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Standard Model of Particle Physics isuaxsuzxuay

THE STANDARD MODEL
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Standard Model of Cosmology ncom

Credit: P. Scott (Ph.D. Thesis)
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Demands for New Physics Beyond the SM

Problems infroduced/highlighted by the SM of Cosmology:

Quantum GI'CIV“'YI Need a physics that reconciles Einstein's classical theory of
gravity with the quantum-field-theoretical nature of the SM (required to describe very
early moments of the Universe and very properties of extireme astrophysical objects)

Dark Matter (pm) S |
Dark Energy (Dg) & the il Cosmological Constant Problem (ccp)

Problems of the SM on its own:

@Particular gauge symmetric structure of the SM =2 LS

@Large differences in strengths of the gauge interactions

@Specific number of generations for quarks and leptons

@Peculiar cancellation of anomalies from the quark and lepton sectors

@Origin of the fermion masses

@Specific scale of EW symmetry breaking (and the underlying breaking mechanism)

@Gauge hierarchy problem: absence of any SM mechanism for protecting the Higgs

mass against radiative corrections (fine-tuning) s A i

@Strong CP problem Am? ~ )‘ p A oA
1672 . p? 16 '

@Nevutrino masses and mixings
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New Physics at TeV Scales: Supersymmeiry (SUSY)

Arguably the most favoured theory beyond the SM is:

Weak-Scale SUSY

It solves many problems, and paves the way for many others to be solved
in broader theoretical frameworks, by providing:

E Natural solution to the hierarchy problem (by eliminating the quadratic divergences in the
Higgs mass via the cancellation of the contributions from SM particles and corresponding superpartners)

E Mechanism for EW symmetry breaking (via renormalisation group evolutions)

F Viable DM candidates (such as the lightest n e U'|'I'C| I I n O gravitino, sneutrino and axino)

E Gauge-coupling unification

E Answers to many of the questions about the mathematical structure of the SM
(if connected to grand unified theories (GUTs) above the unifcation scale)

F Extensive scope for unifying gravity and other fundamental interactions (eitherin : ,
the framework of supergravity (SUGRA) theories or as the essential ingredient of most versions of string theory) : = >

F Shedding light on the physics of very early Universe and its late-time behaviour

(DE and CCP).
- - -



Minimal Supersymmetric Standard Model

Field Content;

slightly more than a doubling of the SM particle content

er.r lL.R TLr  |Sleptons (Spin 0)]
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SM fermions and gauge bosons ‘
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Minimal Supersymmetric Standard Model

Free Parameters:

MSSM Lagrangian contains two parts: SUSY’ic terms + SUSY-breaking terms

# SUSY’ic part in terms of superpotential:

IT? = JL’E'H':E,HJG + Ehjzl.ﬂ [(\Yiijﬁ'_?‘fabQ?HiﬂT; + (Yrijéan?HdaD? + (\Yd‘-)iji—‘?Hr@aE;}

Do not ‘
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bility
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numbers

# SUSY-breaking part: —=

N
e Soft SUSY-breaking terms

e 7




Minimal Supersymmetric Standard Model

Soft SUSY-breaking terms:
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Full MSSM Lagrangian:
at least105 new parameters

With: '

R 1 (_1)3(B—L)+25‘

R-parity is LSP is
conserved in absolutely
MSSM. stable.

Lightest Neutralino
is a WIMP DM ca

Phenomenologically
very rich, but any

comparison of the
model with real data
becomes highly
challenging

159 if ‘C-terms’ are retained

Constraints on flavour-changing neutral currents (FCNCs) and CP-violation can help
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Minimal Supersymmetric Standard Model

# impose rather experimentally motivated relations directly to the low-energy paramete
(e.g. MSSM-7, 8, 10, 11, 18, 24)

# select a particular SUSY-breaking mechanism which relates or even unifies many of the
model parameters at certain energies

mSUGRA/CMSSM |

Gravity- | unified at GUT Scale

\mediated
My, 12, Ag, tan 3, E.ignl':,uj}

Mass [GeV]

Gauge- Anomaly-

\mediaied (ediaied

Renormalisation Group Equations (RGEs)

arfin [arXiv:ihep-ph/9709356]

EW scale: My : My : Mz =1:2:7 9
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Scanning Supersymmetric Parameter Spaces

Goal: given a particular version of SUSY, determine which parameter
combinations fit all experiments, and how well

SUSY Global Fit

Issue 1: Combining fits fo different experlmen’rs
Easy — composite likelihood (L, xL, = 7 + x2)

@ Dark matter relic density from WMAP

@ Precision electroweak tests at LEP

@ LEP limits on Higgs and sparticle masses

@ B-factory data (rare decays, b — sy)

@ Muon anomalous magnetic moment (g-2)

@ Dark matter direct detection (DD)

@ Dark matter indirect detection (ID) (gamma rays, neutrinos, etc.)

Issue 2: Finding the points with the best likelihoods
Tough — grid scans, MCMCs, nested sampling or GENETIC ALGORITHMS

Public codes: SuperBayes, SFitter, Fittino

SW PhD Defense Seminar 10



Statistical Framework(s)

Bayes’ Theorem:

/ likelihood

n( NDIEON(GN L

*One practically interesting consequence of Bayesian inference is that it
gives a powerful way of estimating how robust a fit is, i.e., if the posterior is
strongly dependent on different priors, this actually means that the data
are not sufficient or accurate enough to constrain the model parameters.

°|f afit is robust, the Bayesian and frequentist methods should result in
similar confidence regions of the parameter space. This is NOT the case for

SUSY models.

Lt =, o max  L(O)

Thus in the profile likelihood one maximizes the value of the likelihood along the hidden dimensions, rather than integrating it
out as in the marginal posterior.

11



CMSSM + SuperBayeS$ (with MultiNest)

Some CMSSM Scans with SuperBayes:

Flat Prior:

Aﬁ (TeV)

m - ITE‘-"J

4 Postenior pdl
Lo prices
3r CMESM, =04

o~ |

Log Prior:  E .,
-

R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables
on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792]
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Profile Likelihoods:

Flat Prior:

AD (TeV)

A, (TeV)

Log Prior:

Austri, The impact of priors and observables on parameter
[arXiv:0809.3792]

Look very different: prior dependent 2

R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz
inferences in the Constrained MSSM, JHEP 12 (2008) O

Not a very interesting technique for profile likelihood approach
13

According to the S ilar results up to some statistical noise



Complex/Fine-tuned Parameter Spaces

Marginal Posterior vs. Profile Likelihood:

Spike-like best-fit region ,
(problematic) |

@Posterior Mass
/7 QHighest Likelihood

JI ‘

In thermodynamic language:
\O/ @Thermal Energy
OTemperature

In order to make a profile likelihood analysis of a model correctly, it is exiremely important to know,
with enough accuracy, the highest value of the likelihood function in the parameter space of the
model. Otherwise, the calculated confidence regions might be very far from the real ones.

inedun ' e ' /
Finee ed vegions are very tpodand. 14



Genetic Algorithms (GAs)

GAs can be helpful, because:

°The actual use of these algorithms is to
maximize/minimize a specific function; thisis

exactly what we need in the case of a profile likelihood scan.

*GAs are usudlly considered as powerful
methods in probing global extrema when
the parameter space is very large,
Complex or poorly understood; these are precisely

what we have in the case of the supersymmetric models including the
CMSSM.

15
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Statistical Coverage

PHYSICAL REVIEW D VOLUME 57, NUMBER 7 1 APRIL 1998
Unified approach to the classical statistical analysis of small signals

Gary I. Feldman”
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousins’
Department of Physics and Astronomy, University of California, Los Angeles, California 90095
(Recerved 21 November 1997; published 6 March 1998)

We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem

ANNATE I 10 P10 I recnanized at the QLCE N nne 1 nr_two-sided infeia pa 0 inferya

G. J. Feldman, R. D. Cousins, Phys. Rev. D 57 (1998) 3873 [physics/971102

l‘..

Pl € [p, pa]) = o (2.3)

LU

If Eq. (2.3) is satisfied, then one says that the intervals “cover” p at the stated confidence,
or equivalently, that the set of intervals has the correct “coverage”. If there is any value of
o for which P(p € [p1, p12]) < «, then we say that the intervals “undercover” for that pu.
Significant undercoverage for any p is a serious flaw. If there is any value of p for which
P(pt € [p1, pt2]) > a, then we say that the intervals “overcover” for that . A set of intervals
is called “conservative” if it overcovers for some values of ;¢ while undercovering for no values
of y1. Conservatism, while not generally considered to be as serious a flaw as undercoverage,
comes with a price: loss of power in rejecting false hypotheses.

] 16



Likelihood for Coverage Studies

Diri ii Detection with XENON10

B no background

rather high statistics

The likelihood is based on the expected number of WIMP-nucleon scattering events
dN per nuclear recoil energy window dE, which is given by:

N __op_parve S,
dE,  2u'm,

with:
o: WIMP-nucleus cross-section, p: local WIMP density, my: WIMP mass, F: nuclear
form factor, pE(mym,,.)/(Mytm,,.): WIMP-nucleus reduced mass, f(v)
distribution of WIMPs in the halo with velocities v, v,;,(E): minimum velocity
required to produce a recoil of energy E,, v...: halo escape velocity.

We assume the standard halo model (i.e. a Maxwellian velocity distribution with vgys =

220 km s!' and a local density of 0.3 GeV cm3) and calculate dN/dE, for each
CMSSM point using DarkSUSY 5.04.

Listen to Chris Savage’s talk tomorrow

17



Benchmarks for Coverage Studies

CMSSM Parameter:

4 Akrami el al. 2010 4 Akrami el al. 2010

" Posterior pdf 1 ‘ m' " Profile likelinood
Flat priors D 0" | Flat priors
3t CMSSM, p>0- %_’ 3t CMSSM, p>0-
. & .
9 09 excluding background v »:;-» 09 excluding background
S s 2,
= = = Strategy:
o = — )
= z = gy
1k 3 1k 1. Two points are selected
4 (PMean & BFP)
0 . 5 : , 0 0 . L L . 2. (r;lg(\;vileqtq)are generated
imes
m, (TeV) m, ., (TeV)
3. Scans are performed for
Akrami el al. 2070 Akrami sf al. 2010 eth set Of dqiq (With bOih
T L) - - T 1 T T - - T °
&k Posterior pdf 6k Profile likelihood ] flat and |Og pI'IOI'S)
Fl iors FI iors . oge
A sterors] W A atpriors | 4. Coverage is verified for 1D
OMSSTBCO| = oMSS marginal PDFs and profile
— 2} XENONO09 excluding ba ‘_?j — 2} XENONO09 excluding bac . .g P
> 3 = likelihoods
= oF g k£ o
< <

I Cross: Best-fit Point
I Dot: Posterior Mean

18



Scattering and Annihilation Cross-sections vs Neutralino Mass:

Benchmarks for Coverage Studies

Akramy ot al 2010

| ¥EMOND9 excluding background

log, [0} (pb) ]
|

Posterior pdf
Flat priors
CMSSM, n>0

sD
°0 (pb) ]

Iogm[o

A.\’.'n:.'.vn!m’ 2010

Posterior pdf

Flat priors
CMSSM, u>0|

09 excluding background

F Cross: Best-fit Point
F Dot: Posterior Mean

l0g, [ (Pb) ]

109, [ 65 (pb) ]

Akrami of al, 2010

- ' " Profile likelihood

5 Flat priors

CMSSM, p>0

6 XEMNOND2 excluding background
8l J
o 05 1 15 2

m o (TeV)
x1

Akrami of al. 2010

" Profile likelihood
Flat priors

CMSSM, >0 |
excluding background

Iog10 [<ov> (cm3 s") ]

Akrary ot ai. 2010

-22 T T
Posterior pdf
—23r Flat priors
CMS3M, p=0
-24r OMO9 excluding background ]
_o5k J
—_26F J
_o7k J
0 05 1 15 2
mx° (TeV)

log 5 [ 557 (pb) ]

]

Akrary ot ai. 2010

@DQ excluding background

Pustérinr pdif
Flat priors
CMSSM, u=0

Akramni of al 2010

M0% excluding background

"Profile likelihood
Flat priors
CMSSM, u>0

05 1 15 2
m o (TeV)
x’1
_a Akrami af al 2010
Profile likelihood
\ Flat priors
—4r N 9
- CM3EM, =0
sl zqﬁ%ﬂ excluding hackgmund_
. \
-6 4
7+ 4
b 05 1 15 2
m o (TeV)
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UNDERCOVERAGE: @

Flat Prior:

Log Prior:

Statistical Coverage (Results)

\\$\ Margir;al PDF Profile Llikelihood Margir;al PDF Profi yod

| | N 1 | | N ;
10 (68%) | 20 (95%) | 10 (68%) | 20 (95%) 10 (68%) | 20 (95%) | 10 (68%)

95
©) @ 93
. ® © EOEEOR

®

91 100 100 100 ©) oM 95 | 100 |
There is certainly a problem, |19 LE
® #either in choosing statistical @
measures/priors O,

; RN
#or scanning technique
(or both) i 17 47
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=
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Genetic Algorithms (GAs)

GAs are a class of adaptive heuristic search
techniques that incorporate the evolutionary
ideas of natural selection and survival of the
fittest in biology. As such, they represent an
intelligent random search within a defined
search space to solve.a= . omplex problem.

eSelection
*Crossov-

Generation 1 Generation 2 Generation N

Average fitness of the whole population increases. (Survival of the Fittest)
B

EXAMPLE

21


http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php

Genetic Algorithms (GAs)

a. Binary Encoding

»Binary encoding is the most common one, mainly because the first research of GA
used this type of encoding and because of its relative simplicity.
»In binary encoding, every chromosome is a string of bits - 0 or 1, for example:

chromosome A: 101100101100101011100101
chromosome B;: 111111100000110000011111

b. Permutation Encoding |

»Every chromosome is a string of numbers that represent a position in a sequence, for
example:

chromosome A: (1 5 3 2
567

47 9 8)
chromosome B: (8 314Y9)

c. Value Encoding

»Every chromosome is a sequence of some values. Values can be anything
connected to the problem, such as integers, real numbers, characters or any objects.

1.2324 5.3243 0.4556 2.3293 2.4545
ABDJEIFJDHDIERJFDLDFLFEGT
(back), (back), (right), (forward), (left)

i -




Genetic Algorithms (GAs)

Binary-encoding Crossover

Crossover:

“Single point crossover - one crossover point is selected, binary string from the
beginning of the chromosome to the crossover point is copied from the first parent,
the rest is copied from the other parent:

Parent A Parent B Offspring

B+ 4

11001011+ 11011111 =11001| 111

“+Two point crossover - two crossover points are selected, binary string from the
beginning of the chromosome to the first crossover point is copied from the first
parent, the part from the first fo the second crossover point is copied from the
other parent and the rest is copied from the first parent again:

Parent A Parent B Offspring

il i+ = [l L

10/{0010|11+11]|0111|01=10|0111 11

- 3




Genetic Algorithms (GAs)

Crossover:

“»Uniform crossover - bits are randomly copied from the first or from the second parent:

Parent A Parent B Offspring
+ = e T
o|10[o10|11+1]|00|111|01=1]10|111]11
“*Arithmetic crossover - some arithmetic operation is performed to make new offspring:
Parent A Parent B Offspring
+ - G

11001011 + 11011111 = 11001001 (AND)

Permutation-encoding Crossover:

“Single point crossover - one crossover point is selected, the permutation is copied
from the first parent till the crossover point, then the other parent is scanned and if the
number is not yet in the offspring, it is added:

(12345 | 6789)+(453689721)=(123456897)

Value-encoding Crossover: All crossovers from binary-encoding crossover can be used.

- -



Genetic Algorithms (GAs)

After crossover After mutation
il E E=00 H &

Binary-encoding Mutation

+»+Bit inversion - selected bits are inverted:

11 001001—>10001001

Permutation-encoding Mutation

“Order changing - two numbers are selected and exchanged:

(123456897 >(183456297)

Value-encoding Mutation:

% Adding a small number (for real value encoding) - a small number is added to (or
subtracted from) selected values:

(1.29 568 2.86 4.11 555)— (1.29 568 2.73 4.22 555
.

25




Genetic Algorithms (GAs)

Tomasy Dominik Gwiazda

Genetjc

A'Qorithms
Referean

Volume I, _ _
Mutation o rator for numeﬁcat
Optimization pmbléiii_§ij- I

412 pages e
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http://www.amazon.com/gp/product/images/8392395840/ref=dp_image_0?ie=UTF8&n=283155&s=books

Ovur implementation: Model/Nvuisance Parameters '

@ CMSSM: GUT-scale parameterisation

m,: scalar mass parameter m, ,: gAUQINO Mass parameter
tanp: rafio of Higgs VEVs A,: trilinear coupling
sgn W: Higgs mass parameter (+ve in our scans)

Just a testbed - techniques are applicable to any MSSM parameterisation

@ SM nuisances: reflecting our imperfect knowledge of the values of
relevant SM parameters

m;,: pole top quark mass m,: bottom quark mass
d..,: EM coupling constant a,: strong coupling constant

27




Ouvuri i
|Ie|: Data/Constraints

Ol servable Mean value Uncertaint ies

(st andard deviations)

experiment al  the ,oretical

mi

172.6 GeV 14 GeV
mb(nn,]‘i‘i 4.20 GeV 0.07 GeV -
a,(mz)™’ 0.002 .

—

v 1/ tem (M2 M= 0.03 =
\‘\ mcz\.s\\l'cl\ o Physic°li
\ R().308 GeV 25 MeV 15 MeV Q self-consi l,
\ - ' o= c = lSteni H
\, 0.23153 16 x 10 15 % 10 RGEs exist solutions to the
| 29.5 8.8 1.0 @ condif
& > - ndition:
\ 255 0.26 0.21 brackt s of Ew symmetry
\, AMB TIPS 012 ps~’ 2.4ps" 9 ho mg are satisfied
\ i ol
| | BR(Bu—? )y x 10 | 132 0.49 038 tachi S3e3 become
\ O, h? 0.1099 0.0062 0.1Q,h° ﬂ : nic)
l\. limits only ('J."Jl,";‘ CL) | Neuiralino is 'he LSP
‘ BR('B_, — ;f";l‘) < HhB X 107" 14% -
\ Mh - 114.4 GeV (.“\'.\l-\ikc Higes) 3 GeV
“’, L;‘: f(mn) (see Ref. 21) lu'g\ig'\\th
\ msq - 50 (_lc\»v ' ' 'z" (,
| mox - 103.5 GeV (> 924 GeV) 5%
\ IH;L - 100 GeV (> 73 GeV) 5%
\ mi > 05 GeV (& 73 GeV) 5%
\ i - r - 1\ 7 [/
\ My - B GeV (= 73 GeV) 57
i\ mu > 04 GeV (> 43 GeV) 5%
'\ ms, 5 05 GeV (> 65 GeV) )(
‘\ my, > 95 GeV (> 50 GeV) 5%
\\ mg > 375 GeV :‘(’
\ ma > 289 GeV 5%

28



Our implementation: Scanning Algorithm

General Structure:

Genetic Operator: G = RMCS
/7

initialisation:
P = {00}, Vi e [1,]]
k=0

reproduction loop:
do while not T
ki=k+1

Pt =GPt
end do
reading the best-fit point:

[SuperBoyes Vi .35]

Reproduction

Crossover

Selection

generating new population through genetic operators:

We keep all generated points
to map confidence regions.

Oar = O where L(OV') = max {L(OF)}, Vi € [1,1], Yk € [1, K]

PIKAIA 1.2

Huge potential
{e]§
parallelisation

* Developed by P. Charbonneau et. al., can be downloaded from hitp://www.hao.ucar.edu/modeling/pikaia/pikaia.php 29




SuperBayes New version v1.5 now

(www.superbayes.org) available (June 2010)

*Developed by R. Ruiz de Austri, R. Trotta, F. Feroz, L. Roszkowski, and M.
Hobson.

It is a package for fast and efficient sampling of the CMSSM.

*Compares SUSY predictions with observable quantities, including sparticle
masses, collider observables, B-factory data, dark matter relic abundance,
direct detection cross sections, indirect detection quantities etc.

*The package combines SoftSUSY, DarkSUSY, MicrOMEGAs, FeynHiggs, and
Bdecay.

Partly added by our group for DD, Hess, Fremi, etc.

|t uses Bayesian techniques to explore multidimensional SUSY parameter
spaces. Scanning can be performed using Markov Chain Monte Carlo
(MCMC) technology or more efficiently by employing the new scanning
technique, called nested sampling l(MuI’riNes’r algori’rhm).

* Although these methods have also been used for profile likelihood analyses
of the model, they are essentially optimised for marginal posterior analyses

only.
Listen to R. Ruiz’'s talk after lunch 30
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Our implementation: Scanning Algorithm

Fitness function: 1 / x* (positive, to be maximised)

Encoding: decimal alphabet (a string of base 10 integers, every normalised
parameter 6, (i=1...8)is encoded into a string d,d,...d, , where the (d,>0) €
[0; 9]. ng=5, i.e. every individual chromosome’s length is mxng = 8x5 = 40.

Initialisation and population size: completely random points in the
parameter space for initial population; populafion size of n, = 100 — fixed.

Selection: (Roulette Wheel Algorithm) a stochastic mechanism; probability
of an individual to be selected for breeding is based on its fithess:

# assign to each individual 8, a rank r; based on its fitness f; (r=1 corresponds to the fittest
individual and r=n, to the most unfit)

# a ranking fitness f'; is defined in terms of this rank:

ff =nNp —Ti+ 1,

¥ the sum of all ranking fitness values in the population is computed and n, running sums are

defined as:
i'E.P .,il
F:Zﬁ Sj:Zﬁ, 1=1,..., ny
T —
Obviously: §;,,28; and §,, =F. 31

B



Our implementation: Scanning Algorithm

* arandom number R € [0; F] is generated and the element §; is located for which §; ;S R <§;.
The corresponding individual is one of the parents selected for breeding; the other one is also

chosen in the same manner.

Other selection methods exist: Boltzman selection, Tournament selection,
Rank selection, Steady-State selection, efc.

Crossover: combination of one-point and two-point crossover (to avoid
“end-point bias problem”) - crossover operation is applied only with a preset

probability (85%)

uniform one-point crossover

initial parent chromosomes 6739...8451 4394. .. 0570
selecting a random cutting point 6730...84|51 | 4394, .05|70
swapping the sub-strings 6739...84|70 | 4394, ..05|51
final oftspring 6739...8470 | 4394...0551
uniform two-point crossover
initial parent chromosomes 6739...8451 4394. .. 0570
selecting two random cutting points | 67|39...845|1 | 43|94...057|0
swapping the sub-strings 67|94...057|1 | 43|39...845|0
final offspring 6794...0571 | 4339...8450

T —
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Our implementation: Scanning Algorithm

Mutation: uniform one-point mutation operator. Different genes in the
offspring's chromosomes (i.e. decimal digits in the 40-digit strings) are
replaced with a predefined probability (the ‘mutation rate’), by a random
integer in the interval [0; 9].

Local Maxima - Randomness

instead of using a fixed mutation rate we allow it to vary dynamically
throughout the run, such that the degree of ‘biodiversity’ is monitored and
the mutation rate is adjusted accordingly.

Degree of clustering is assessed based on the difference between the actual
fitness values of the best and median points:

Aj — (j?“zl - j-r:np/2)/(f?“:1 + f-r:n.p/2);
(with lower and upper critical values of 0.05 and 0.25, multiplicative factor of
1.5, mutation limits of 0.0005 and 0.25, and initial value of 0.005).

Elitism: To guarantee survival of this individual, we use an elitism feature in
our reproduction plan.

Termination and number of generations: fixed and predetermined
number of generations (~3000)
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Results: 2D Profile Likelihoods in my-m, , Plane

GAs find better fits than nested sampling (X2 = 9.35 vs. x2=13.51).
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Results: 2D Profile Likelihoods in A,-tanp Plane
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Results: 1D Profile Likelihoods for CMSSM Parameters

Akrami, Scott, Edsjo, Conrad & Bergstrom (2010)
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Results: 1D Profile Likelihoods for Some Observables

Akrarmi, Scott, Edsjo, Conrad & Bergstrom (2010)
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@ The LHC is in principle able to investigate a large fraction of the high-likelihood points in the CMSSM
parameter space if it explores sparticle masses up to around 3 TeV.
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Results: 2D Profile Likelihoods in DM DD Plane (SI)
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Q@ Best-fit point is actually ruled out by direct detection (under standard halo assumptions).
@ Secondary maximum still OK.
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Results: 2D Profile Likelihoods in DM ID Plane
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@ Global best-fit point should be probed soon by Fermi (See e.g. P. Scoft, J. Conrad, J. Edsjo, L.
Bergstrom, C. Farnier & YA. Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of

the Dwarf Galaxy Segue 1, JCAP 01, 031 (2010) [arXiv:0209.3300])

@ The GA turns up a ‘new’ region at moderate <ov>, around 400 GeV. This region is a high-m, stau
coannihilation region, apparently missed in other scans. 39



Conclusions

*SUSY parameter spaces are complex

*Statistical inference strongly depends on statistical
measures/priors and scanning techniques

*GAs help for profile likelihood studies
« Still far from being “The Algorithm”
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A Quotation by the Inventor

Living organisms are consummate problem solvers. They
exhibit a versatility that puts the best computer programs to
shame. This observation is especially galling for computer
scientists, who may spend months or years of intellectual
effort on an algorithm, whereas organisms come by their
abilities through the apparently undirected mechanism of
evolution and natural selection.

Jobon, Follardt
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Results: Best-fit Parameter Values
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R X i
esults: Best-fit Parameter Values

on to the total X in %)
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Summary and Conclusions

Constraining the parameter space of the MSSM using existing data is

under no circumstances an easy or straightforward task. Even in the case of
the CMSSM, a highly simplified and economical version of the model, the present data are not
sufficient to constrain the parameters in a way completely independent of computational and
statistical techniques.

Many recent activities in this field have used scanning methods

optimised for calculating the Bayesian evidence and posterior PDF. Highly
successful in revealing the complex structure of SUSY models, demonstrating that some patience
will be required before we can place any strong constraints on their parameters.

Bayesian scanning methods have also been employed for frequentist
analyses of the problem, particularly in the framework of the profile

likelihood. These methods are not optimised for such frequentist analyses, so care should be
taken in applying them to such tasks.

We have employed a completely new scanning algorithm, based on

GA:S. They seem to be a powerful tool for frequentist approaches to the problem of scanning
the CMSSM parameter space. We compared the outcomes of GA scans directly with those of the
state-of-the-art Bayesian algorithm MultiNest, in the framework of the CMSSM.

We found many new high-likelihood CMSSM points, which have a strong

impact on the final statistical conclusions of the study. These not only influence
considerably the inferred high-likelihood regions and confidence levels on the parameter
values, but also indicate that the applicability of the conventional Bayesian scanning techniques
is highly questionable in a frequentist context.

.
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Summary and Conclusions

Although our initial motivation in using GAs was to gain a correct
estimate of the likelihood at the global best-fit point, which is crucial in a
profile likelihood analysis, we also realised that they can find many new
and interesting points in almost all the relevant regions of parameter

SPACeE. These points strongly affect the inferred confidence regions around the best-t point.
Even though we cannot be confident of exactly how completely our algorithm is really mapping
these high-likelihood regions, it has certainly covered large parts of them better than any
previous algorithm.

By improving the different ingredients of GAs, such as the crossover and

mutation schemes, this ability might even be enhanced further. we largely
employed the standard, simplest versions of the genetic operators in our analysis, as well as very
typical genetic parameters. These turned out to work sufficiently well for our purposes. Although
we believe that tuning the algorithm might produce even more interesting results, it is good news
that satisfactory results can be produced even with a very generic version. This likely means that
one can apply the method to more complicated SUSY models without extensive ne-tuning.

We have also compared our algorithm with MultiNest in terms of speed
and convergence, and argued that GAs are no worse than MultiNest in

this respect. GAs have a large potential for parallelisation, reducing considerably the time
required for a typical run. This property, as well as the fact that the computational eort scales
linearly (i.e. as kN for an N-dimensional parameter space), also makes GAs an excellent method
for the frequentist exploration of higher-dimensional SUSY parameter spaces.

.
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Summary and Conclusions

The focus point region is favoured in our analysis over the co-annihilation
region, in contrast to findings from some other MCMC studies, where the
opposite is claimed. We also found a rather large part of the stau co-
annihilafion region, consistent with all experimental data, located at

high My. That is, at least in our particular setup, high masses, corresponding either to the FP or
the COA regions, are by no means disfavoured by current data (except perhaps direct detection
of dark matter). The discrepancy might originate in the different scanning algorithms employed,
or in the different physics and likelihood calculations performed in each analysis. We have
however shown, by comparing our results with others produced using exactly the same setup
except for the scanning algorithm, that one should not be at all confident that all the relevant
points for a frequentist analysis can be found by scanning techniques optimised for Bayesian
statistics, such as nested sampling and MCMCs.
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Summary and Conclusions

The bottom line of our work is that:

We once again see that even the CMSSM, despite its simplicity, possesses @
highly complex and poorly-understood structure, with many small, fine-
tuned regions. This makes investigation of the model parameter space
very difficult and still very challenging for modern statistical scanning
techniques. Although the method proposed in this paper seems to
outperform the usual Bayesian techniques in a frequentist analysis, it is
important to remember that it may by no means be the final word in this
direction. Dependence of the results on the chosen statistical
framework, measure and method calls for caution in drawing strong
conclusions based on such scans. The situation will of course improve
significantly with additional constraints provided by forthcoming data.
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