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Equilibrium Statistical Mechanics and Turbulence

◮ Equilibrium statistical mechanics is concerned with
conservative Hamiltonian dynamics, Gibbs states, ...

◮ Turbulence is about dissipative out-of-equilibrium systems.
◮ In 1952 Hopf and Lee apply equilibrium statistical mechanics

to the 3D Euler equation and obtain the equipartition energy
spectrum which is very different from the Kolmogorov
spectrum.

◮ In 1967 Kraichnan uses equilibrium statistical mechanics as
one of the tools to predict the existence of an inverse energy
cascade in 2D turbulence.



Equilibrium Statistical Mechanics and Turbulence

◮ In 1989 Kraichnan remarks the truncated Euler system can

imitate NS fluid: the high-wavenumber degrees of freedom act

like a thermal sink into which the energy of low-wave-number

modes excited above equilibrium is dissipated. In the limit

where the sink wavenumbers are very large compared with the

anomalously excited wavenumbers, this dynamical damping

acts precisely like a molecular viscosity.
◮ In 2005 Cichowlas, Bonaiti, Debbasch, and Brachet discovered

long-lasting, partially thermalized, transients similar to
high-Reynolds number flow.
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The Galerkin-truncated 1D Burgers equation

◮ The (untruncated) inviscid Burgers equation, written in
conservation form, is

∂tu + ∂x(u
2/2) = 0; u(x , 0) = u0(x).

◮ Let KG be a positive integer, here called the Galerkin
truncation wavenumber, such that the action of the projector
P
KG

:

P
KG

u(x) =
∑

|k|≤KG

eikx ûk .

◮ The associated Galerkin-truncated (inviscid) Burgers equation

∂tv + P
KG

∂x(v
2/2) = 0; v0 = P

KG
u0.



Tygers in the Galerkin-truncated 1D Burgers equation
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Growth of a tyger in the solution of the inviscid Burgers equation
with initial condition v0(x) = sin(x − π/2). Galerkin truncation at
KG = 700. Number of collocation points N = 16, 384. Observe
that the bulge appears far from the place of birth of the shock.



Tygers only at regions of positive strain

u0(x) = sin(x) + sin(2x + 0.9) + sin(3x)
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Three-mode initial condition. Tygers appear at the points having
the same velocity as the shock and positive strain.



Phenomenological Explanation

◮ A localized strong nonlinearity, such as is present at a
preshock or a shock, acts as a source of a truncation wave.

◮ Away from the source this truncation wave is mostly a plane
wave with wavenumber close to KG.

◮ The radiation of truncation waves begins only at or close to
the time of formation of a preshock.

◮ Resonant interactions are confined to particles such that
τ∆v ≡ τ |v − vs| . λG.

◮ If τ is small the region of resonance will be confined to a small
neighborhood of widths ∼ KG

−1/3 around the point of
resonance.

◮ In a region of negative strain a wave of wavenumber close to
KG will be squeezed and thus disappearing beyond the
truncation horizon which acts as a kind of black hole.



From tygers to thermalization

0 1 2 3 4 5 6
−2

−1

0

1

2

3

v(
x)

, u
(x

)

x

t = 0.30

0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

v(
x)

, u
(x

)

x

t = 0.40

0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

v(
x)

, u
(x

)

x

t = 0.50

0 1 2 3 4 5 6

−2

−1

0

1

2

3

4

v(
x)

, u
(x

)

x

t = 0.80

0 1 2 3 4 5 6

−2

−1

0

1

2

3

v(
x)

, u
(x

)

x

t = 1.0

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

v(
x)

, u
(x

)

x

t = 1.3

0 1 2 3 4 5 6

−2

−1

0

1

2

3

v(
x)

, u
(x

)

x

t = 1.5

0 1 2 3 4 5 6

−4

−2

0

2

4

v(
x)

, u
(x

)

x

t = 4.5



From tygers to thermalization
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ũ(x)

x

t = 1.15

2.8 3 3.2 3.4 3.6

−1.5

−1

−0.5

0

0.5

1

1.5
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Scaling properties of the early tygers
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Scaling properties of the early tygers

◮ Scaling of the tyger widths :
◮ By the time t⋆, truncation is significant only for a lapse of time

O(KG

−2/3).
◮ The phase mixing argument tells us that the coherent build up

of a tyger will affect only those locations whose velocity differs
from that at resonance by an amount
∆v . 2π

KG
−2/3KG

∝ KG

−1/3.
◮ Since at such times, the velocity v of the truncated solution is

expected to stay close to the velocity u of the untruncated
solution and the latter varies linearly with x near the resonance
point, the width of the t⋆ tyger is itself proportional to KG

−1/3.

◮ Scaling of the tyger amplitudes :
◮ The Galerkin-truncated Burgers equation conserves energy.
◮ The apparent energy loss due to truncation

∼
∫ λG

0 x2/3dx ∼ KG

−5/3.
◮ Conservation demands that this energy-loss is transferred to

the tygers which gives the tyger-amplitude scaling as
∝ KG

−2/3.
◮ The above argument is appealing but not rigorous.



Weak solutions?
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Plots of solution of the Galerkin-truncated Burgers equation, with
KG = 5, 461 (green) and KG = 21, 845 (black), low-pass filtered at
wavenumber K = 100, at various times. Initial condition
v0(x) = sin(x) + sin(2x − 0.741). The untruncated solution is
shown in red.



Birth of tygers : Systematic theory

◮ Define discrepancy ũ ≡ v − u to obtain

∂t ũ + P
KG

∂x

(

uũ +
ũ2

2

)

=
(

I− P
KG

)

∂x
u2

2
, ũ(0) = 0.

◮ Decompose u = u< + u>, where u< ≡ P
KG

u and
u> ≡ (I− P

KG
)u.

◮ Similarly the perturbation u′ ≡ P
KG

ũ.

◮ Finally we obtain :

∂tu
′ + P

KG
∂x

(

u<u′ +
(u′)2

2

)

= P
KG

∂x

(

u<u> +
(u>)2

2

)

.



Birth of tygers : Systematic theory

◮ Strategy :

1. The term (u′)2 is discarded;
2. The perturbation u′ is set to zero at time tG;
3. The untruncated solution is frozen to its t⋆ value.

◮ With the three approximations the temporal dynamics of the
perturbation near t⋆ is

d

dτ
û′k =

KG
∑

k′=−KG

Akk′ û
′
k′ + f̂k , û′k(0) = 0,

Akk′ ≡ −ik û<

⋆, k−k′ ,

f̂k ≡ ik
∑

p+q=k

(û<

⋆p û
>

⋆q +
1

2
û>

⋆p û
>

⋆q).



The beating input
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Fourier space solution of the perturbation
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The boundary layer in Fourier space near KG. Shown are the
imaginary parts of û′(t⋆) for three values of KG. The origin is at
the preshock. The even-odd oscillations indicate that most of the
activity is at the tyger, a distance π away.



Scaling function for the boundary layer
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curve after rescaling. Red circles: KG = 20, 000, blue circles:
KG = 15, 000, red squares: KG = 10, 000, blue squares:
KG = 5, 000. The thick black line is the exponential fit.



Conclusions and Perspective

◮ Tygers provide a clue as to the onset of thermalization.

◮ We do not have a complete understanding of the phenomenon.

◮ Tygers do not modify shock dynamics but modify the flow
elsewhere because the tygers induce Reynolds stresses on
scales much larger than the Galerkin wavelength; hence the
weak limit of the Galerkin-truncated solution as KG → ∞ is
NOT the inviscid limit of the untruncated solution.

◮ There is good evidence that the key phenomena associated to
tygers are also present in the two-dimensional incompressible
Euler equation (and also perhaps in three dimensions).

◮ It is clear that complex-space singularities approaching the
real domain within one Galerkin wavelength are the triggering
factor in both the 2D Euler and the 1D Burgers case.

◮ Can we “purge tygers away” and thereby obtain a
subgrid-scale method which describes the inviscid-limit
solution right down to the Galerkin wavelength?



Thank you, Uriel!!

Tyger! Tyger! burning bright

In the forests of the night,

What immortal hand or eye

Could frame thy fearful symmetry?

William Blake, from The Tyger


