (µ>0) 

MasterCode
M0=60 , M1/2=310 A0=130, tanβ=11

Fittino
M0=76 , M1/2=332 A0=383, tanβ=13

0907.2589 [hep-ph]
0907.4468 [hep-ph]
0808.4128 [hep-ph]
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CMSSM today: Bayesian results

       27 

“flat prior”
Uniform in M0,M1/2,A0,tanβ

“log prior”
Uniform in log(M0), log(M1/2), 

A0, tanβ

“naturalness prior”
Penalizes regions of parameter 

space that are “fine tuned”

0807.4512 [hep-ph] 0809.3792 [hep-ph] 0705.0487 [hep-ph]

Posterior distributions
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“log prior”

Δχ2

Both methods find a 
favoured low mass SUSY 
region: how constrained is 

it? 
The g-2 constraint is 

critical in robustly 
excluding TeV-scale 

masses in the frequentist 
approach 

No g-2

With
g-2

0907.4468 [hep-ph]

MasterCode
profile likelihood

SuperBayeS: profile likelihood

CMSSM today: Frequentist vs Bayesian
SuperBayeS: posterior

MasterCode
profile likelihood

Δχ2

2σ exclusion
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Profile likelihood results: comparison

A
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• Akram et al (0910.3950) adopted a genetic algorithm (GA)  to map out the profile likelihood.

• This allows to find isolated spikes in the likelihood in the high-mass region: 
is this something other frequentist fits might have missed?

overall best-fit
isolated local 

maxima

Genetic Algorithm
 profile likelihood

MultiNest 
profile likelihood

MasterCode
profile likelihood

excluded at ~ 3σ
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Caveat: looking for best-fits with MCMC

• MCMC is not geared towards 
finding the best-fit point. Rather 
it tries to map out regions of 
significant posterior probability 
mass

• Even for a simple Gaussian toy 
model, this becomes difficult to 
do as the number of 
dimensions of the parameter 
space increases

• Profiling with vanilla MCMC has 
to be taken with a grain of salt

Toy multinormal likelihood
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Which approach is “best”?

• There are a number of desiderata that any statistical approach shoud meet:

• Unbiasedness: recovery of parameter values should be unbiased

• Reasonable efficiency: limited computational resources mean that sometimes 
we have to take shortcuts to make the method work

• Errobars you can believe in: here the concept of coverage is the only test I can 
think of

• Highly timely for the community to test the long-term performance of statistical 
packages agains realistically simulated data. 

• I suggest to initiate a programme of increasingly complex blind reconstructions.

• In the meantime, trust only ‘robust’ results! 
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Direct detection prospects 

95%

95%

Generally favourable prospects for WIMP discovery in the CMSSM framework 
for upcoming detectors are robust, independently of the choice of statistics.
Notice: canonical local density & velocity dispersion assumed

SuperBayeS
profile likelihood

SuperBayeS
posterior 

MasterCode
profile likelihood

reach of 1t of Xe detector

reach of 25 kg Ge
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Statistical conclusions

• Even one of the theoretically most constrained models (the CMSSM) shows signs of 
ambiguities in the statistical results

• This can be traced back to insufficiently constraining data (at present)

• Low-mass SUSY seems preferred but ~ TeV scale masses cannot be ruled out 
robustly 

• ALL ENSUING PREDICTIONS HAVE TO BE TAKEN WITH A LARGE GRAIN OF 
SALT 

grain of salt
ATLAS 

(to scale)
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