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Standard Model of Particle Physics [SU(3)xSU(2)xU(1)]
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Consistent with all existing 

laboratory experimental data
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Standard Model of Cosmology [ЛCDM]

Consistent with all existing astrophysics data

μνμνμν GTπgG 8Λ 

+ FRW metric + perfect fluid
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Credit: P. Scott (Ph.D. Thesis)



Demands for New Physics Beyond the SM
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Quantum Gravity: Need a physics that reconciles Einstein's classical theory of 

gravity with the quantum-field-theoretical nature of the SM (required to describe very 

early moments of the Universe and very properties of extreme astrophysical objects)

Dark Matter (DM)

Dark Energy (DE) & the related Cosmological Constant Problem (CCP)

Problems introduced/highlighted by the SM of Cosmology:

Going beyond the SM seems entirely unavoidable.

Particular gauge symmetric structure of the SM

Large differences in strengths of the gauge interactions

Specific number of generations for quarks and leptons

Peculiar cancellation of anomalies from the quark and lepton sectors

Origin of the fermion masses

Specific scale of EW symmetry breaking (and the underlying breaking mechanism)

Gauge hierarchy problem: absence of any SM mechanism for protecting the Higgs 

mass against radiative corrections (fine-tuning)

Strong CP problem

Neutrino masses and mixings

Problems of the SM on its own:



New Physics at TeV Scales: Supersymmetry (SUSY)
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It solves many problems, and paves the way for many others to be solved 

in broader theoretical frameworks, by providing:

Natural solution to the hierarchy problem (by eliminating the quadratic divergences in the 

Higgs mass via the cancellation of the contributions from SM particles and corresponding superpartners)

Mechanism for EW symmetry breaking (via renormalisation group evolutions) 

Viable DM candidates (such as the lightest neutralino, gravitino, sneutrino and axino)

Gauge-coupling unification

Answers  to many of the questions about the mathematical structure of the SM 
(if connected to grand unified theories (GUTs) above the unifcation scale)

Extensive scope for unifying gravity and other fundamental interactions (either in 

the framework of supergravity (SUGRA) theories or as the essential ingredient of most versions of string theory)

Shedding light on the physics of very early Universe and its late-time behaviour

(DE and CCP).

Arguably the most favoured theory beyond the SM is:



Minimal Supersymmetric Standard Model
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[after EW Symmetry Breaking]

SM fermions and gauge bosons

( )
slightly more than a doubling of the SM particle content

partner of Graviton (G)

(not necessarily included)

If SUSY is an exact symmetry of Nature:

pp mm ~

SUSY has to be broken at low energies



7

Minimal Supersymmetric Standard Model

SUSY‟ic part in terms of superpotential:

Soft SUSY-breaking terms

Gauge 
hierarchy 
remains 

stabilised

Do not 
violate B or L 

numbers

MSSM Lagrangian contains two parts: SUSY‟ic terms + SUSY-breaking terms  

SUSY-breaking part: 
Preserve 
gauge 

invariance

Do not 
violate 

renormalisa
bility
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Minimal Supersymmetric Standard Model

Soft SUSY-breaking terms:

at least105 new parameters
159 if „C-terms‟ are retained

Constraints on flavour-changing neutral currents (FCNCs) and CP-violation can help

violates CP

suppressed in many 

SUSY-breaking 

schemes

Full MSSM Lagrangian:

Phenomenologically

very rich, but any 

comparison of the 

model with real data 

becomes highly 

challenging

sLBR 2)(3)1( 

With:

R-parity is 

conserved in 
MSSM.

LSP is 

absolutely 
stable.

 Lightest Neutralino (if LSP) 
is a WIMP DM candidate.
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Minimal Supersymmetric Standard Model

SUSY

Gravity-
mediated

Anomaly-
mediated

Gauge-
mediated

unified at GUT Scale

at EW scale:

mSUGRA/CMSSM

S. P. Martin [arXiv:hep-ph/9709356]

impose rather experimentally motivated relations directly to the low-energy parameters 

(e.g. MSSM-7, 8, 10, 11, 18, 24)

select a particular SUSY-breaking mechanism which relates or even unifies many of the 

model parameters at certain energies
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Still too complex!



Goal: given a particular version of SUSY, determine which parameter 

combinations fit all experiments, and how well

Issue 1: Combining fits to different experiments

Easy – composite likelihood

Dark matter relic density from WMAP

Precision electroweak tests at LEP

LEP limits on Higgs and sparticle masses

B-factory data (rare decays,           )
Muon anomalous magnetic moment (g-2)

Dark matter direct detection (DD)

Dark matter indirect detection (ID) (gamma rays, neutrinos, etc.)

Issue 2: Finding the points with the best likelihoods

Tough – grid scans, MCMCs, nested sampling or GENETIC ALGORITHMS

Public codes: SuperBayeS, SFitter, Fittino

)( 2

2

2

121  LL

sb 

Scanning Supersymmetric Parameter Spaces
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SUSY Global Fit

Slide taken from Pat Scott‟s PhD Defense Seminar
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Two fundamentally different approaches:

•Bayesian statistics:

We are interested in the marginal posterior for the parameters:

•Frequentist statistics:

We are interested in the profile likelihood for the parameters:

Thus in the profile likelihood one maximizes the value of the likelihood along the hidden dimensions, rather than integrating it

out as in the marginal posterior.

prior dependent

in principle independent of priors

Statistical Framework(s)

posterior 

probability density 

function

likelihood

prior probability 

density function

evidence or model 

likelihood
(just a renormalization factor for 

our purpose)

Bayes‟ Theorem:

•One practically interesting consequence of Bayesian inference is that it 

gives a powerful way of estimating how robust a fit is, i.e., if the posterior is 

strongly dependent on different priors, this actually means that the data

are not sufficient or accurate enough to constrain the model parameters.

•If a fit is robust, the Bayesian and frequentist methods should result in 

similar confidence regions of the parameter space. This is NOT the case for 

SUSY models.



Flat Prior:

Log Prior:

R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables 

on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792]

Some CMSSM Scans with SuperBayeS:

12

CMSSM + SuperBayeS (with MultiNest)



Look very different: prior dependent ?!!

Not a very interesting technique for profile likelihood approach

Flat Prior:

Log Prior:

Profile Likelihoods:

CMSSM + SuperBayeS (with MultiNest)
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R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables on parameter 

inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792]

According to the SB people, MCMC scans give similar results up to some statistical noise



Marginal Posterior vs. Profile Likelihood:

Complex/Fine-tuned Parameter Spaces
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Spike-like best-fit region

(problematic)

In order to make a profile likelihood analysis of a model correctly, it is extremely important to know, 

with enough accuracy, the highest value of the likelihood function in the parameter space of the 

model. Otherwise, the calculated confidence regions might be very far from the real ones.

In thermodynamic language:

Thermal Energy

Temperature

Posterior Mass

Highest Likelihood

Fine-tuned regions are very important!



GAs can be helpful, because:

•The actual use of these algorithms is to

maximize/minimize a specific function; this is

exactly what we need in the case of a profile likelihood scan.

•GAs are usually considered as powerful

methods in probing global extrema when

the parameter space is very large,

complex or poorly understood; these are precisely

what we have in the case of the supersymmetric models including the

CMSSM.

Genetic Algorithms (GAs)
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G. J. Feldman, R. D. Cousins, Phys. Rev. D 57 (1998) 3873 [physics/9711021]

Statistical Coverage
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[…
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The likelihood is based on the expected number of WIMP-nucleon scattering events

dN per nuclear recoil energy window dEr which is given by:

with:

σ: WIMP-nucleus cross-section, ρ: local WIMP density, mΧ: WIMP mass, F: nuclear

form factor, μ≡(mΧmnuc)/(mΧ+mnuc): WIMP-nucleus reduced mass, f(v):

distribution of WIMPs in the halo with velocities v, vmin(Er): minimum velocity

required to produce a recoil of energy Er, vesc: halo escape velocity.

We assume the standard halo model (i.e. a Maxwellian velocity distribution with vRMS ≈

220 km s-1 and a local density of 0.3 GeV cm-3) and calculate dN/dEr for each

CMSSM point using DarkSUSY 5.04.

Likelihood for Coverage Studies
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Direct Detection with XENON10
13 events, no background

Listen to Chris Savage‟s talk tomorrow

rather high statistics



Benchmarks for Coverage Studies
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Cross: Best-fit Point

Dot: Posterior Mean

CMSSM Parameter:

1. Two points are selected 

(PMean & BFP)

2. New data are generated 

(100 times)

3. Scans are performed for 

each set of data (with both 

flat and log priors)

4. Coverage is verified for 1D 

marginal PDFs and profile 
likelihoods

Strategy:
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Benchmarks for Coverage Studies

Cross: Best-fit Point

Dot: Posterior Mean

Scattering and Annihilation Cross-sections vs Neutralino Mass:



Statistical Coverage (Results)

20

1σ (68%) 2σ (95%) 1σ (68%) 2σ (95%)

98 100 96 100

45 97 78 97

91 100 100 100

19 100 82 100

53 96 76 98

18 97 75 97

98 100 87 100

0m

2/1m

0A

tan

SI

p

m

v

Marginal PDF Profile Likelihood

15 94 96 100

2 30 67 92

43 91 99 100

16 91 93 100

22 65 71 97

17 37 57 88

57 98 84 100

0m

2/1m

0A

tan

SI

p

m

v

1σ (68%) 2σ (95%) 1σ (68%) 2σ (95%)

0 1 62 93

0 0 39 89

0 95 96 100

75 100 99 100

0 22 51 87

0 0 45 93

96 100 95 98

Marginal PDF Profile Likelihood

0 0 17 47

0 0 1 17

0 24 91 100

38 99 99 100

0 1 15 59

23 23 2 15

21 94 83 98

Flat Prior:

Log Prior:

Posterior Mean Best-fit Point

UNDERCOVERAGE:

There is certainly a problem,

either in choosing statistical 

measures/priors

or scanning technique

(or both)



GAs are a class of adaptive heuristic search 

techniques that incorporate the evolutionary 

ideas of natural selection and survival of the 
fittest in biology. As such, they represent an 

intelligent random search within a defined 

search space to solve a complex problem.

Genetic Algorithms (GAs)
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. . .

Generation 1

•Selection

•Crossover

•Mutation

•Elitism

Average fitness of the whole population increases. (Survival of the Fittest)

Generation 2 Generation N

JohnHolland's Schema Theorem

(early 1970s)

EXAMPLE

http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php


Genetic Algorithms (GAs)
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Encoding:

a. Binary Encoding 

Binary encoding is the most common one, mainly because the first research of GA 

used this type of encoding and because of its relative simplicity. 

In binary encoding, every chromosome is a string of bits - 0 or 1, for example:

chromosome A:   101100101100101011100101

chromosome B:   111111100000110000011111

b. Permutation Encoding 

Every chromosome is a string of numbers that represent a position in a sequence, for 

example: 

chromosome A: (1 5 3 2 6 4 7 9 8)

chromosome B: (8 5 6 7 2 3 1 4 9)

c. Value Encoding

Every chromosome is a sequence of some values. Values can be anything 

connected to the problem, such as integers, real numbers, characters or any objects.

1.2324 5.3243 0.4556 2.3293 2.4545

ABDJEIFJDHDIERJFDLDFLFEGT

(back), (back), (right), (forward), (left)



Genetic Algorithms (GAs)
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Binary-encoding Crossover 

Single point crossover - one crossover point is selected, binary string from the

beginning of the chromosome to the crossover point is copied from the first parent,

the rest is copied from the other parent:

11001|011 + 11011|111 = 11001|111

Two point crossover - two crossover points are selected, binary string from the

beginning of the chromosome to the first crossover point is copied from the first

parent, the part from the first to the second crossover point is copied from the

other parent and the rest is copied from the first parent again:

10|0010|11 + 11|0111|01 = 10|0111|11 

Crossover:



Genetic Algorithms (GAs)
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Uniform crossover - bits are randomly copied from the first or from the second parent:

0|10|010|11 + 1|00|111|01 = 1|10|111|11

Arithmetic crossover - some arithmetic operation is performed to make new offspring:

11001011 + 11011111 = 11001001 (AND)

Crossover:

Permutation-encoding Crossover: 

Single point crossover - one crossover point is selected, the permutation is copied 

from the first parent till the crossover point, then the other parent is scanned and if the 

number is not yet in the offspring, it is added:

(1 2 3 4 5 | 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7) 

Value-encoding Crossover:  All crossovers from binary-encoding crossover can be used.



Genetic Algorithms (GAs)
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Mutation:

Binary-encoding Mutation

Bit inversion - selected bits are inverted:

1 1 0 0 1 0 0 1 → 1 0 0 0 1 0 0 1 

Permutation-encoding Mutation

Order changing - two numbers are selected and exchanged:

(1 2 3 4 5 6 8 9 7) → (1 8 3 4 5 6 2 9 7)

Value-encoding Mutation:

Adding a small number (for real value encoding) - a small number is added to (or 

subtracted from) selected values:

(1.29 5.68 2.86 4.11 5.55) → (1.29 5.68 2.73 4.22 5.55)



Genetic Algorithms (GAs)
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412 pages

300 pages

http://www.amazon.com/gp/product/images/8392395840/ref=dp_image_0?ie=UTF8&n=283155&s=books
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Our implementation: Model/Nuisance Parameters

CMSSM: GUT-scale parameterisation

m0: scalar mass parameter            m1/2: gaugino mass parameter              

tanβ: ratio of Higgs VEVs                 A0: trilinear coupling              

sgn μ: Higgs mass parameter (+ve in our scans)

Just a testbed – techniques are applicable to any MSSM parameterisation

SM nuisances: reflecting our imperfect knowledge of the values of 
relevant SM parameters 

mt: pole top quark mass                 mb: bottom quark mass              

αem: EM coupling constant             αs: strong coupling constant
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Our implementation: Data/Constraints

Physicality
self-consistent solutions to the 

RGEs exist

conditions of EW symmetry 

breaking are satisfied

no masses become 

tachyonic)

Neutralino is the LSP



Our implementation: Scanning Algorithm

SuperBayes v1.35 PIKAIA 1.2*

* Developed by P. Charbonneau et. al., can be downloaded from http://www.hao.ucar.edu/modeling/pikaia/pikaia.php
29

General Structure:

Reproduction

Mutation

Crossover

Selection

We keep all generated points
to map confidence regions.

Huge potential

for 
parallelisation



•Developed by R. Ruiz de Austri, R. Trotta, F. Feroz, L. Roszkowski, and M. 

Hobson.

•It is a package for fast and efficient sampling of the CMSSM.

•Compares SUSY predictions with observable quantities, including sparticle

masses, collider observables, B-factory data, dark matter relic abundance, 

direct detection cross sections, indirect detection quantities etc. 

•The package combines  SoftSUSY,  DarkSUSY, MicrOMEGAs, FeynHiggs, and  
Bdecay.

•It uses Bayesian techniques to explore multidimensional SUSY parameter 

spaces. Scanning can be performed using Markov Chain Monte Carlo 

(MCMC) technology or more efficiently by employing the new scanning 

technique, called nested sampling (MultiNest algorithm).

•Although these methods have also been used for profile likelihood analyses 

of the model, they are essentially optimised for marginal posterior analyses

only.

SuperBayes
(www.superbayes.org)
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New version v1.5 now 

available (June 2010) 
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Fitness function:                (positive, to be maximised)

Encoding: decimal alphabet (a string of base 10 integers, every normalised

parameter θi (i=1…8)is encoded into a string d1d2…dnd
, where the (di > 0) є

[0; 9]. nd=5, i.e. every individual chromosome‟s length is mxnd = 8x5 = 40.

Initialisation and population size: completely random points in the 

parameter space for initial population; population size of np = 100 – fixed.

Selection: (Roulette Wheel Algorithm) a stochastic mechanism; probability 

of an individual to be selected for breeding is based on its fitness:

assign to each individual θi a rank ri based on its fitness fi (r=1 corresponds to the fittest 

individual and r=np to the most unfit)

a ranking fitness f‟i is defined in terms of this rank:

the sum of all ranking fitness values in the population is computed and np running sums are 

defined as:

Obviously: Sj+1≥Sj and Snp
=F.

2/1 χ

Our implementation: Scanning Algorithm
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a random number R є [0; F] is generated and the element Sj is located for which Sj-1≤ R < Sj. 

The corresponding individual is one of the parents selected for breeding; the other one is also 

chosen in the same manner.

Other selection methods exist: Boltzman selection, Tournament selection, 

Rank selection, Steady-State selection, etc.

Crossover: combination of one-point and two-point crossover (to avoid 

“end-point bias problem”) - crossover operation is applied only with a preset 

probability (85%)

Our implementation: Scanning Algorithm
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Mutation: uniform one-point mutation operator. Different genes in the 

offspring's chromosomes (i.e. decimal digits in the 40-digit strings) are 

replaced with a predefined probability (the „mutation rate‟), by a random

integer in the interval [0; 9].

Local Maxima – Randomness

instead of using a fixed mutation rate we allow it to vary dynamically 

throughout the run, such that the degree of „biodiversity‟ is monitored and 

the mutation rate is adjusted accordingly.

Degree of clustering is assessed based on the difference between the actual 

fitness values of the best and median points:

(with lower and upper critical values of 0.05 and 0.25, multiplicative factor of 

1.5, mutation limits of 0.0005 and 0.25, and initial value of 0.005).

Elitism: To guarantee survival of this individual, we use an elitism feature in 

our reproduction plan.

Termination and number of generations: fixed and predetermined 

number of generations (~3000)

Our implementation: Scanning Algorithm
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Results: 2D Profile Likelihoods in m0-m1/2 Plane

Contours based on 

GA best-fit point:

Contours based on 

MN best-fit point:

GAs find better fits than nested sampling (Χ2 = 9.35 vs. Χ2 = 13.51).

Dotted circle: GA global BFP

Dotted square: GA COA BFP

Dotted triangle: MN global BFP

3x106 points in total
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Contours based on 

GA best-fit point:

Contours based on 

MN best-fit point:

Results: 2D Profile Likelihoods in A0-tanβ Plane

Dotted circle: GA global BFP

Dotted square: GA COA BFP

Dotted triangle: MN global BFP
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Results: 1D Profile Likelihoods for CMSSM Parameters

GA COA BFP

GA Global 

(FP) BFP

Green bars: GA results

Grey bars: MN results
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Results: 1D Profile Likelihoods for Some Observables 

GA COA BFP

GA Global 

(FP) BFP

The LHC is in principle able to investigate a large fraction of the high-likelihood points in the CMSSM 

parameter space if it explores sparticle masses up to around 3 TeV.  

Green bars: GA results

Grey bars: MN results



38

Results: 2D Profile Likelihoods in DM DD Plane (SI)

Contours based on 

GA best-fit point:

Contours based on 

MN best-fit point:

Best-fit point is actually ruled out by direct detection (under standard halo assumptions).

Secondary maximum still OK.

Dotted circle: GA global BFP

Dotted square: GA COA BFP

Dotted triangle: MN global BFP
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Results: 2D Profile Likelihoods in DM ID Plane

Contours based on 

GA best-fit point:

Contours based on 

MN best-fit point:

Global best-fit point should be probed soon by Fermi (See e.g. P. Scott, J. Conrad, J. Edsjö, L.

Bergström, C. Farnier & YA. Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of

the Dwarf Galaxy Segue 1, JCAP 01, 031 (2010) [arXiv:0909.3300])

The GA turns up a „new‟ region at moderate <σv>, around 400 GeV. This region is a high-m0 stau

coannihilation region, apparently missed in other scans.

Dotted circle: GA global BFP

Dotted square: GA COA BFP

Dotted triangle: MN global BFP
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Conclusions

•SUSY parameter spaces are complex

•Statistical inference strongly depends on statistical

measures/priors and scanning techniques

•GAs help for profile likelihood studies

•Still far from being “The Algorithm”
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A Quotation by the Inventor

Living organisms are consummate problem solvers. They

exhibit a versatility that puts the best computer programs to

shame. This observation is especially galling for computer

scientists, who may spend months or years of intellectual

effort on an algorithm, whereas organisms come by their

abilities through the apparently undirected mechanism of

evolution and natural selection.

John Holland



for your attention
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Results: Best-fit Parameter Values
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Results: Best-fit Parameter Values
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Results: Mass Spectrum at Best-fit Points
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Summary and Conclusions

1. Constraining the parameter space of the MSSM using existing data is

under no circumstances an easy or straightforward task. Even in the case of

the CMSSM, a highly simplified and economical version of the model, the present data are not

sufficient to constrain the parameters in a way completely independent of computational and

statistical techniques.

1. Many recent activities in this field have used scanning methods
optimised for calculating the Bayesian evidence and posterior PDF. Highly

successful in revealing the complex structure of SUSY models, demonstrating that some patience

will be required before we can place any strong constraints on their parameters.

2. Bayesian scanning methods have also been employed for frequentist

analyses of the problem, particularly in the framework of the profile

likelihood. These methods are not optimised for such frequentist analyses, so care should be

taken in applying them to such tasks.

3. We have employed a completely new scanning algorithm, based on

GAs. They seem to be a powerful tool for frequentist approaches to the problem of scanning

the CMSSM parameter space. We compared the outcomes of GA scans directly with those of the

state-of-the-art Bayesian algorithm MultiNest, in the framework of the CMSSM.

4. We found many new high-likelihood CMSSM points, which have a strong

impact on the final statistical conclusions of the study. These not only influence

considerably the inferred high-likelihood regions and confidence levels on the parameter

values, but also indicate that the applicability of the conventional Bayesian scanning techniques

is highly questionable in a frequentist context.
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Summary and Conclusions

5. Although our initial motivation in using GAs was to gain a correct

estimate of the likelihood at the global best-fit point, which is crucial in a

profile likelihood analysis, we also realised that they can find many new

and interesting points in almost all the relevant regions of parameter

space. These points strongly affect the inferred confidence regions around the best-t point.

Even though we cannot be confident of exactly how completely our algorithm is really mapping

these high-likelihood regions, it has certainly covered large parts of them better than any

previous algorithm.

6. By improving the different ingredients of GAs, such as the crossover and

mutation schemes, this ability might even be enhanced further. We largely

employed the standard, simplest versions of the genetic operators in our analysis, as well as very

typical genetic parameters. These turned out to work sufficiently well for our purposes. Although

we believe that tuning the algorithm might produce even more interesting results, it is good news

that satisfactory results can be produced even with a very generic version. This likely means that

one can apply the method to more complicated SUSY models without extensive ne-tuning.

7. We have also compared our algorithm with MultiNest in terms of speed

and convergence, and argued that GAs are no worse than MultiNest in

this respect. GAs have a large potential for parallelisation, reducing considerably the time

required for a typical run. This property, as well as the fact that the computational eort scales

linearly (i.e. as kN for an N-dimensional parameter space), also makes GAs an excellent method

for the frequentist exploration of higher-dimensional SUSY parameter spaces.
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Summary and Conclusions

8. The focus point region is favoured in our analysis over the co-annihilation
region, in contrast to findings from some other MCMC studies, where the

opposite is claimed. We also found a rather large part of the stau co-

annihilation region, consistent with all experimental data, located at

high m0. That is, at least in our particular setup, high masses, corresponding either to the FP or

the COA regions, are by no means disfavoured by current data (except perhaps direct detection

of dark matter). The discrepancy might originate in the different scanning algorithms employed,

or in the different physics and likelihood calculations performed in each analysis. We have

however shown, by comparing our results with others produced using exactly the same setup

except for the scanning algorithm, that one should not be at all confident that all the relevant

points for a frequentist analysis can be found by scanning techniques optimised for Bayesian

statistics, such as nested sampling and MCMCs.
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Summary and Conclusions

The bottom line of our work is that:

We once again see that even the CMSSM, despite its simplicity, possesses a

highly complex and poorly-understood structure, with many small, fine-

tuned regions. This makes investigation of the model parameter space

very difficult and still very challenging for modern statistical scanning

techniques. Although the method proposed in this paper seems to

outperform the usual Bayesian techniques in a frequentist analysis, it is

important to remember that it may by no means be the final word in this

direction. Dependence of the results on the chosen statistical

framework, measure and method calls for caution in drawing strong

conclusions based on such scans. The situation will of course improve

significantly with additional constraints provided by forthcoming data.
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