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Polarized Systems: P =
N↑ −N↓
N↑ + N↓

NA ! N" " N# of unpaired atoms, such that N ! 2NP #
NA. We denote the concentration of the minority atoms by
y ! N#=N". In the deep BEC regime the SFP phase corre-
sponds to a miscible mixture of NP bosons and NA fermi-
ons [16,17]. The interaction between bosons and fermions
is repulsive and is fixed by the atom-dimer scattering
length aad ! 1:18a [18]. In this regime we write the equa-
tion of state in the form

 ESFP !ESF0$NP%#
3
5
N"EF"

!
$1"y%5=3#5kF"aad

3!
y$1"y%

"
;

(4)

where ESF0$NP% ! 3=5N"EF"y5=32G$1=kF"ay1=3% # "bNP

is the energy of the 2NP paired atoms and the other terms
in Eq. (4) correspond to the kinetic energy of the unpaired
atoms and to the interaction energy between atoms and
dimers treated at the mean-field level. We carry out FN-
DMC simulations of the SFP phase for various values of the
interaction strength. The nodal surface is modeled using a
BCS plus unpaired particles wave function written in the
form of a determinant as in Ref. [19]. The results are shown
in Fig. 3 together with the energy functional (4). The
agreement is remarkable down to quite small values of
the interaction parameter 1=kF"a & 0:5 [20]. Furthermore,
we notice that the SFP phase reduces to the SF0 one if
y ! 1.

We are now in a position to study the coexistence
between the superfluid and normal phases introduced
above. One requires the equilibrium of pressures between
the superfluid pS ! "@ES=@VS and the normal pN !
"@EN=@VN state and the equilibrium of chemical poten-
tials. In the normal phase there are two chemical potentials
for the NPP state: #N"$#% ! @EN=@N"$#%, which reduce to
only #N" for the NFP state. Similarly in the SFP phase one
can vary both the number of pairs #SP ! @ES=@NP and the
number of unpaired atoms #SA ! @ES=@NA, while in the

SF0 phase only the chemical potential of pairs #SP with
NP ! N=2 is relevant.

(a) Phase separation between SFP and NFP.—The equi-
librium conditions are pS ! pN and #SA ! #N". For a
given concentration y of the spin-down atoms in the SFP
phase, the two conditions determine the values of the
densities of the spin-up component in the two coexisting
phases. The ratio Pc ! 1"y

1#y gives the critical polarization
above which the system begins nucleating the normal
phase to accommodate the excess polarization. By increas-
ing P above Pc, the equilibrium densities of the two
phases, as well as the critical concentration y of the SFP
phase, do not change; instead, the volume fraction VN=V of
the normal phase increases and eventually becomes the
entire volume for P ! 1. The critical polarization line,
corresponding to a first order phase transition, is shown
in the phase diagram of Fig. 4. At P ! 1 this line termi-
nates at the tricritical point 1=kF"a ! 1:7 [21]. For larger
values of 1=kF"a the homogenous SFP phase exists up to
P ! 1 and the superfluid to normal transition becomes
second order. For a given concentration y the SFP-NFP state
is stable provided #SP ' #N" ##N# ! EF"$1" 3A=5%,
i.e., until the process in which pairs break and spin-down
particles start to populate the normal phase remains ener-
getically unfavorable. The instability line, corresponding
to x ! 0, marks a second order phase transition where the
fully polarized normal phase evolves continuously into the
partially polarized normal phase. At P ! 1 this line termi-
nates at the point 1=kF"a ! 0:73; for smaller values of
1=kF"a a superfluid cannot exist up to P ! 1. For small
polarizations the second order transition line terminates at
the point corresponding to Pc ! 0:015 and 1=kF"a ! 0:61.
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FIG. 3 (color online). Equation of state of the superfluid po-
larized phase SFP as a function of the concentration y for dif-
ferent values of the interaction strength. The solid lines corre-
spond to the energy functional (4).
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FIG. 4 (color online). Phase diagram as a function of polar-
ization and interaction strength. In terms of the Fermi wave
vector kF ! $3!2n%1=3 fixed by the total density n ! N=V one
has 1=kFa ! 1=kF"a at P ! 0 and 1=kFa ! 21=3=kF"a at P ! 1.
On the BCS side of the resonance our determination of the
critical polarization is not reliable. For "1=kF"a * 1 we obtain
Pc using the BCS theory (see the text).
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FIG. 2: rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment (blue, state
|1〉) and impurity (red, state |3〉) component in a highly imbalanced spin-mixture. a) Molecular limit, b), c) Emergence of the
polaron, a distinct peak exclusively in the minority component. d) At unitarity, the peak dominates the impurity spectrum.
For the spectra shown as dashed lines in d) the roles of states |1〉 and |3〉 are exchanged. Impurity concentration was x = 5(2)%
for all spectra, the interaction strengths 1/kF a were a) 0.76(2) b) 0.43(1) c) 0.20(1), d) 0 (Unitarity).

in previous work, spectra are spatially resolved and to-
mographically 3D reconstructed [18] via an inverse Abel
transform, and are thus local and free from broadening
due to density inhomogeneities. In addition, phase con-
trast images yield the in-situ density distribution n↑, n↓

and thus the local Fermi energy εF of the environment
atoms and the local impurity concentration x = n↓

n↑
. The

Rabi frequencies ΩR for the impurity and environment rf
transitions are measured (on fully polarized samples) to
be identical to within 5%.

Rf spectroscopy directly probes short-range correla-
tions between particles and is thus ideally suited to ob-
serve the emergence of the polaron. Fig. 2 shows the
observed spectra of the spin down impurities and that
of the spin up environment at low local impurity con-
centration. The bulk of the environment spectrum is
found at zero offset, corresponding to the free (Zeeman
plus hyperfine) energy splitting between states |1〉 and
|2〉. However, interactions between impurity and spin up
particles lead to a spectral contribution that is shifted:
The rf photon must supply additional energy to transfer
a particle out of its attractive environment into the final,
non-interacting state [19]. In Fig. 2a), impurity and en-
vironment spectra above zero offset exactly overlap, sig-
nalling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with non-zero
momentum [19, 20, 21]. As the attractive interaction is
reduced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment (Fig. 2b,c,d). This narrow peak, emerging from
a broad incoherent background, signals the formation of
a long-lived quasiparticle, the Fermi polaron. The width
of the polaron peak is consistent with a delta function
within the experimental resolution, as calibrated by the
spectra of fully polarized clouds. The background is per-
fectly matched by the rf spectrum of the environment.
This is expected at high rf energies !ω " εF that are

probing high momenta k " kF and thus distances short
compared to the interparticle spacing. Here, an impurity
particle will interact with only one environment particle,
leading to overlapping spectra.

F. Chévy has provided an instructive trial wavefunc-
tion [5, 9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte-Carlo (MC) calculations [6, 12, 13]:

|Ψ〉 = ϕ0 |0〉↓ |FS〉↑+
∑

|q|<kF <|k|

ϕkqc†k↑cq↑ |q − k〉↓ |FS〉↑

(1)
The first part describes an impurity with a well-defined

wavevector (k↓ = 0) that is not localized and free to
propagate in the Fermi sea of up spins |FS〉↑. In the
second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z =
|ϕ0|2. The two portions of |Ψ〉 give rise to two distinct
features of the impurity rf spectrum Γ(ω) (ω is the rf
offset from the bare atomic transition):

Γ(ω) = 2π!Ω2
R Zδ(!ω + E↓) + Γincoh.(ω) (2)

The first part in |Ψ〉 contributes, according to Fermi’s
Golden Rule, a coherent narrow quasiparticle peak ∝
Zδ(!ω + E↓) to the minority spectrum. Its position is a
direct measure of the polaron energy E↓, its integral gives
the quasiparticle residue Z. The particle-hole excitations
in the second part give rise to an incoherent background
Γincoh.(ω) ∝

∑

q,k |φqk|
2 δ(!ω−εq−k−εk+εq+E↓): The

polaron energy E↓ is released as the impurity at momen-
tum q − k is transferred into the final state, leaving be-
hind an environment particle in k above and a hole within
the Fermi sea at q. This part of the spectrum starts at
!ω = |E↓| like Γ(ω) ∝ (!ω − |E↓|)

2, less steeply than a
molecular dissociation spectrum (∝

√

!ω − |EB |), as the

2

43210432106543210
rf offset / εF

ato
m t

ran
sfe

r / a
.u.

6420

a) b) c) d)

FIG. 2: rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment (blue, state
|1〉) and impurity (red, state |3〉) component in a highly imbalanced spin-mixture. a) Molecular limit, b), c) Emergence of the
polaron, a distinct peak exclusively in the minority component. d) At unitarity, the peak dominates the impurity spectrum.
For the spectra shown as dashed lines in d) the roles of states |1〉 and |3〉 are exchanged. Impurity concentration was x = 5(2)%
for all spectra, the interaction strengths 1/kF a were a) 0.76(2) b) 0.43(1) c) 0.20(1), d) 0 (Unitarity).

in previous work, spectra are spatially resolved and to-
mographically 3D reconstructed [18] via an inverse Abel
transform, and are thus local and free from broadening
due to density inhomogeneities. In addition, phase con-
trast images yield the in-situ density distribution n↑, n↓

and thus the local Fermi energy εF of the environment
atoms and the local impurity concentration x = n↓

n↑
. The

Rabi frequencies ΩR for the impurity and environment rf
transitions are measured (on fully polarized samples) to
be identical to within 5%.

Rf spectroscopy directly probes short-range correla-
tions between particles and is thus ideally suited to ob-
serve the emergence of the polaron. Fig. 2 shows the
observed spectra of the spin down impurities and that
of the spin up environment at low local impurity con-
centration. The bulk of the environment spectrum is
found at zero offset, corresponding to the free (Zeeman
plus hyperfine) energy splitting between states |1〉 and
|2〉. However, interactions between impurity and spin up
particles lead to a spectral contribution that is shifted:
The rf photon must supply additional energy to transfer
a particle out of its attractive environment into the final,
non-interacting state [19]. In Fig. 2a), impurity and en-
vironment spectra above zero offset exactly overlap, sig-
nalling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with non-zero
momentum [19, 20, 21]. As the attractive interaction is
reduced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment (Fig. 2b,c,d). This narrow peak, emerging from
a broad incoherent background, signals the formation of
a long-lived quasiparticle, the Fermi polaron. The width
of the polaron peak is consistent with a delta function
within the experimental resolution, as calibrated by the
spectra of fully polarized clouds. The background is per-
fectly matched by the rf spectrum of the environment.
This is expected at high rf energies !ω " εF that are

probing high momenta k " kF and thus distances short
compared to the interparticle spacing. Here, an impurity
particle will interact with only one environment particle,
leading to overlapping spectra.

F. Chévy has provided an instructive trial wavefunc-
tion [5, 9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte-Carlo (MC) calculations [6, 12, 13]:

|Ψ〉 = ϕ0 |0〉↓ |FS〉↑+
∑

|q|<kF <|k|

ϕkqc†k↑cq↑ |q − k〉↓ |FS〉↑

(1)
The first part describes an impurity with a well-defined

wavevector (k↓ = 0) that is not localized and free to
propagate in the Fermi sea of up spins |FS〉↑. In the
second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z =
|ϕ0|2. The two portions of |Ψ〉 give rise to two distinct
features of the impurity rf spectrum Γ(ω) (ω is the rf
offset from the bare atomic transition):

Γ(ω) = 2π!Ω2
R Zδ(!ω + E↓) + Γincoh.(ω) (2)

The first part in |Ψ〉 contributes, according to Fermi’s
Golden Rule, a coherent narrow quasiparticle peak ∝
Zδ(!ω + E↓) to the minority spectrum. Its position is a
direct measure of the polaron energy E↓, its integral gives
the quasiparticle residue Z. The particle-hole excitations
in the second part give rise to an incoherent background
Γincoh.(ω) ∝

∑

q,k |φqk|
2 δ(!ω−εq−k−εk+εq+E↓): The

polaron energy E↓ is released as the impurity at momen-
tum q − k is transferred into the final state, leaving be-
hind an environment particle in k above and a hole within
the Fermi sea at q. This part of the spectrum starts at
!ω = |E↓| like Γ(ω) ∝ (!ω − |E↓|)

2, less steeply than a
molecular dissociation spectrum (∝

√

!ω − |EB |), as the
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Radio frequency 
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Theory
RF photon

|1�

|2�

|3�

Interactions

Mass
Density

Mass
Density

m

n3

n1
Transition rate:
�

i,f

(Pi − Pf )
����
�

d3r�f |ψ†
2(r)ψ1(r)|i�

����
2

δ(ω − Ef + Ei)

∝ ImD(ω) =
�

drdr�ImD(r, r�, ω)

D(r, r�, t − t�) = −iθ(t − t�)�[ψ†
2(r, t)ψ1(r, t), ψ†

1(r
�, t�)ψ2(r�, t�)]�

m3

 Strinati, Pieri, Perali, Levin, 
Sheehy, Sachdev, GMB, Stoof, 

Massignan, Baym, ... 

Difficult problem: Self-energies, 
trap, vertex corrections, pairing, ...
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Bottom lines

m3>>m1: Controlled conserving calculation

Exact analytical results for n3<<n1

Vertex corrections qualitatively change 
spectrum

Resonance ≠ large line shifts

Ladder approx. inadequate for m3>>m1
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D(r, r�, t − t�) = −iθ(t − t�)�[ψ†
2(r, t)ψ1(r, t), ψ†

1(r
�, t�)ψ2(r�, t�)]�

Limit m3>>m ⇒ Static impurities

= +

= +

(a)

(b)
=

= +

(b) (c)
22

1 1 1

2
2

1

RF photon

|1�

|2�

|3�

Interactions

Mass
Density

Mass
Density

m

n3

n1

Self-energy effects for |1〉and |2〉:

m3

Gσ(p, z)−1 = G0
σ(p, z)−1 − Σσ(z)

Σσ(z) = n3Tσ(z)
= +

= +

(a)

(b)
=

= +

(b) (c)
22

1 1 1

2
2

1

Tσ(z) = Vσ + VσGσ(z)Tσ(z)

T1

T2

11

2
1-loop approx. 
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SU(2) symmetry: T1 = T2

|1�

|2�

T1

T2

|1�

|2�

No line shift due
 to interactions

= +

= +

(a)

(b)
=

= +

(b) (c)
22

1 1 1

2
2

111

2

 Conserving approximation: vertex corrections

= +

= +

(a)

(b)
=

= +

(b) (c)
22

1 1 1

2
2

1

Particle-hole scattering
 on same impurity

Veff = n3T1(iων)T2(iων + iωγ)

1-loop approx. 

Yu & Baym 2006

Strinati group, Nat. Phys. 2009; Strinati group + Jin group, 2010
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= +

= +

(a)

(b)
=

= +

(b) (c)
22

1 1 1

2
2

1

D(iωγ) = T
�

ων

(2π)−3
�

d3p G1(p, iων)G2(p, iων + iωγ)
1− n3T1(iων)T2(iων + iωγ)(2π)−3

�
d3p G1(p, iων)G2(p, iων + iωγ)

M(z1, z2) =
�

d3p

(2π)3
G1(p, z1)G2(p, z2) = iπ

d2(z2)sgn(Imz2)− d1(z1)sgn(Imz1)
z2 − z1 + µ2 − µ1 −∆ + Σ1(z1)− Σ2(z2)

Conserving (All propagators dressed)

Momentum independent. Series can be summed

z = ε

z = ε − iωγ

z!"#

z = ε

z = ε − iωγ

z!"#
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The case n3<<n1:
Analytical results |1�

|2�

n1

n3

T2 = i
e2iδ2 − 1

2πd0

T1 = i
e2iδ1 − 1

2πd0

Ideal Gas:SU(2) invariant= +

= +

(a)

(b)
=

= +

(b) (c)
22

1 1 1

2
2

1

2-particle and 1-hole scattering on same impurity:
T ∝ e2i(δ2−δ1) − 1

ImD(ω) = −Im
� ∞

0
d�

d0 f(� + �1 − µ1)
ω − E0 − in3

�
e2i(δ1−δ2) − 1

�
/2πd0

D(ω) = − n1

ω − E0 + i0+
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Shift:

Width:

∆ω(�) = n3
π

m

sin(2δ1 − 2δ2)
k

Γ(�) = n3
4π

m

sin2(δ1 − δ2)
k

No vertex:

n3
π

m

sin 2δ1 − sin 2δ2

k

n3
4π

m

sin2 δ1 + sin2 δ2

k

tan δ = −ka

ImD(ω) = −Im
� ∞

0
d�

d0 f(� + �1 − µ1)
ω −∆ω(�) + iΓ(�)

Weak coupling

Resonant coupling

Large shift (δ=π/4) ≠ large width (δ=π/2)     

δσ � kaσ
Mean
 field∆ω � n32π(a2 − a1)

m

∆ω = −n3
π

m
sin(2δ1)δ2 = π/2

Sign change

Pipkin 1964, Koelman 1988
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Numerics
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SU(2) 

invariance

kFa1=-100
kFa2=-1

Sign change

kFa1=-1
kFa2=-1

no vertex
Wrong!
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)/m
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kFa1=-1/2
kFa2=0

kFa1=-1⇒δ1=π/4

Maximum shiftkFa1=-∞⇒δ1=π/2

Maximum width

∆ω(�) = n3
π

m

sin(2δ1 − 2δ2)
k

Γ(�) = n3
4π

m

sin2(δ1 − δ2)
k

ImD(ω) =
�

d�

2
(f2 − f1)Im

�
d2 − d1

ω −∆ + n3[T1 − T2 − iπT1T2(d2 − d1)]
− d2 + d∗1

ω −∆ + n3[T ∗
1 − T2 − iπT ∗

1 T2(d2 + d∗1)]

�

n3<<n1:

|1�

|2�

T1

T2
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Recovery of m/m3→0 limit

Σσ(z) = n3Tσ(z) = +

= +

(a)

(b)
=

= +

(b) (c)
22

1 1 1

2
2

1

Tσ(z) = Vσ + VσGσ(z)Tσ(z)

Impurity scattering

Finite m3: n’th order diagram 

(b)(a)

+

(c)

3 3 3

1 1 1

1

3(c)(c)(c) (d)

1

2

3

a b
1 n 2

Σ(n)
1 (τb − τa) = −(−V1)n

� β

0
dτ1 . . . dτn−2

G1(τb − τn−2)G1(τn−2 − τn−3) . . . G1(τ1 − τa)

×[ G3(τb − τn−2)G3(τn−2 − τn−3) . . . G3(τ1 − τa)G3(τa − τb)
+ all τ permutations]

G3(p, τ) =
�

f3
p eµ3τ for τ < 0
−eµ3τ for τ > 0

→ Σ(n)
1 (ω) = n3V1 [V1G1(ω)]n−1

1a b
1 n 2
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Conserving calculation

Analytical results for RF signal m<<m3

SU(2) symmetry ⇒ Vertex corrections

Vertex corrections change result qualitatively

Resonant interaction ≠ large shifts

GMB, C. J. Pethick, Z. Yu, 
PRA 81, 033621 (2010)

Conclusions
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Polaron-molecule
coupling

Increasing interaction

Polaron Molecule

Chevy, Mora, Zwerger, 
Punk, Combescot, 

Leyronas, Recati, Lobo, 
Prokof’ev, Svistunov ...
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FIG. 2: rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment (blue, state
|1〉) and impurity (red, state |3〉) component in a highly imbalanced spin-mixture. a) Molecular limit, b), c) Emergence of the
polaron, a distinct peak exclusively in the minority component. d) At unitarity, the peak dominates the impurity spectrum.
For the spectra shown as dashed lines in d) the roles of states |1〉 and |3〉 are exchanged. Impurity concentration was x = 5(2)%
for all spectra, the interaction strengths 1/kF a were a) 0.76(2) b) 0.43(1) c) 0.20(1), d) 0 (Unitarity).

in previous work, spectra are spatially resolved and to-
mographically 3D reconstructed [18] via an inverse Abel
transform, and are thus local and free from broadening
due to density inhomogeneities. In addition, phase con-
trast images yield the in-situ density distribution n↑, n↓

and thus the local Fermi energy εF of the environment
atoms and the local impurity concentration x = n↓

n↑
. The

Rabi frequencies ΩR for the impurity and environment rf
transitions are measured (on fully polarized samples) to
be identical to within 5%.

Rf spectroscopy directly probes short-range correla-
tions between particles and is thus ideally suited to ob-
serve the emergence of the polaron. Fig. 2 shows the
observed spectra of the spin down impurities and that
of the spin up environment at low local impurity con-
centration. The bulk of the environment spectrum is
found at zero offset, corresponding to the free (Zeeman
plus hyperfine) energy splitting between states |1〉 and
|2〉. However, interactions between impurity and spin up
particles lead to a spectral contribution that is shifted:
The rf photon must supply additional energy to transfer
a particle out of its attractive environment into the final,
non-interacting state [19]. In Fig. 2a), impurity and en-
vironment spectra above zero offset exactly overlap, sig-
nalling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with non-zero
momentum [19, 20, 21]. As the attractive interaction is
reduced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment (Fig. 2b,c,d). This narrow peak, emerging from
a broad incoherent background, signals the formation of
a long-lived quasiparticle, the Fermi polaron. The width
of the polaron peak is consistent with a delta function
within the experimental resolution, as calibrated by the
spectra of fully polarized clouds. The background is per-
fectly matched by the rf spectrum of the environment.
This is expected at high rf energies !ω " εF that are

probing high momenta k " kF and thus distances short
compared to the interparticle spacing. Here, an impurity
particle will interact with only one environment particle,
leading to overlapping spectra.

F. Chévy has provided an instructive trial wavefunc-
tion [5, 9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte-Carlo (MC) calculations [6, 12, 13]:

|Ψ〉 = ϕ0 |0〉↓ |FS〉↑+
∑

|q|<kF <|k|

ϕkqc†k↑cq↑ |q − k〉↓ |FS〉↑

(1)
The first part describes an impurity with a well-defined

wavevector (k↓ = 0) that is not localized and free to
propagate in the Fermi sea of up spins |FS〉↑. In the
second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z =
|ϕ0|2. The two portions of |Ψ〉 give rise to two distinct
features of the impurity rf spectrum Γ(ω) (ω is the rf
offset from the bare atomic transition):

Γ(ω) = 2π!Ω2
R Zδ(!ω + E↓) + Γincoh.(ω) (2)

The first part in |Ψ〉 contributes, according to Fermi’s
Golden Rule, a coherent narrow quasiparticle peak ∝
Zδ(!ω + E↓) to the minority spectrum. Its position is a
direct measure of the polaron energy E↓, its integral gives
the quasiparticle residue Z. The particle-hole excitations
in the second part give rise to an incoherent background
Γincoh.(ω) ∝

∑

q,k |φqk|
2 δ(!ω−εq−k−εk+εq+E↓): The

polaron energy E↓ is released as the impurity at momen-
tum q − k is transferred into the final state, leaving be-
hind an environment particle in k above and a hole within
the Fermi sea at q. This part of the spectrum starts at
!ω = |E↓| like Γ(ω) ∝ (!ω − |E↓|)

2, less steeply than a
molecular dissociation spectrum (∝

√

!ω − |EB |), as the
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FIG. 2: rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment (blue, state
|1〉) and impurity (red, state |3〉) component in a highly imbalanced spin-mixture. a) Molecular limit, b), c) Emergence of the
polaron, a distinct peak exclusively in the minority component. d) At unitarity, the peak dominates the impurity spectrum.
For the spectra shown as dashed lines in d) the roles of states |1〉 and |3〉 are exchanged. Impurity concentration was x = 5(2)%
for all spectra, the interaction strengths 1/kF a were a) 0.76(2) b) 0.43(1) c) 0.20(1), d) 0 (Unitarity).

in previous work, spectra are spatially resolved and to-
mographically 3D reconstructed [18] via an inverse Abel
transform, and are thus local and free from broadening
due to density inhomogeneities. In addition, phase con-
trast images yield the in-situ density distribution n↑, n↓

and thus the local Fermi energy εF of the environment
atoms and the local impurity concentration x = n↓

n↑
. The

Rabi frequencies ΩR for the impurity and environment rf
transitions are measured (on fully polarized samples) to
be identical to within 5%.

Rf spectroscopy directly probes short-range correla-
tions between particles and is thus ideally suited to ob-
serve the emergence of the polaron. Fig. 2 shows the
observed spectra of the spin down impurities and that
of the spin up environment at low local impurity con-
centration. The bulk of the environment spectrum is
found at zero offset, corresponding to the free (Zeeman
plus hyperfine) energy splitting between states |1〉 and
|2〉. However, interactions between impurity and spin up
particles lead to a spectral contribution that is shifted:
The rf photon must supply additional energy to transfer
a particle out of its attractive environment into the final,
non-interacting state [19]. In Fig. 2a), impurity and en-
vironment spectra above zero offset exactly overlap, sig-
nalling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with non-zero
momentum [19, 20, 21]. As the attractive interaction is
reduced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment (Fig. 2b,c,d). This narrow peak, emerging from
a broad incoherent background, signals the formation of
a long-lived quasiparticle, the Fermi polaron. The width
of the polaron peak is consistent with a delta function
within the experimental resolution, as calibrated by the
spectra of fully polarized clouds. The background is per-
fectly matched by the rf spectrum of the environment.
This is expected at high rf energies !ω " εF that are

probing high momenta k " kF and thus distances short
compared to the interparticle spacing. Here, an impurity
particle will interact with only one environment particle,
leading to overlapping spectra.

F. Chévy has provided an instructive trial wavefunc-
tion [5, 9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte-Carlo (MC) calculations [6, 12, 13]:

|Ψ〉 = ϕ0 |0〉↓ |FS〉↑+
∑

|q|<kF <|k|

ϕkqc†k↑cq↑ |q − k〉↓ |FS〉↑

(1)
The first part describes an impurity with a well-defined

wavevector (k↓ = 0) that is not localized and free to
propagate in the Fermi sea of up spins |FS〉↑. In the
second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z =
|ϕ0|2. The two portions of |Ψ〉 give rise to two distinct
features of the impurity rf spectrum Γ(ω) (ω is the rf
offset from the bare atomic transition):

Γ(ω) = 2π!Ω2
R Zδ(!ω + E↓) + Γincoh.(ω) (2)

The first part in |Ψ〉 contributes, according to Fermi’s
Golden Rule, a coherent narrow quasiparticle peak ∝
Zδ(!ω + E↓) to the minority spectrum. Its position is a
direct measure of the polaron energy E↓, its integral gives
the quasiparticle residue Z. The particle-hole excitations
in the second part give rise to an incoherent background
Γincoh.(ω) ∝

∑

q,k |φqk|
2 δ(!ω−εq−k−εk+εq+E↓): The

polaron energy E↓ is released as the impurity at momen-
tum q − k is transferred into the final state, leaving be-
hind an environment particle in k above and a hole within
the Fermi sea at q. This part of the spectrum starts at
!ω = |E↓| like Γ(ω) ∝ (!ω − |E↓|)

2, less steeply than a
molecular dissociation spectrum (∝

√

!ω − |EB |), as the
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Cross-over region
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Polaron: G↓(p, z)−1 = G0
↓(p, z)−1 − ΣP (p, z)

ΣP (p, z) = Σ(1)
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ΓP = −ImΣ(2)
P (0, ωP )

Damping rate
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Molecule:
b̂†p =

�
d3q̌φqâ

†
p/2+q↓â

†
p/2−q↑

φq =
√

8πa3

1 + q2a2

φ(r) ∝ e−r/a
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M =
T2 T2 +

T2 T2

=
D0
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D(q, τ) = −�Tτ [b̂p(τ)b̂†p(0)]�

Molecule-atom
 coupling

1
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ΓP =
g2ZM

2

�
d3q̌d3ǩd3q̌� [F (q,k, ωP )− F (q�,k, ωP )]2

×δ
�
∆ω + ξq↑ + ξq�↑ − ξk↑ − (q + q� − k)2/2m∗

M

�
.

F (q,k, ω) = T2(q, ω + ξq↑)G0
↓(q− k, ω + ξq↑ − ξk↑)

D(p, ω) � ZM

ω − ωM − p2/2m∗
M

Polaron Decay:
(a)

T2=

(b)

(1)

(2) = T2 T2 + T2 T2

= +T2 T2P

P���

�� �

��������

�
�

� ���
��

�

��������

�

�
�

	
 �


���� ���	��

�

��

�
�

�
��



∆ω � �F :
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� ∞

0
dξ

� 0

−�F

dξ�dξ��δ

�
∆ω + ξ� + ξ�� − ξ − p2

2m∗
M

�
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q q’
k

k − q − q� ∼ 0
Equilateral triangle

ΓP ∼ ZMkF a

�
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Fermi exclusion gives
 extra power of Δω

F (q,k, ωP )− F (q�,k, ωP )Matrix element:
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Molecule decay:

ΓM ∼ ZP kF a
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Polaron

GMB, P. Massignan PRL 105, 020403 (2010)

Phase space effects + Fermi statistics ⇒
Long lifetimes ∼ 10-100ms
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FIG. 2: rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment (blue, state
|1〉) and impurity (red, state |3〉) component in a highly imbalanced spin-mixture. a) Molecular limit, b), c) Emergence of the
polaron, a distinct peak exclusively in the minority component. d) At unitarity, the peak dominates the impurity spectrum.
For the spectra shown as dashed lines in d) the roles of states |1〉 and |3〉 are exchanged. Impurity concentration was x = 5(2)%
for all spectra, the interaction strengths 1/kF a were a) 0.76(2) b) 0.43(1) c) 0.20(1), d) 0 (Unitarity).

in previous work, spectra are spatially resolved and to-
mographically 3D reconstructed [18] via an inverse Abel
transform, and are thus local and free from broadening
due to density inhomogeneities. In addition, phase con-
trast images yield the in-situ density distribution n↑, n↓

and thus the local Fermi energy εF of the environment
atoms and the local impurity concentration x = n↓

n↑
. The

Rabi frequencies ΩR for the impurity and environment rf
transitions are measured (on fully polarized samples) to
be identical to within 5%.

Rf spectroscopy directly probes short-range correla-
tions between particles and is thus ideally suited to ob-
serve the emergence of the polaron. Fig. 2 shows the
observed spectra of the spin down impurities and that
of the spin up environment at low local impurity con-
centration. The bulk of the environment spectrum is
found at zero offset, corresponding to the free (Zeeman
plus hyperfine) energy splitting between states |1〉 and
|2〉. However, interactions between impurity and spin up
particles lead to a spectral contribution that is shifted:
The rf photon must supply additional energy to transfer
a particle out of its attractive environment into the final,
non-interacting state [19]. In Fig. 2a), impurity and en-
vironment spectra above zero offset exactly overlap, sig-
nalling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with non-zero
momentum [19, 20, 21]. As the attractive interaction is
reduced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment (Fig. 2b,c,d). This narrow peak, emerging from
a broad incoherent background, signals the formation of
a long-lived quasiparticle, the Fermi polaron. The width
of the polaron peak is consistent with a delta function
within the experimental resolution, as calibrated by the
spectra of fully polarized clouds. The background is per-
fectly matched by the rf spectrum of the environment.
This is expected at high rf energies !ω " εF that are

probing high momenta k " kF and thus distances short
compared to the interparticle spacing. Here, an impurity
particle will interact with only one environment particle,
leading to overlapping spectra.

F. Chévy has provided an instructive trial wavefunc-
tion [5, 9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte-Carlo (MC) calculations [6, 12, 13]:

|Ψ〉 = ϕ0 |0〉↓ |FS〉↑+
∑

|q|<kF <|k|

ϕkqc†k↑cq↑ |q − k〉↓ |FS〉↑

(1)
The first part describes an impurity with a well-defined

wavevector (k↓ = 0) that is not localized and free to
propagate in the Fermi sea of up spins |FS〉↑. In the
second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z =
|ϕ0|2. The two portions of |Ψ〉 give rise to two distinct
features of the impurity rf spectrum Γ(ω) (ω is the rf
offset from the bare atomic transition):

Γ(ω) = 2π!Ω2
R Zδ(!ω + E↓) + Γincoh.(ω) (2)

The first part in |Ψ〉 contributes, according to Fermi’s
Golden Rule, a coherent narrow quasiparticle peak ∝
Zδ(!ω + E↓) to the minority spectrum. Its position is a
direct measure of the polaron energy E↓, its integral gives
the quasiparticle residue Z. The particle-hole excitations
in the second part give rise to an incoherent background
Γincoh.(ω) ∝

∑

q,k |φqk|
2 δ(!ω−εq−k−εk+εq+E↓): The

polaron energy E↓ is released as the impurity at momen-
tum q − k is transferred into the final state, leaving be-
hind an environment particle in k above and a hole within
the Fermi sea at q. This part of the spectrum starts at
!ω = |E↓| like Γ(ω) ∝ (!ω − |E↓|)

2, less steeply than a
molecular dissociation spectrum (∝

√

!ω − |EB |), as the
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FIG. 2: rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment (blue, state
|1〉) and impurity (red, state |3〉) component in a highly imbalanced spin-mixture. a) Molecular limit, b), c) Emergence of the
polaron, a distinct peak exclusively in the minority component. d) At unitarity, the peak dominates the impurity spectrum.
For the spectra shown as dashed lines in d) the roles of states |1〉 and |3〉 are exchanged. Impurity concentration was x = 5(2)%
for all spectra, the interaction strengths 1/kF a were a) 0.76(2) b) 0.43(1) c) 0.20(1), d) 0 (Unitarity).

in previous work, spectra are spatially resolved and to-
mographically 3D reconstructed [18] via an inverse Abel
transform, and are thus local and free from broadening
due to density inhomogeneities. In addition, phase con-
trast images yield the in-situ density distribution n↑, n↓

and thus the local Fermi energy εF of the environment
atoms and the local impurity concentration x = n↓

n↑
. The

Rabi frequencies ΩR for the impurity and environment rf
transitions are measured (on fully polarized samples) to
be identical to within 5%.

Rf spectroscopy directly probes short-range correla-
tions between particles and is thus ideally suited to ob-
serve the emergence of the polaron. Fig. 2 shows the
observed spectra of the spin down impurities and that
of the spin up environment at low local impurity con-
centration. The bulk of the environment spectrum is
found at zero offset, corresponding to the free (Zeeman
plus hyperfine) energy splitting between states |1〉 and
|2〉. However, interactions between impurity and spin up
particles lead to a spectral contribution that is shifted:
The rf photon must supply additional energy to transfer
a particle out of its attractive environment into the final,
non-interacting state [19]. In Fig. 2a), impurity and en-
vironment spectra above zero offset exactly overlap, sig-
nalling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with non-zero
momentum [19, 20, 21]. As the attractive interaction is
reduced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment (Fig. 2b,c,d). This narrow peak, emerging from
a broad incoherent background, signals the formation of
a long-lived quasiparticle, the Fermi polaron. The width
of the polaron peak is consistent with a delta function
within the experimental resolution, as calibrated by the
spectra of fully polarized clouds. The background is per-
fectly matched by the rf spectrum of the environment.
This is expected at high rf energies !ω " εF that are

probing high momenta k " kF and thus distances short
compared to the interparticle spacing. Here, an impurity
particle will interact with only one environment particle,
leading to overlapping spectra.

F. Chévy has provided an instructive trial wavefunc-
tion [5, 9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte-Carlo (MC) calculations [6, 12, 13]:

|Ψ〉 = ϕ0 |0〉↓ |FS〉↑+
∑

|q|<kF <|k|

ϕkqc†k↑cq↑ |q − k〉↓ |FS〉↑

(1)
The first part describes an impurity with a well-defined

wavevector (k↓ = 0) that is not localized and free to
propagate in the Fermi sea of up spins |FS〉↑. In the
second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z =
|ϕ0|2. The two portions of |Ψ〉 give rise to two distinct
features of the impurity rf spectrum Γ(ω) (ω is the rf
offset from the bare atomic transition):

Γ(ω) = 2π!Ω2
R Zδ(!ω + E↓) + Γincoh.(ω) (2)

The first part in |Ψ〉 contributes, according to Fermi’s
Golden Rule, a coherent narrow quasiparticle peak ∝
Zδ(!ω + E↓) to the minority spectrum. Its position is a
direct measure of the polaron energy E↓, its integral gives
the quasiparticle residue Z. The particle-hole excitations
in the second part give rise to an incoherent background
Γincoh.(ω) ∝

∑

q,k |φqk|
2 δ(!ω−εq−k−εk+εq+E↓): The

polaron energy E↓ is released as the impurity at momen-
tum q − k is transferred into the final state, leaving be-
hind an environment particle in k above and a hole within
the Fermi sea at q. This part of the spectrum starts at
!ω = |E↓| like Γ(ω) ∝ (!ω − |E↓|)

2, less steeply than a
molecular dissociation spectrum (∝

√

!ω − |EB |), as the
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Polarons at non-zero 
momentum

NA ! N" " N# of unpaired atoms, such that N ! 2NP #
NA. We denote the concentration of the minority atoms by
y ! N#=N". In the deep BEC regime the SFP phase corre-
sponds to a miscible mixture of NP bosons and NA fermi-
ons [16,17]. The interaction between bosons and fermions
is repulsive and is fixed by the atom-dimer scattering
length aad ! 1:18a [18]. In this regime we write the equa-
tion of state in the form

 ESFP !ESF0$NP%#
3
5
N"EF"

!
$1"y%5=3#5kF"aad

3!
y$1"y%

"
;

(4)

where ESF0$NP% ! 3=5N"EF"y5=32G$1=kF"ay1=3% # "bNP

is the energy of the 2NP paired atoms and the other terms
in Eq. (4) correspond to the kinetic energy of the unpaired
atoms and to the interaction energy between atoms and
dimers treated at the mean-field level. We carry out FN-
DMC simulations of the SFP phase for various values of the
interaction strength. The nodal surface is modeled using a
BCS plus unpaired particles wave function written in the
form of a determinant as in Ref. [19]. The results are shown
in Fig. 3 together with the energy functional (4). The
agreement is remarkable down to quite small values of
the interaction parameter 1=kF"a & 0:5 [20]. Furthermore,
we notice that the SFP phase reduces to the SF0 one if
y ! 1.

We are now in a position to study the coexistence
between the superfluid and normal phases introduced
above. One requires the equilibrium of pressures between
the superfluid pS ! "@ES=@VS and the normal pN !
"@EN=@VN state and the equilibrium of chemical poten-
tials. In the normal phase there are two chemical potentials
for the NPP state: #N"$#% ! @EN=@N"$#%, which reduce to
only #N" for the NFP state. Similarly in the SFP phase one
can vary both the number of pairs #SP ! @ES=@NP and the
number of unpaired atoms #SA ! @ES=@NA, while in the

SF0 phase only the chemical potential of pairs #SP with
NP ! N=2 is relevant.

(a) Phase separation between SFP and NFP.—The equi-
librium conditions are pS ! pN and #SA ! #N". For a
given concentration y of the spin-down atoms in the SFP
phase, the two conditions determine the values of the
densities of the spin-up component in the two coexisting
phases. The ratio Pc ! 1"y

1#y gives the critical polarization
above which the system begins nucleating the normal
phase to accommodate the excess polarization. By increas-
ing P above Pc, the equilibrium densities of the two
phases, as well as the critical concentration y of the SFP
phase, do not change; instead, the volume fraction VN=V of
the normal phase increases and eventually becomes the
entire volume for P ! 1. The critical polarization line,
corresponding to a first order phase transition, is shown
in the phase diagram of Fig. 4. At P ! 1 this line termi-
nates at the tricritical point 1=kF"a ! 1:7 [21]. For larger
values of 1=kF"a the homogenous SFP phase exists up to
P ! 1 and the superfluid to normal transition becomes
second order. For a given concentration y the SFP-NFP state
is stable provided #SP ' #N" ##N# ! EF"$1" 3A=5%,
i.e., until the process in which pairs break and spin-down
particles start to populate the normal phase remains ener-
getically unfavorable. The instability line, corresponding
to x ! 0, marks a second order phase transition where the
fully polarized normal phase evolves continuously into the
partially polarized normal phase. At P ! 1 this line termi-
nates at the point 1=kF"a ! 0:73; for smaller values of
1=kF"a a superfluid cannot exist up to P ! 1. For small
polarizations the second order transition line terminates at
the point corresponding to Pc ! 0:015 and 1=kF"a ! 0:61.
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F
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F

F

FIG. 3 (color online). Equation of state of the superfluid po-
larized phase SFP as a function of the concentration y for dif-
ferent values of the interaction strength. The solid lines corre-
spond to the energy functional (4).
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first order phase transitions
second order phase transitions

first/second order intersection points
tricritical point

FIG. 4 (color online). Phase diagram as a function of polar-
ization and interaction strength. In terms of the Fermi wave
vector kF ! $3!2n%1=3 fixed by the total density n ! N=V one
has 1=kFa ! 1=kF"a at P ! 0 and 1=kFa ! 21=3=kF"a at P ! 1.
On the BCS side of the resonance our determination of the
critical polarization is not reliable. For "1=kF"a * 1 we obtain
Pc using the BCS theory (see the text).

PRL 100, 030401 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
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New Fermi liquid:

|↑〉 ideal gas, mass m↑

|↓〉 dressed mass m*, Z≈0.7 
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A 2(k
,ω
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10
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GMB & Massignan 2008

Rich: Can vary m*/m↑, n↓/n↑, kFa ... 
Studied experimentally

by MIT group, Rice group.
New study by Paris group 

reveal Fermi liquid behavior 
Science 2010
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Spin dipole mode:

m∗
↓v
↓↑ ↓

Fermi surfaces

P↓ = −P↓
τP

Damping:

Momentum 
relaxation time

Will calculate this using thermodynamics 
to find scattering rate. 

Spin modes measured for high T 
by Jin group 2003

Wednesday, August 18, 2010



np↑ =
1

eβξp↑ + 1
np↓ =

1
eβ(ξp↓−p·v) + 1

m∗
↓v
↓↑

Displayed Fermi surfaces:

Decay rate:
dP↓
dt

= −2π
|U |2

V 3

�

p,p�,q

p
�
np↓np�↑(1− np−q↓)(1− np�+q↑)

− np−q↓np�+q↑(1− np↓)(1− np�↑)
�

δ(�p↓ + �p�↑ − �p−q↓ − �p�+q↑)

Interaction between polaron
 and majority atoms: 

p− q

p� + qp�

p
polaron

atom

U
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Thermodynamics:

U =
∂2E

∂n↑n↓
=

∂µ↓
∂n↑

= −α
2�F↑
n↑

∝ 1
kF↑

p− q

p� + qp�

p
polaron

atom

U

µ↓ = −α�F↑

Pilati & Giorgini 2006, 
Prokof’ev & Svistunov 2008α � 0.6

dP↓
dt

= −2π|U |2
�

d3q

(2π)3
q

� ∞

−∞
dω

Imχ↓(q,ωq − ω)Imχ↑(q,ω)
(1− eβ(ω−ωq))(1− e−βω)

We get: Lindhard function
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T=0. Low velocity regime m∗
↓v � kF↓

T=0. High velocity regime
1
τP

=
2π

35
1
τ0

�
m∗

↓v

kF↓

�4

1
τP

=
4π

25
1
τ0

�
m∗

↓v

kF↓

�2

, 1/τ0 = |α|2k4
F↓/m∗

↓k
2
F↑

T«TF↓«TF↑

1
τP

=
π3

9
1
τ0

�
T

TF↓

�2

10 1 10010 3

10 2

10 1

100

101

102

m∗
↓v/kF↓

1/
τ̃ P

 

 

Numerical Calculation

High Velocity

Low Velocity

kF↓ � m∗
↓v � kF↑

Results

GMB, A. Recati, C. J. Pethick, H. Smith, 
& S. Stringari PRL 100, 240406 (2008)
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-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1
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2

Dipole oscillation of spin polaron

V↓(r)− α�F↑(r)

V↓(r) + αV↑(r)
V↑(r) + �F↑(r) = µ↑

Potential seen by spin polaron

Frequency of dipole oscillation
(Collisionless regime):

H = p
2
/2m

∗
↓ + V↓ + αV↑

ωD = ω↓

����m↓
m∗

↓

�
1 +

m↑ω2
↑

m↓ω2
↓
α

�

�

Measure interaction effects

v = ωDδXδX

Damping:

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2
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4
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5

δX/R↑

1/
ω

0
τ P

T=0.03T
F

T=0

1
ω0τP

=
8π

25
(6N↑)1/3α2

m∗
↓

m↑

�
TF↓
TF↑

�2 �
δX

R↑

�2

+
2π3

9
(6N↑)1/3α2

m∗
↓

m↑

�
T

TF↑

�2

N↑/N↓ = 0.026
N↑ = 107
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Dipolar Atoms/Molecules

r
θrd

V (r) = D2 1− 3 cos2 θrd

r3

Experiments: 52Cr
133Cs7Li

133Cs85Rb
40K87Rb

Attractive

Repulsive
+ +

+

++

-

-- --

Anisotropic
Long range
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Collapse and pairing in 2D

State of system depends on Θ

Wigner crystal Θ =
π

2

Θ < arccos(1/
√

3)

Interaction partly attractive
Collapse Instability

Superfluidity

r
θrd

V (r) = D2 1− 3 cos2 θrd

r3
D2 =

d2

4π�0

H. P. Büchler et al. PRL 98, 060404 (2007)
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Collapse Instability
Compressibility κ−1 = n2

2D
∂2E
∂n2

2D

κ < 0Collapse for 

En = Ekin + Edir + Eex

Kinetic Energy Ekin =
1

(2π)2

�
d2k

k2

2m
fk =

π

2
n2

2D

m
(

1
α2

+ α2)

Deformed Fermi surface
α

1/α

Edir =
1

2L2

�
d3r1d

3r2n(r1, r1)V (r)n(r2, r2)

Eex = − 1
2L2

�
d3r1d

3r2n(r1, r2)V (r)n(r1, r2)
n(r1, r2) ≡ �ψ̂†(r1)ψ̂(r2)�

T. Miyakawa et al. PRA 77, 061603 (2008)
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In total: E =
π

2
n2

2D

m
(

1
α2

+ α2)− 8n2
2D

3πm
gI(α,Θ)

Dimensionless function
Minimize α(g,Θ)to find E

Collapse for 
∂2E
∂n2

2D

< 0

0 1 2 3
0

0.1

0.2

0.3

g

!
/"

Superfluid

!
s

!
c

Collapse

0 1 2 3
0

0.5

1

1.5

2

2.5

g

 

 

g
s
(k

F
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Superfluid Phase
Gap equation: ∆k̃ = −

�
d2k̃�

(2π)2
Ṽ2D(k̃, k̃�)

∆k̃�

2Ek̃�
k̃ = (αkx, ky/α)

2D interaction V2D(ρ) =
�

dzΦ2
r(z)V (r)

V2D(k,k�) =
�

d2ρ sin(k · ρ)V2D(ρ) sin(k� · ρ)

p-wave pairing ∆k̃ � ∆ cos φ - +
k�lz � 1High energy cut-off for 
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!

Maximum pairing strength: 
gs(kF , kF ) Θc(g)along

Strong pairing 
without collapse

Weak coupling:

∆0(Θ) ∝ �F e1/gs(Θ) Infinite order QPT ∂n∆0

∂Θn

����
Θs

= 0
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Berezinskii-Kosterlitz-
Thouless transition

Phase fluctuations destroy long range order in 2D 
Above TBKT the vortex-antivortex pairs proliferate

Vortex energy:E =
1
2

�
d2rρs,ijvivj ≈

π�2

4m2
ln

�
L

a

�
ρ̄s

Entropy: S = 2kB ln
�

L

a

�

E − TBKTS = 0Phase transition:

Superfluid density:ρs,ij(T ) = mnδij −
β

4

�

k̃

sech2

�
βEk̃

2

�
k̃ik̃j

TBKT =
π�2

8m2kB
ρ̄s
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Conclusions

2D gas -> Angle new degree of freedom
Pairing can be strong yet the system stable
Berezinskii-Kosterlitz-Thouless 
Experimentally realistic with electric dipoles

GMB and E. Taylor, PRL 101, 245301 (2008)  
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Interesting new phase diagrams

Funny Wigner states

� �

�

�

��������	
	�	�
�����	������	�	�	�

3 dipoles in a 2D trap
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