Rayleigh-Taylor turbulence in 3, 2 and 1 dimensions

Guido Boffetta (Torino)

Filippo De Lillo (Torino) Andrea Mazzino (Genova) Stefano Musacchio (Nice) Lara Vozella (Genova)

Effects of geometrical confinement on turbulent flows

Kraichnan 1967: inversion of the energy flux in 2d
Smith, Chasonv, Waleffe 1996 \&
Celani, Musacchio, Vincenzi 2010: coexistence of two cascades in thin layers transition from 3d to 2 d is a smooth function of the aspect ratio

Turbulent convection with geometrical confinement:
Rayleigh-Taylor turbulence
periodic boundary conditions at a given scale L (homogeneity)

Confinement of one dimension: appearance of the Bolgiano scale
Confinement of two dimensions: new phenomenology in RT mixing

Equation of motion and setup

Single fluid at two temperatures (densities)
Temperature jump: $\theta_{0}=T_{2}-T_{1}$

T_{1}

Atwood: $\quad A \equiv \frac{\rho_{1}-\rho_{2}}{\rho_{1}+\rho_{2}}=\frac{1}{2} \beta \theta_{0} \quad$ (β : thermal expansion coef.)

For small A the Boussinesq approximation for an incompressible flow holds:

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+v \Delta \mathbf{u}-\beta \boldsymbol{g} T \\
\partial_{t} T+\mathbf{u} \cdot \nabla T=\kappa \Delta T
\end{array}\right.
$$

Time dependent turbulence with initial condition:

$$
\left\{\begin{array}{l}
u(x, 0)=0 \\
T(x, 0)=-(1 / 2) \theta_{0} \operatorname{sgn}(z)
\end{array}\right.
$$

Phenomenology of (3D) RT turbulence

Energy balance: turbulent kinetic energy $\left.E=(1 / 2)<u^{2}\right\rangle$ produced from potential energy $P=-\beta g<z T$ >

$$
\frac{d E}{d t}=-\frac{d P}{d t}-\varepsilon=\beta g\langle w T\rangle-\varepsilon
$$

$$
\varepsilon=v\left\langle(\nabla u)^{2}\right\rangle
$$

Dimensional balance: $\frac{d u_{r m s}^{2}}{d t} \simeq \beta g \theta_{0} u_{r m s}$ therefore

Large scale velocity fluctuations $\quad u_{\text {rms }}(t) \approx A g t$

Turbulent mizing layer of width $h(\dagger) \quad h(\dagger) \approx A g t^{2}$

Kinetic energy pumped in the system at a rate $\varepsilon_{I} \simeq \frac{u^{3}}{h} \simeq(A g)^{2} t$
\rightarrow time evolving turbulence

Small scale theory of RT turbulence
Ansatz: buoyancy negligible at small scales $\quad\left\{\begin{array}{l}\partial_{+} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+v \Delta \mathbf{u}-\beta \boldsymbol{g} T \\ \partial_{+} T+\mathbf{u} \cdot \nabla T=\kappa \Delta T\end{array}\right.$

$$
\beta g \delta_{r} T \ll \frac{\delta_{r} u^{2}}{r} \quad \text { (small Richardson number) }
$$

passive temperature in turbulent flow with time dependent flux

$$
\varepsilon(t) \approx(A g)^{2} t
$$

small scale fluctuations follow Kolmogorov-Obukhov scaling

$$
\begin{array}{lc}
\delta_{r} u(t) \simeq u_{L}(t)\left(\frac{r}{h(t)}\right)^{1 / 3} \simeq\left(\beta g \theta_{0}\right)^{2 / 3} t^{1 / 3} r^{1 / 3} & \\
\delta_{r} T(t) \simeq \theta_{0}\left(\frac{r}{h(t)}\right)^{1 / 3} \simeq \frac{\theta_{0}}{\left(\beta g \theta_{0}\right)^{1 / 3}} t^{-2 / 3} r^{1 / 3} & \text { consistency: } \\
& R i=\frac{\beta g \delta_{r} T(t)}{\delta_{r} u^{2}(t) / r} \simeq\left(\frac{r}{h(t)}\right)^{2 / 3} \rightarrow 0
\end{array}
$$

Inconsistent in 2D where the energy flows to large scale (buoyancy dominated)

RT turbulence in 2D
Buoyancy balances inertia at all scales

$$
\left\{\begin{array}{l}
\partial_{+} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+v \Delta \mathbf{u}-\beta \boldsymbol{g} T \\
\partial_{+} T+\mathbf{u} \cdot \nabla T=\kappa \Delta T
\end{array}\right.
$$

$$
\beta g \delta_{r} T \approx \frac{\delta_{r} u^{2}}{r} \quad(\operatorname{Ri}=O(1))
$$

direct cascade of temperature fluctuations

$$
\varepsilon_{T}(t) \simeq \frac{\delta_{r} u \delta_{r} T^{2}}{r} \simeq \frac{\delta_{r} u^{5}}{r^{3}(\beta g)^{2}} \simeq \frac{u_{L}^{5}}{h^{3}(\beta g)^{2}}
$$

small scale fluctuations follow Bolgiano scaling

$$
\begin{aligned}
& \delta_{r} u(t) \simeq u_{L}(t)\left(\frac{r}{h(t)}\right)^{3 / 5} \simeq\left(\beta g \theta_{0}\right)^{2 / 5} t^{-1 / 5} r^{3 / 5} \\
& \delta_{r} T(t) \simeq \theta_{0}\left(\frac{r}{h(t)}\right)^{1 / 5} \simeq \frac{\theta_{0}}{\left(\beta g \theta_{0}\right)^{1 / 5}} t^{-2 / 5} r^{1 / 5}
\end{aligned}
$$

3D simulations: evolution of mixing layer

Self-similar evolution of spectra

Collapse of kinetic energy and temperature variance spectra at $\dagger / \tau=1.0,1.4,1.8,3.8$

Insets: time evolution of kinetic energy dissipation $\varepsilon \approx \dagger$ and temperature variance dissipation $\varepsilon_{T} \approx t^{-1}$

Spatial-temporal scaling in agreement with dimensional theory

$$
\begin{gathered}
E(k, t) \sim t^{2 / 3} k^{-5 / 3} \\
E_{T}(k, t) \sim t^{-4 / 3} k^{-5 / 3}
\end{gathered}
$$

2D simulation of Rayleigh-Taylor turbulence: Bolgiano scaling
Bolgiano scaling observed in simulations of 2d RT turbulence

$$
\begin{aligned}
& S_{n}^{V}(r) \sim r^{3 n / 5} \\
& S_{n}^{\top}(r) \sim r^{n / 5-x_{n}}
\end{aligned}
$$

Where is the Bolgiano scale L_{B} ?

$$
L_{B}=(\beta g)^{-3 / 2} \varepsilon^{5 / 4} \varepsilon_{T}^{-3 / 4}
$$

$$
\begin{array}{ll}
\text { In 3D (direct cascade) } \beta g \delta_{r} T \ll \frac{\delta_{r} u^{2}}{r} & L_{B} \approx L \text { (integral scale) } \\
\text { In 2D (inverse cascade) } \beta g \delta_{r} T \simeq \frac{\delta_{r} u^{2}}{r} & L_{B} \approx L_{v} \text { (smallest scale) }
\end{array}
$$

Idea: L_{B} is determined by the smallest size of the box Setup with large aspect ratio $L_{y} \ll L_{x}, L_{z}$

* scales r << L_{y} : 3D Kolmogorov-Obukhov
* scales $r \gg L_{y}$: 2D Bolgiano-Obukhov

Ly becomes the Bolgiano scale

Quasi-2D Rayleigh-Taylor turbulence: the appearance of the Bolgiano scale

Rayleigh-Taylor turbulence in a thin layer of fluid

* $h(t)<L_{y}$: 3D phenomenology
- Kolmogorov scaling
- passive temperature
* $h(t)>L_{y}: 2 D$ phenomenology
- Bolgiano scaling
- active temperature

A first signature of 3D-2D transition

$$
h(t)<L_{y}: 3 D
$$

$$
h(t)>L_{y}: 2 D
$$

A first signature of 3D - 2D transition: energy balance $\quad \frac{d E}{d t}=-\frac{d P}{d t}-\varepsilon$

$$
h(t)<L_{y} 3 D\left\{\begin{array}{l}
\frac{d E}{d t} \simeq t \\
\varepsilon \simeq t
\end{array} \quad h(t)>L_{y} 2 D\left\{\begin{array}{l}
\frac{d E}{d t} \simeq t \\
\varepsilon \rightarrow 0
\end{array}\right.\right.
$$

In quasi-2d a residual direct energy flux given by matching the scaling of velocity at $r=L_{y}$

$$
\begin{aligned}
& \delta_{r} u(t) \simeq \varepsilon(t)^{1 / 3} r^{1 / 3} \\
& \delta_{r} u(t)\left(r<\left(\beta \theta_{0}\right)^{2 / 5} t^{-1 / 5} r^{3 / 5} \quad\left(r \gg L_{y}\right)\right. \\
& \varepsilon(t) \simeq\left(\beta g \theta_{0}\right)^{6 / 5} L_{y}^{4 / 5} t^{-3 / 5} \\
&\left(\frac{d E}{d t}\right) / \varepsilon \sim t^{8 / 5}
\end{aligned}
$$

when $h(t) \approx L_{y}$ we observe a transition

Inversion of the flux at the Bolgiano scale

simultaneous presence of a direct and an inverse cascade

$$
\begin{aligned}
& r<L_{y} \\
& -S_{3}(r)=-\left\langle\left(\delta_{r} u\right)^{3}\right\rangle=\frac{4}{5} \varepsilon r
\end{aligned}
$$

$r>L_{y}$

$$
S_{3}(r) \simeq+r^{9 / 5}
$$

Third-order velocity SF change sign at $r=L_{y}$

Inset: contributions to energy flux in Fourier space by the nonlinear term and by the buoyancy term

Velocity and temperature structure functions

Kolmogorov-Obukhov scaling at small scales (passive temperature)

Bolgiano-Obukhov scaling at large scales (active temperature)

L_{y} is the Bolgiano scale

First clear numerical evidence of a Bolgiano scale (i.e. two scalings) in the turbulent scales of thermal convection

From geometrical to dynamical scale
How can a geometrical scale determine the dynamical Bolgiano scale?

$$
L_{B}=(\beta g)^{-3 / 2} \varepsilon^{5 / 4} \varepsilon_{T}^{-3 / 4}
$$

At short times: $\left\{\begin{array}{l}\varepsilon \simeq\left(\beta g \theta_{0}\right)^{2} t \\ \varepsilon_{T} \simeq \theta_{0}^{2} t^{-1}\end{array}\right.$ and $L_{B} \simeq \beta g \theta_{0} t^{2} \propto h(t)$

At late times:

$$
\left\{\begin{array}{l}
\varepsilon \simeq\left(\beta g \theta_{0}\right)^{6 / 5} L_{y}^{4 / 5} t^{-3 / 5} \\
\varepsilon_{T} \simeq \theta_{0}^{2} t^{-1}
\end{array}\right.
$$

Quasi-1D Rayleigh-Taylor turbulence: anomalous growth of the mixing layer

```
Two-regimes:
* \(h(t)<L_{x}: 3 D R T\) turbulence
* \(h(t)>L_{x}\) : ?
```


$L_{x}, L_{y} \ll L_{z}$

Physical motivation: mixing efficiency in stratified fluids
S.B. Dalziel, M.D. Patterson, C.P. Caulfield, I.A. Coomaraswamy, POF 20 (2008)

Evolution of the mixing layer: experiment
Salt water + fresh water
$A=0.01$

Evolution of the width of mixing layer

* short times

$$
h(t) \approx t^{2}
$$

* long times

$$
h(t) \approx ?
$$

Transition occurs when velocity correlation scale L_{u} saturates
velocity correlation scale vs
mixing layer width

Late times: modeling one-dimensional mixing
Velocity fluctuations on scales $r>L_{x}$ are uncorrelated
Eddy diffusivity model for the mixing layer growth

$$
\frac{d h^{2}}{d t}=K(t)
$$

Modeling eddy diffusivity: $\quad K(t)=u_{r m s} L_{u}$
where $u_{r m s}$ is obtained dimensionally from the balance

$$
\frac{u_{r m s}^{2}}{L_{u}} \simeq \beta g \theta_{L}
$$

and θ_{L} is the temperature jump at scale L_{u}

Eddy diffusivity in the two regimes

$$
\begin{aligned}
& K(z, t)=u_{r m s} L_{u} \quad \& \quad u_{r m s}=\left(\beta g \theta_{L} L_{u}\right)^{1 / 2} \\
& \text { * } h(t)<L_{x} \\
& K \simeq\left(\beta g \theta_{0}\right)^{1 / 2} h^{3 / 2} \\
& \text { and } h(t) \simeq \beta g \theta_{0} t^{2} \\
& L_{u}=h(t) \\
& \theta_{L}=\theta_{0} \\
& \star h(t)>L_{x} \quad u_{r m s}=\left(\beta g \theta_{0} \frac{L_{x}^{2}}{h}\right)^{1 / 2} \\
& K \approx\left(\beta g \theta_{0}\right)^{1 / 2} \frac{L_{x}^{2}}{h^{1 / 2}} \quad \text { and } \quad h(t) \simeq\left(\beta g \theta_{0}\right)^{1 / 5} L_{x}^{4 / 5} t^{2 / 5} \\
& \begin{array}{c}
L_{u} \simeq L_{x} \uparrow \\
\theta_{L}=\theta_{0} \frac{L_{x}}{h}
\end{array} \\
& \text { subdiffusive growth of the mixing layer }
\end{aligned}
$$

A consequence: saturation of kinetic energy
Total kinetic energy $E=\frac{1}{2} \int d^{3} x|u|^{2} \simeq \frac{3}{2} L_{x}^{2} h(t) u_{r m s}^{2}(t)$

$$
u_{r m s}^{2}=\beta g \theta_{0} \frac{L_{x}^{2}}{h}
$$

becomes constant for $h(t)>L_{x}:$

$$
E=\frac{3}{2} \beta g \theta_{0} L_{x}^{4}
$$

Energy balance: all potential energy is dissipated by viscosity

$$
\frac{d E}{d t}=-\frac{d P}{d t}-\varepsilon
$$

From global to local model
Eddy diffusivity model for mean temperature profile

$$
\partial_{t} \bar{T}(z, t)=\partial_{z}\left(K(z, t) \partial_{z} \bar{T}(z, t)\right) \quad K(z, t)=u_{r m s} L_{u}
$$

In general $\partial_{z} \bar{T}(z, t)$ is not constant in the mixing layer

$$
u_{r m s} \simeq\left(\beta g \theta_{L} L_{u}\right)^{1 / 2}
$$ a local estimation for θ_{L} is $\theta_{L} \simeq L_{x} \partial_{z} T(z, t)$

nonlinear diffusion model

$$
\partial_{t} \bar{T} \simeq(\beta g)^{1 / 2} L_{x}^{2} \partial_{z}\left(\partial_{z} \bar{T}\right)^{3 / 2}
$$

Self-similar solution in the form $\bar{T}(z, t)=f\left(z / t^{2 / 5}\right)$

$$
\begin{aligned}
& \bar{T}(z, t)=-\frac{15}{16} \vartheta_{0}\left[\frac{1}{5}\left(\frac{z}{z_{1}}\right)^{5}-\frac{2}{3}\left(\frac{z}{z_{1}}\right)^{3}+\frac{z}{z_{1}}\right] \quad \text { for }|z| \leq z_{1} \\
& \text { Pattle, Q.J.Mech.Appl.Math. (1959) } \\
& z_{1}(t)=L_{x}^{4 / 5}\left(\beta g v_{0}\right)^{1 / 5} t^{2 / 5} \quad \text { half width of the mixing layer }
\end{aligned}
$$

Self-similar evolution of the mixing layer

$$
T\left(z / z_{1}, t\right)
$$

for different t

Fit with $\vec{T}(z, t)=-\frac{15}{16} \vartheta_{0}\left[\frac{1}{5}\left(\frac{z}{z_{1}}\right)^{5}-\frac{2}{3}\left(\frac{z}{z_{1}}\right)^{3}+\frac{z}{z_{1}}\right] \quad$ gives $z_{1}(t)$
time evolution of $z_{1}(t)$

the nonlinear model allows for a precise determination of the temporal exponent
$h(t)=2 z_{1}(t) \simeq\left(\beta g \vartheta_{0}\right)^{1 / 5} L_{x}^{4 / 5} t^{2 / 5}$

Conclusions

Effects of geometrical confinement on Rayleigh-Taylor turbulence

* quasi-two dimensions

Kolmogorov + Bolgiano scaling transverse scale of the box becomes the Bolgiano scale

* quasi-one dimension
subdiffusive evolution of mixing layer
eddy diffusivity model

```
G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella PRE 79, 065301 (2009)
G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella JFM 643,127 (2010)
G.Boffetta, F.De Lillo, S.Musacchio PRL 104, O34505 (2010)
G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella Phys. Fluids 22 035109 (2010)
G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella PRL 104, 184501 (2010)
G.Boffetta, F.De Lillo, A.Mazzino, S.Musacchio JFM (in press, 2011)```

