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Effect of compressible turbulence in biology

Spreading of bacteria with uniform growing rate μ 
Fisher equation ∂tC = D∆C + µC(1− C)

expanding front
vf=(Dμ)(1/2)

u(x,t) (D/μ)(1/2)

Mutation with fixation occur 
with increasing probability in 
the tail of the Fisher wave
(Hallatsheck&Nelson 2007)



What happen if we add a turbulent flow?

if the flow is incompressible (div(v)=0), 
turbulent increases diffusivity (Richardson). 
Something new happen when the “bacteria” 
are constrained to live on a two dimensional 
surface (i.e. because of buoyancy) or their 
density is different from the fluid density 
(inertial particles)

div(v)≠0 



If lagrangian particles particles are constrained on a two 
dimensional surface then the flow is compressible.

Boffetta et.al. 2005



Perlaker, RB, Nelson, Toschi, PRL  2010

D’ovidio, Del Monte, 
Alvain, Dandonneau, 

Levy, 2010

see the movie



A simple one dimensional case: u(x)= - Γ(x-x0) , μ=0

Two length scales: ξt  and ξl

Turbulence correlation length

Localization length



The case with µ>0.

u(x)
x0ξ

expanding front velocity  = compressible flow
vf=(Dμ)(1/2) =  Γ ξ  

➜ ξ = (Dμ)(1/2)/ Γ

the effect of compressibility is relevant if ξ < (D/μ)1/2  
      ➜ Γ > μ



A more general estimate
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carrying capacity



This is a generic result which can be generalized in more than one dimension.

The limit µ→0 
RB, Nelson 2009

<c>-<c2>= 0



Theoretical limit

Two dimensional case with 
surface flows

P.Perlaker, RB, D.R. Nelson,F. Toschi PRL 2010



Multifractal 
analysis



Carrying capacity as a function of compressibility



Dimensional analysis:  
a2 = f( μτη , κ)
relevant characteristic time scale  1/<(div v)2>1/2 = τη/κ1/2

γ≈0.62



a2 = a κγ/(μτη+b) 



“Universal” curve for 
different compressibility



Two species A and B

birth process

death process

N = number of individuals

for v=0 and cA+cB=1 the model known as stepping stone model



One dimension
With no velocity (v=0), 
spontaneous segregation is 
observed experimentally.  

The dynamics can be explained by the stepping stone model which 
predicts segregation on a time scale τs ≈ N2 D. Global fixation (only 
one species alive) on time scale τf ≈ L2/D. 

with turbulenceno flows

S Pigolotti, R.B, 
D.R. Nelson, M. 
J e n s e n P R L 
submitted 2011



Global fixation time as a function of the carrying capacity
τf ≅ 1/Γ where Γ is the velocity gradient

S Pigolotti, R.B, D.R. 
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PRL submitted 2011


