A possible explanation of the atmospheric kinetic and potential energy spectra

ROYAL INSTITUTE OF TECHNOLOGY Erik Lindborg, Enrico Deusebio, Andreas Vallgren *KTH, Royal Institute of Technology, Stockholm*

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

The Nastrom-Gage Spectra

Aircraft measurements of wind and potential temperature in the atmosphere display a transition between synoptic and mesoscale (~500 km)

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

Atmosphere and QG Turbulence

High Reynolds numberTurbulenceNavier-Stokes
EquationsStrong rotation
and stratification
EquationsQuasi-Geostrophic
Equations $\frac{\partial q}{\partial t} + u_j \frac{\partial q}{\partial x_j} = 0$ with $q = -\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{f}{N} \frac{\partial b}{\partial z}$

Two quadratic invariants

$$Z = \frac{1}{2} \int_{\Omega} (q \cdot q) \, \mathrm{d}\Omega \qquad E = \frac{1}{2} \int_{\Omega} (\mathbf{u}_h \cdot \mathbf{u}_h + b \cdot b) \, \mathrm{d}\Omega$$

Possible explanations

Numerical code

Results

Wavenumber

Possible explanations

Numerical code

Results

But what happens in the atmosphere?

Possible explanations

Numerical code

Results

Possible explanation 1: Lilly, 1984

Two Energy/Enstrophy sources

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

Possible explanation 2: Tulloch & Smith, 2009

Simple layer model with dynamic boundary conditions

Transition has been observed throughout the whole atmosphere and not just close to the upper boundary (Cho et al. 1999, Frehlic & Sharman 2010)

Possible explanations

Numerical code

Results

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

OUR EXPLANATION

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

The Primitive Equation system

 $\frac{D\mathbf{u}_{h}}{Dt} = -\nabla_{h}p - f\mathbf{e}_{z} \times \mathbf{u}_{h},$ $\frac{\partial p}{\partial \lambda} = -\frac{\partial p}{\partial z} + Nb,$ $\frac{Db}{Dt} = -Nw,$ $\nabla \cdot \mathbf{u} = 0$

Reformulate in terms of

$$q = -\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{f}{N} \frac{\partial b}{\partial z},$$

$$a_1 = -\frac{f}{N} \frac{\partial v}{\partial z} + \frac{\partial b}{\partial x},$$

$$a_2 = \frac{f}{N} \frac{\partial u}{\partial z} + \frac{\partial b}{\partial y}.$$

Possible explanations

Numerical code

Results

Geostrophic scaling

$$\begin{aligned} x \sim L, \quad y \sim L, \quad z \sim f/NL, \quad t \sim L/U, \\ u \sim U, \quad v \sim U, \quad w \sim \operatorname{Ro} Uf/N, \quad b \sim U, \\ q \sim U/L, \quad a_1 \sim \operatorname{Ro} U/L, \quad a_2 \sim \operatorname{Ro} U/L, \end{aligned}$$

where Ro = U/fL is the Rossby number.

Possible explanations

Numerical code

Results

_

ROYAL INSTITUTE OF TECHNOLOGY

Equations

$$\begin{aligned} \frac{\partial q}{\partial t} &= \frac{\partial}{\partial y} \left(\frac{\partial u^2}{\partial x} + \frac{\partial uv}{\partial y} + Ro \frac{\partial uw}{\partial z} \right) - \frac{\partial}{\partial x} \left(\frac{\partial uv}{\partial x} + \frac{\partial v^2}{\partial y} + Ro \frac{\partial vw}{\partial z} \right) \\ &- \frac{\partial}{\partial z} \left(\frac{\partial ub}{\partial x} + \frac{\partial vb}{\partial y} + Ro \frac{\partial wb}{\partial z} \right) + \nu_S \nabla^8 q - \nu_L q, \end{aligned}$$

$$Ro\frac{\partial a_1}{\partial t} = a_2 - \frac{\partial w}{\partial x} + \frac{\partial}{\partial z}\left(\frac{\partial uv}{\partial x} + \frac{\partial v^2}{\partial y} + Ro\frac{\partial vw}{\partial z}\right)$$
$$-\frac{\partial}{\partial x}\left(\frac{\partial ub}{\partial x} + \frac{\partial vb}{\partial y} + Ro\frac{\partial wb}{\partial z}\right) + Ro\nu_S \nabla^8 a_1 - Ro\nu_L a_1,$$

$$Ro\frac{\partial a_2}{\partial t} = -a_1 - \frac{\partial w}{\partial y} - \frac{\partial}{\partial z}\left(\frac{\partial u^2}{\partial x} + \frac{\partial uv}{\partial y} + Ro\frac{\partial uw}{\partial z}\right)$$
$$-\frac{\partial}{\partial y}\left(\frac{\partial ub}{\partial x} + \frac{\partial vb}{\partial y} + Ro\frac{\partial wb}{\partial z}\right) + Ro\nu_S \nabla^8 a_2 - Ro\nu_L a_2.$$

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY In the limit of Ro=0, the Charney equation is retained.

Two quadratic invariants, potential entrophy and energy. Inverse energy cascade.

But what happens when Ro << 1 and finite?

Forward enstrophy cascade from forcing wave numbers k_{f} .

Enstrophy flux = Enstrophy injection rate = η

Energy injection rate = $P = k_f^{-2} \eta$

Possible explanations

Numerical code

Results

Hypothesis

A small fraction of the injected energy will go into a downscale energy cascade. The energy flux will scale as

$$\varepsilon \sim PRo^n$$

The rest will go into an upscale energy cascade.

Possible explanations

Numerical code

Results

The horizontal energy spectrum

$$E(k) \sim \eta^{2/3} k_h^{-3} + \varepsilon^{2/3} k_h^{-5/3}$$

Transition wave number

$$k_t \sim \sqrt{\frac{\eta}{\varepsilon}} \sim Ro^{-n/2} k_f$$

Possible explanations

Numerical code

Results

The	long	-stai	ndin	g
prob	lem			

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

Results

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

Energy fluxes and spectra

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

Dissipation vs Ro

Possible explanations

Numerical code

Results

Flow fields at finite and small Rossby number

Possible explanations

Numerical code

Results

3D turbulence

$$\langle \delta u_L \delta u_L \delta u_L \rangle + 2 \langle \delta u_L \delta u_T \delta u_T \rangle = -\frac{4}{3} \varepsilon r$$

2D turbulence

$$\langle \delta u_L \delta u_L \delta u_L \rangle + \langle \delta u_L \delta u_T \delta u_T \rangle = 2\varepsilon r + \frac{1}{4}\eta r^3$$

Positive

Possible explanations

Numerical code

Results

Simulations vs measurements

Possible explanations

Numerical code

Results

ROYAL INSTITUTE OF TECHNOLOGY

Conclusions

We have performed high-resolution numerical simulations of the PE equations at several Ro numbers

Energy is found to cascade more and more towards smaller scale as Ro is increased, shallowing the spectra to $k^{-5/3}$

Structure functions, in agreement with theoretical arguments are seen to scale as -r at smaller scales and r³ at larger scales, consistent with the observations