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Effects of geometrical confinement on turbulent flows 

Kraichnan 1967: inversion of the energy flux in 2d 
Smith, Chasonv, Waleffe 1996 & 
Celani, Musacchio, Vincenzi 2010: coexistence of two cascades in thin layers 
transition from 3d to 2d is a smooth function of the aspect ratio 

Turbulent convection with geometrical confinement:  
Rayleigh-Taylor turbulence 
periodic boundary conditions at a given scale L (homogeneity) 

Confinement of one dimension: appearance of the Bolgiano scale 

Confinement of two dimensions: new phenomenology in RT mixing 



Equation of motion and setup 

Temperature jump: θ0=T2-T1 
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For small A the Boussinesq approximation for an 
incompressible flow holds: 
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Atwood: 

Time dependent turbulence 
with initial condition:    
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Phenomenology of (3D) RT turbulence 

Turbulent mizing layer of width h(t)     h(t) ≈ Agt2 

Large scale velocity fluctuations          urms(t)≈Agt 

Kinetic energy pumped in the system at a rate 
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Energy balance:  
turbulent kinetic energy  E=(1/2) <u2> produced from 
potential energy P=-βg <zT> 
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-> time evolving turbulence 
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Small scale theory of RT turbulence 

  ε(t) ≈ (Ag)2t

M. Chertkov, PRL 91 (2003) 

Ansatz: buoyancy negligible at small scales 
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small scale fluctuations follow Kolmogorov-Obukhov scaling 
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Inconsistent in 2D where the energy flows to large scale (buoyancy dominated) 

passive temperature in turbulent flow with time dependent flux 



Buoyancy balances inertia at all scales 
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direct cascade of temperature fluctuations 

small scale fluctuations follow Bolgiano scaling 
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RT turbulence in 2D M. Chertkov, PRL 91 (2003) 



3D simulations: evolution of mixing layer 

  α = h(t) / (Agt2)

t=1.4 
t=2.0 
t=2.6 
t=3.2 



Self-similar evolution of spectra 

Collapse of kinetic energy and 
temperature variance spectra at 
t/τ=1.0, 1.4, 1.8, 3.8 

Insets: time evolution of kinetic 
energy dissipation ε ≈ t and  
temperature variance dissipation 
εT ≈ t-1 

Spatial-temporal scaling in agreement 
with dimensional theory 
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G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella PRE 79, 065301 (2009) 



2D simulation of Rayleigh-Taylor turbulence: Bolgiano scaling 

A.Celani, A.Mazzino, L.Vozella, PRL 96 (2006) 

Bolgiano scaling observed in simulations of 2d RT turbulence 
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Where is the Bolgiano scale LB ? 

In 3D (direct cascade) 
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LB ≈ L  (integral scale) 

In 2D (inverse cascade)  
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Idea: LB is determined by the smallest size of the box 

Setup with large aspect ratio Ly << Lx , Lz 

* scales r << Ly : 3D Kolmogorov-Obukhov 

* scales r >> Ly : 2D Bolgiano-Obukhov 
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Ly becomes the Bolgiano scale 
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Quasi-2D Rayleigh-Taylor turbulence: 
the appearance of the Bolgiano scale 

Rayleigh-Taylor turbulence 
in a thin layer of fluid 

* h(t) < Ly: 3D phenomenology 
  - Kolmogorov scaling 
  - passive temperature 

* h(t) > Ly: 2D phenomenology 
  - Bolgiano scaling 
  - active temperature 

temperature 
field from simulation 
at 4096x128x8192 - HPC grant Boffetta, De Lillo, Mazzino, Musacchio, JFM (2011, in press) 



Ly 

A first signature of 3D – 2D transition 

h(t) < Ly : 3D 

h(t) > Ly : 2D 
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In quasi-2d a residual direct energy flux given 
by matching the scaling of velocity at r=Ly 
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when h(t)≈Ly we observe a transition 
from direct to inverse flux 

A first signature of 3D – 2D transition: energy balance 

h(t) < Ly    3D h(t) > Ly   2D 
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Inversion of the flux at the Bolgiano scale 

r < Ly 
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Inset: contributions to energy flux in Fourier space 
by the nonlinear term and by the buoyancy term 

Third-order velocity SF 
change sign at r=Ly 

simultaneous presence of a direct and an inverse cascade 



Velocity and temperature 
structure functions 

Kolmogorov-Obukhov scaling 
at small scales (passive temperature) 

Bolgiano-Obukhov scaling  
at large scales (active temperature) 

Ly is the Bolgiano scale 

First clear numerical evidence of 
a Bolgiano scale (i.e. two scalings) 
in the turbulent scales of thermal 
convection 
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From geometrical to dynamical scale 
How can a geometrical scale determine the dynamical Bolgiano scale ? 

At short times: 
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Physical motivation: mixing efficiency in stratified fluids 
S.B. Dalziel, M.D. Patterson, C.P. Caulfield, I.A. Coomaraswamy, POF 20 (2008) 

Two-regimes: 

* h(t) < Lx : 3D RT turbulence 

* h(t) > Lx : ? 

Lx , Ly << Lz 

Lx 
Ly 

Lz 

Quasi-1D Rayleigh-Taylor turbulence: 
anomalous growth of the mixing layer 



Salt water + 
fresh water 

A=0.01 

Evolution of the mixing layer: experiment 



... and simulations 



Evolution of the width of mixing layer 

t2 

* short times 

    h(t) ≈ t2 

* long times 

    h(t) ≈ ? 

(Lz/Lx = 32) 

Transition occurs when velocity  
correlation scale Lu saturates 

velocity correlation scale 
vs 

mixing layer width  



Late times: modeling one-dimensional mixing 
Velocity fluctuations on scales r > Lx are uncorrelated 

Eddy diffusivity model for the mixing layer growth 
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Modeling eddy diffusivity: 

where urms is obtained dimensionally from the balance 
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and θL is the temperature jump at scale Lu 



Eddy diffusivity in the two regimes 
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A consequence: saturation of kinetic energy 

Total kinetic energy 

becomes constant for h(t)>Lx:  
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Energy balance: 
all potential energy is dissipated 
by viscosity 
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From global to local model 

  K (z,t) = u
rms

L
u

In general                 is not constant in the mixing layer 

a local estimation for θL is 

nonlinear diffusion model  
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Self-similar solution in the form                                     T (z,t) = f (z /t2/5)
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Eddy diffusivity model for mean temperature profile  

Pattle, Q.J.Mech.Appl.Math. (1959) 



Self-similar evolution of the mixing layer 
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Fit with gives z1(t) 
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time evolution of z1(t) 
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z1/t1/2 

the nonlinear model allows for 
a precise determination of the  
temporal exponent 
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Conclusions 

Effects of geometrical confinement on Rayleigh-Taylor turbulence 

* quasi-two dimensions 
 Kolmogorov + Bolgiano scaling 
 transverse scale of the box becomes the Bolgiano scale 

* quasi-one dimension 
 subdiffusive evolution of mixing layer 
 eddy diffusivity model 
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