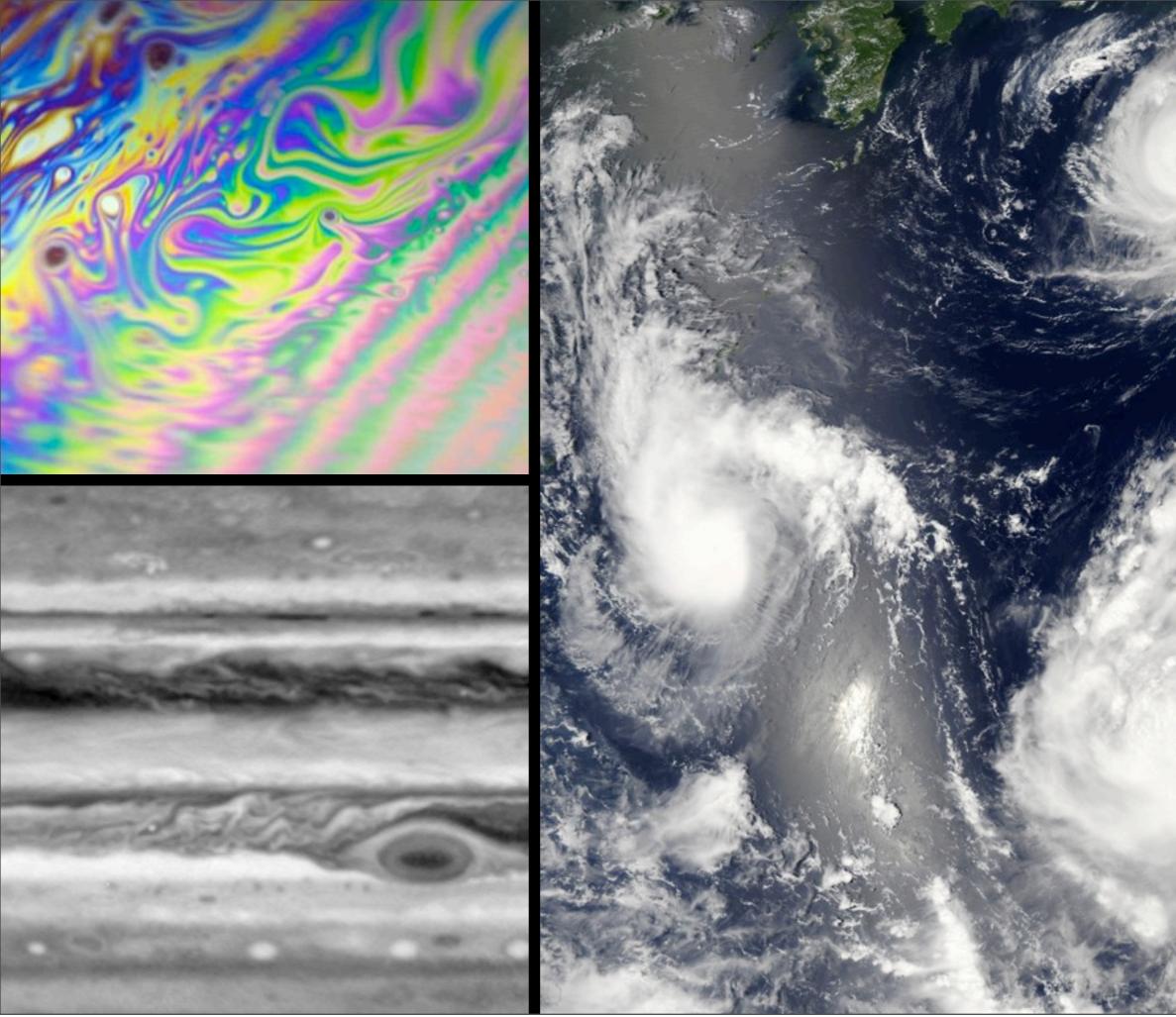
Dynamics of Saturated Condensate in Two-Dimensional Turbulence

Chi-kwan Chan, Dhrubaditya Mitra, & Axel Brandenburg (arXiv:1109.6937)

October 18th, 2011, The Solar Course, the Chemic Force, and the Speeding Change of Water

Background shows a condense vortex from our simulation Color scale is vorticity, red and blue are positive and negative This talk is about deriving and confirming their properties



Motivation for 2D turbulence

2D Navier-Stokes Equations

$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} = -\boldsymbol{\nabla}P + \nu \nabla^2 \boldsymbol{u} + \mu \boldsymbol{u} + \boldsymbol{f} + \dots$$

 $\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$

* Without viscosity, Ekman term, forcing, etc

$$\frac{dE}{dt} \equiv \frac{d}{dt} \left[\frac{1}{2} \int d^2 x u^2 \right] = 0$$
$$\frac{dZ}{dt} \equiv \frac{d}{dt} \left[\frac{1}{2} \int d^2 x \omega^2 \right] = 0$$

where $\omega \equiv \hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} imes \boldsymbol{u}$

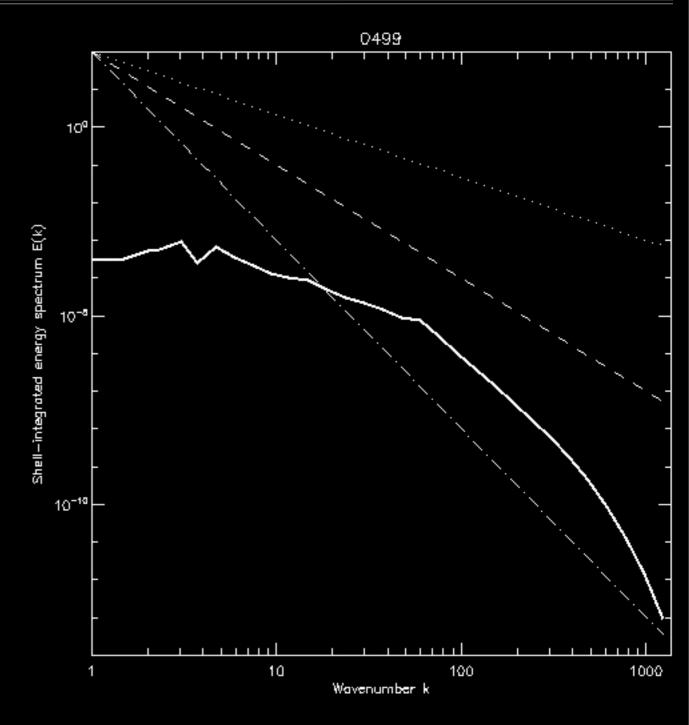
Energy and enstrophy are conserved quantities

Forward and Inverse Cascades

- With viscosity and Ekman friction
- * Constant fluxes ϵ and η
- Two inertial ranges
 - $E_k = \mathcal{C}\epsilon^{2/3}k^{-5/3}$

$$E_k = \mathcal{K}\eta^{2/3}k^{-3}$$

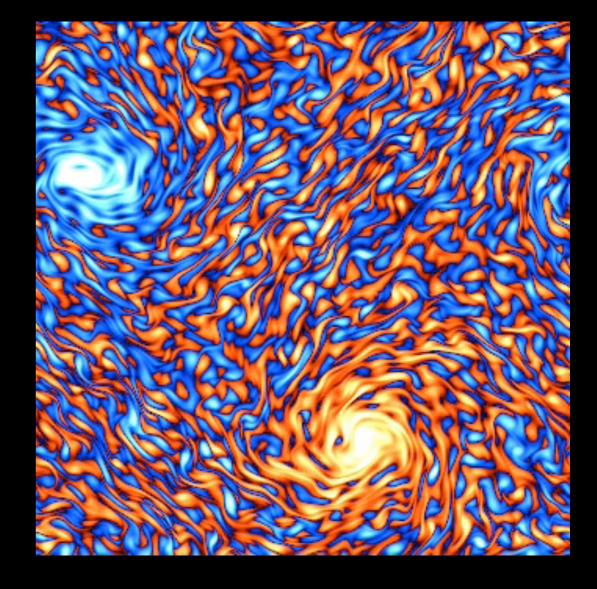
at different wavenumbers



Energy inverse cascades, spectral slope -5/3 Enstrophy forward cascade, spectral slope -3 Movie shows driven turbulence with non-vanishing Ekman friction Having the Ekman term is too troublesome! Let's remove it

Energy Condensation

- Vanishing Ekman term
- * The rumor: without large scale regulation, the solution will eventually blow up at late time
- Bowman: it saturates; it just takes forever...
- Brandenburg: so it must saturate at viscous time



The rumor says the solution will blow up Thank the turbulence workshop in KITP

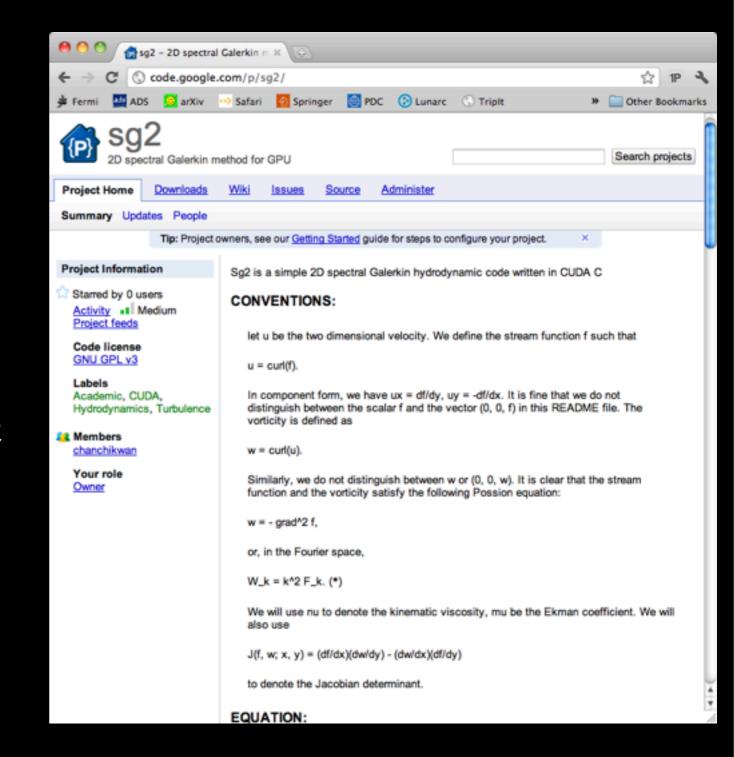
Spectral Galerkin Method on GPUs

* Simple estimate:

 $E_{\infty} = f_i^2 / 2\nu k_1^2$ $\tau_E = 1/2\nu k_1^2$ $n \sim 10\nu^{-2}$

 Implemented in CUDA C and runs on GPUs

Hosted on Google code: sg2.googlecode.com

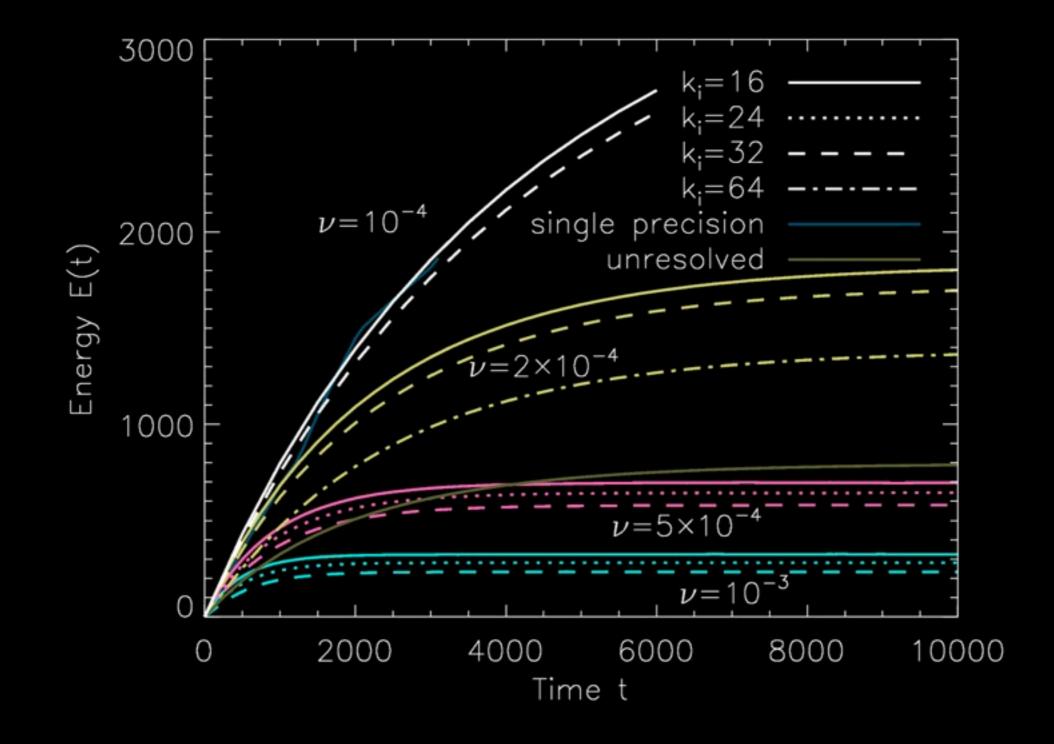


For our nu $\sim 10^{-4}$ studies, it takes $> 10^{9}$ time steps GPUs are stream processors that are 10x faster than CPU

Spectral Galerkin Method on GPUs

For our nu $\sim 10^{-4}$ studies, it takes $> 10^{9}$ time steps GPUs are stream processors that are 10x faster than CPU

Saturation of Condensate



Summary of the simulations We used the GPU code and reach saturation The viscosity dependence makes sense But what's going on with the forcing scale?

A Three-Scale Model

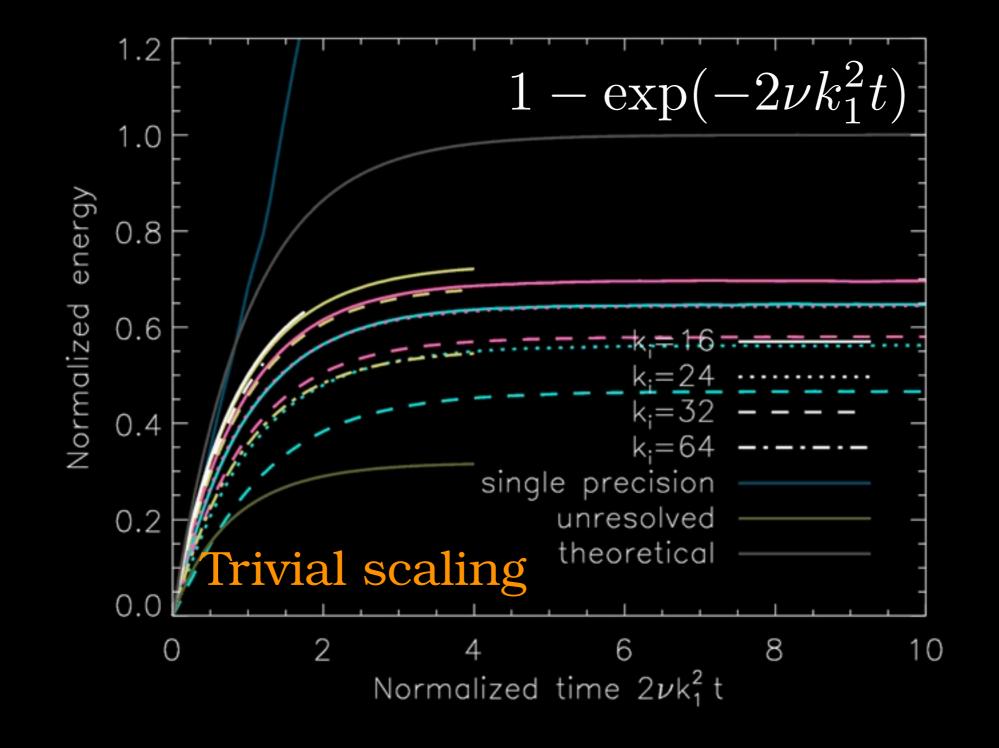
A simple 3-scale model f_i^2 and f_i^2 k_i^2 are energy and enstrophy inputs Only 2 time-dependent values E_1(t) and E_i(t)

Energy and Enstrophy Balances

$$\begin{aligned} \partial_t \overline{E} &= -2\nu k_1^2 \overline{E} + \overline{\epsilon} \\ \partial_t E' &= -2\nu Z' + f_i^2 - \overline{\epsilon} \\ \partial_t Z' &= -2\nu P' + f_i^2 k_i^2 - k_1^2 \overline{\epsilon} \end{aligned} \qquad \begin{array}{l} P' &= \gamma k_d^2 Z' \\ Z' &= \Gamma k_i^2 E' \\ Z'(t) &= \frac{f_i^2}{2\nu} \frac{k_i^2 - k_1^2}{\gamma k_d^2 - k_1^2} \Big[1 - \exp\left(-2\nu\gamma k_d^2 t\right) \Big] \\ \overline{E}(t) &= \frac{f_i^2}{2\nu k_1^2} \frac{\gamma k_d^2 - k_1^2}{\gamma k_d^2 - k_1^2} \Big[1 - \exp\left(-2\nu k_1^2 t\right) \Big] \end{aligned}$$

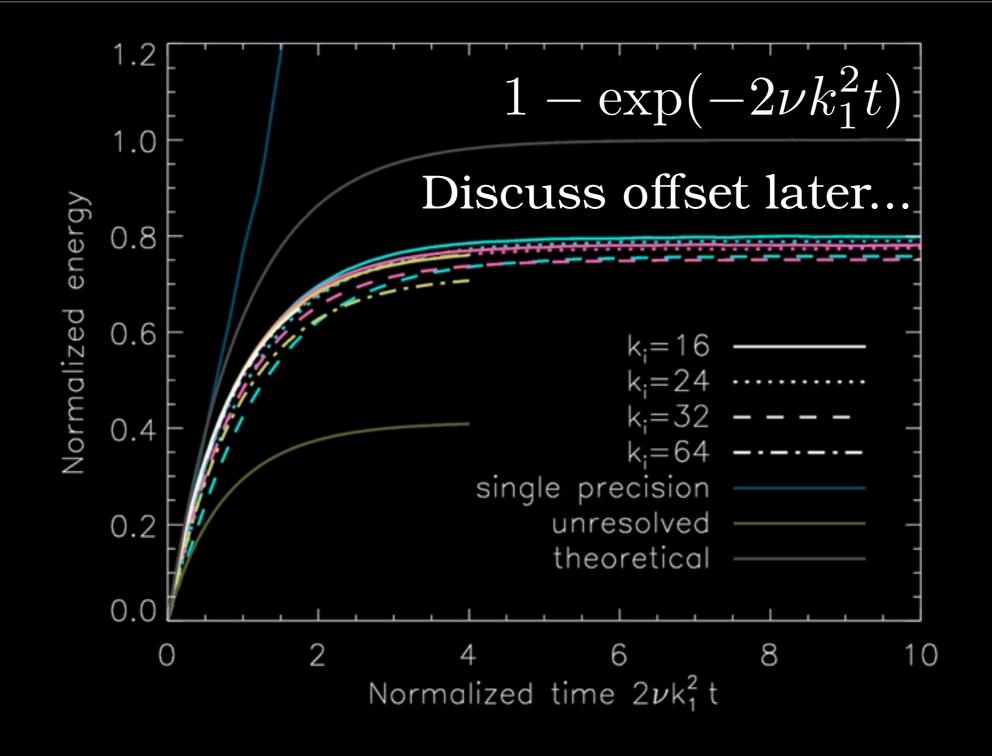
Split the conservation laws into condensate and fluctuation Use 3-scale model to reduce number of variables The solutions are similar to our guess, with correction factors

Non-Trivial Agreement!



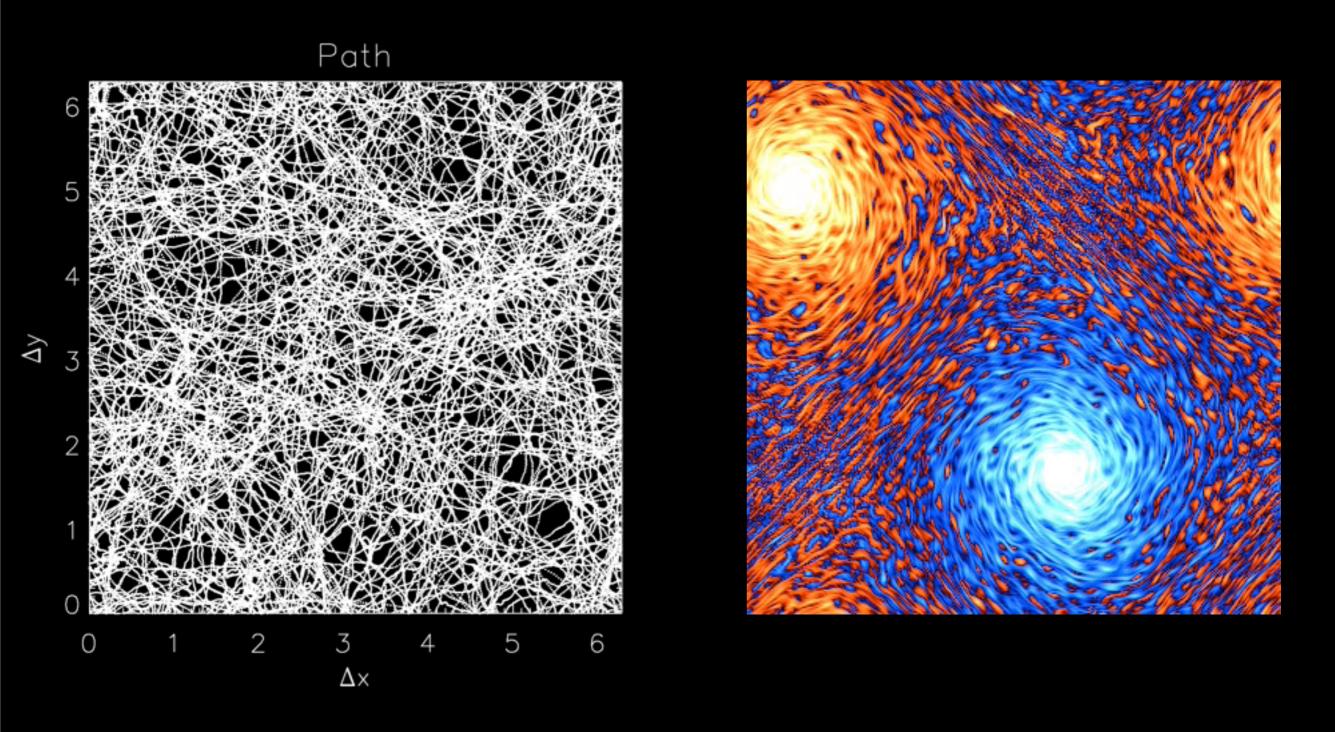
Normalize solution, curves are on top of each other 3-scale model is better than the simple scaling argument There is an overall offset... will talk about it later

Non-Trivial Agreement!



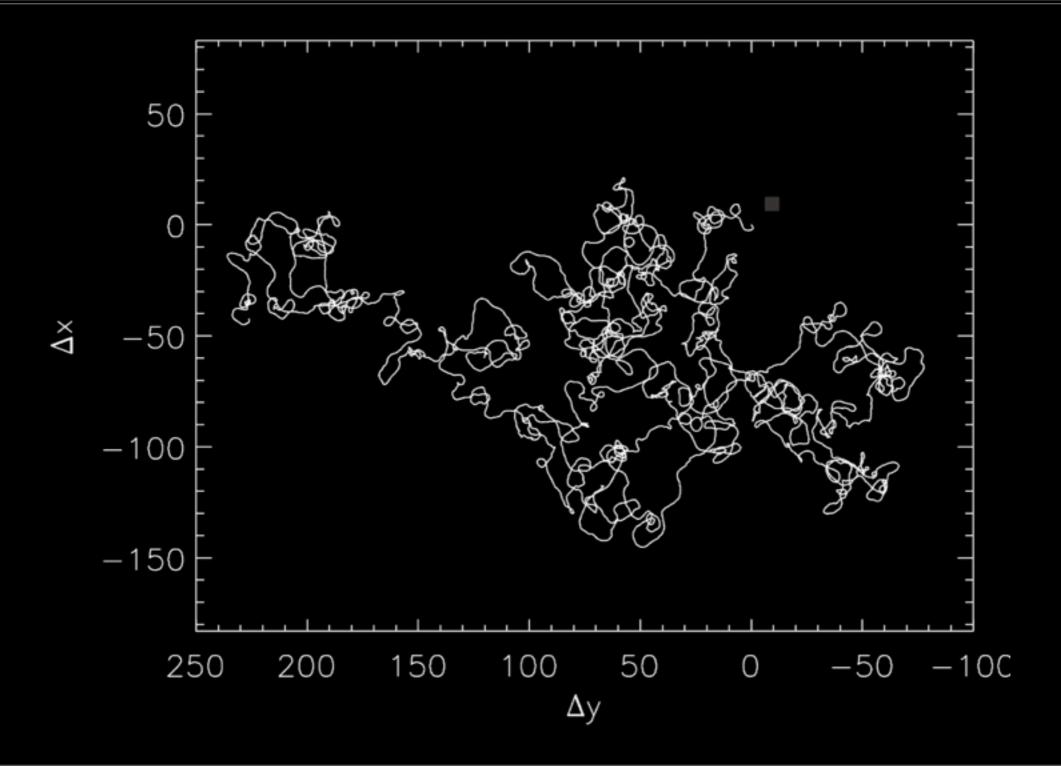
Normalize solution, curves are on top of each other 3-scale model is better than the simple scaling argument There is an overall offset... will talk about it later

Condensation Vortices Movement



Saturation level is not the full story, need position Look at trajectory

Unfolded Path



Unfolded path Small box indication the domain size It looks like random walk

Turbulent "Velocity"

Mean vorticity
$$\overline{\omega}(\boldsymbol{x}) = \sum_{|\boldsymbol{k}|=k_1} \omega_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

 $\partial_t \overline{\omega} + \boldsymbol{\nabla} \cdot (\overline{\boldsymbol{u}}\,\overline{\omega}) = -\boldsymbol{\nabla} \cdot \overline{\boldsymbol{\mathcal{F}}} + \nu \nabla^2 \overline{\omega}$
 $\overline{\boldsymbol{\mathcal{F}}}_i \equiv \overline{u_i \omega} - \overline{u}_j \overline{\omega} = \alpha_i \overline{\omega} + \beta_{ij} \partial_j \overline{\omega}$
 $(\partial_t + \alpha_i \partial_i) \overline{\omega} = (\nu \delta_{ij} - \beta_{ij}) \partial_i \partial_j \overline{\omega}$
 $\overline{\boldsymbol{\mathcal{F}}} \sim \boldsymbol{u}_{\sqrt{2}k_1} \overline{\omega} \qquad \langle \alpha^2 \rangle \sim k_1 E_{\sqrt{2}k_1} = \frac{f_i^{4/3}}{2k_1^{2/3}}$

Construct mean field theory Transport coefficients alpha and beta alpha is velocity Estimate alpha by condensate-fluctuation interaction

Simplest Stochastic Model

Ornstein-Uhlenbeck process

$$\partial_t oldsymbol{lpha} = -oldsymbol{lpha} / au_lpha + oldsymbol{\phi}$$

Fit a time scale

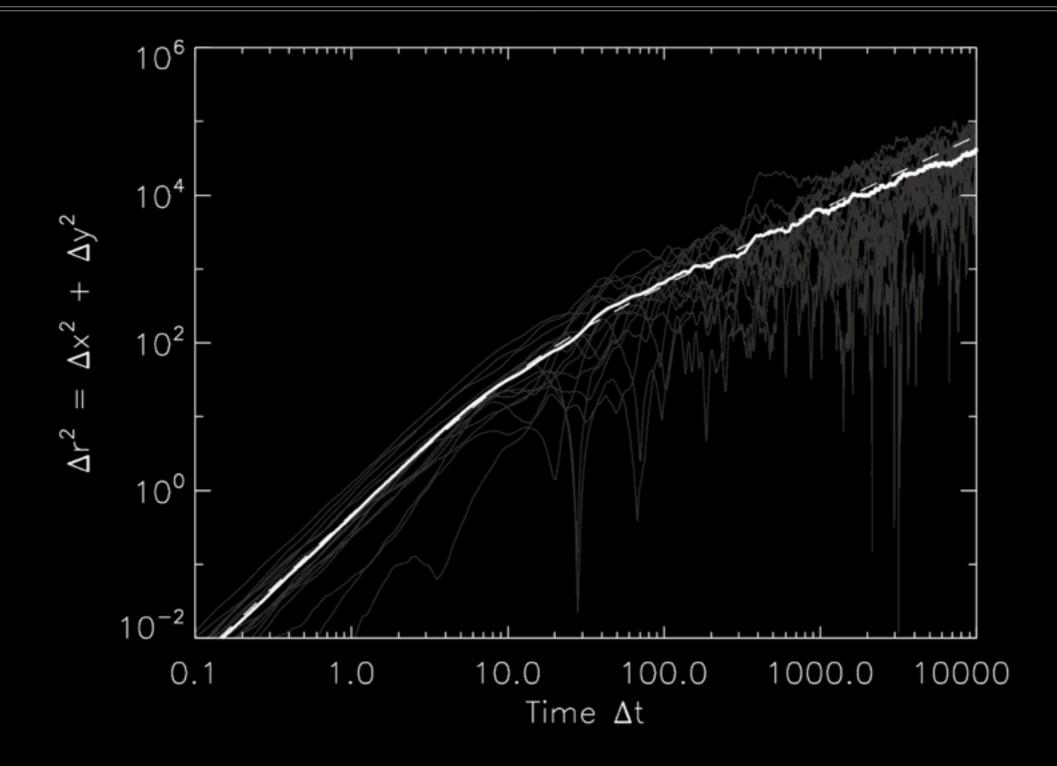
$$\langle \boldsymbol{\alpha}(s) \cdot \boldsymbol{\alpha}(t) \rangle = \alpha(0)^2 e^{-(t+s)/\tau_{\alpha}}$$

$$+ \xi f_i^2 \frac{\gamma k_d^2 - k_i^2}{\gamma k_d^2 - k_1^2} \tau_{\alpha} \left[e^{-(t-s)/\tau_{\alpha}} - e^{-(t+s)/\tau_{\alpha}} \right]$$

"Inertial" Brownian motion

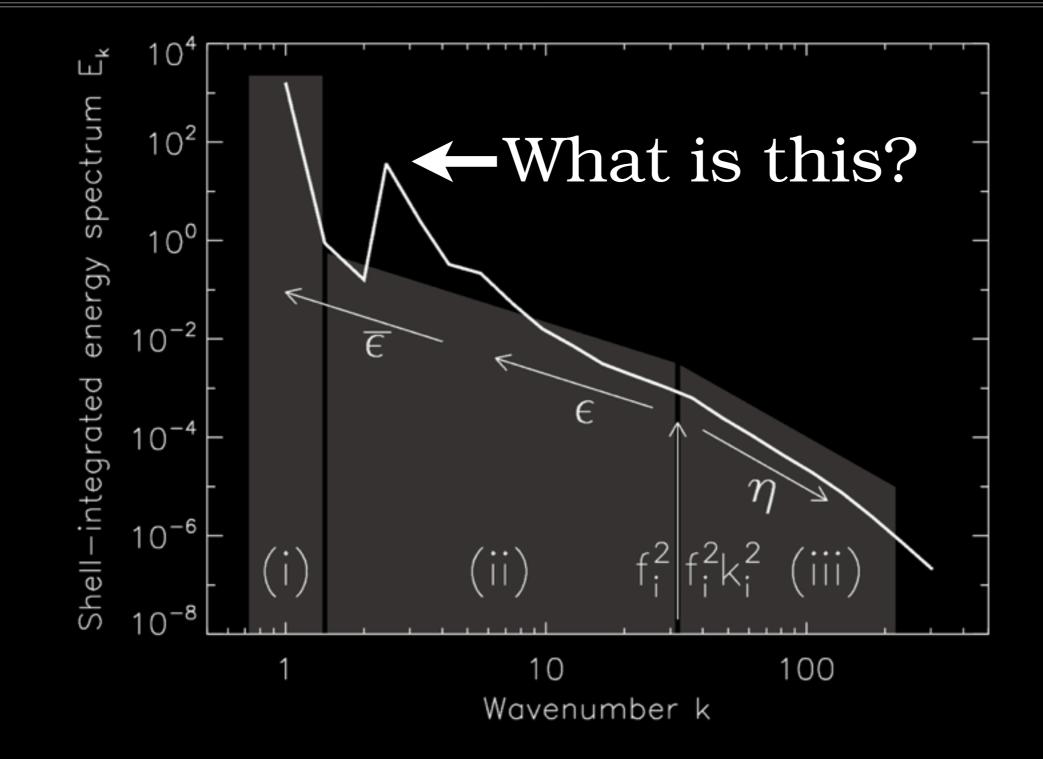
The simplest model we can come up with phi is effective forcing There is one fit parameter xi "Inertial" Brownian motion

"Inertial" Brownian Motion



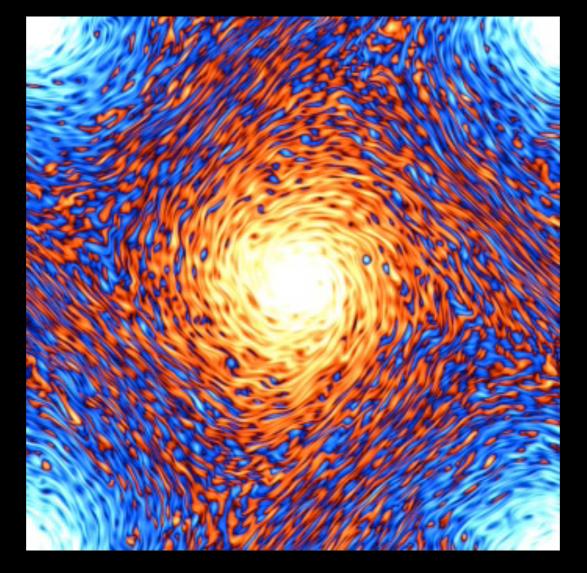
Dark grey are 16 different runs Solid white is average The initial normalization given by the 3-scale model The late time diffusion is just fitting, but it is still nice

Modeled vs. Numerical Spectra



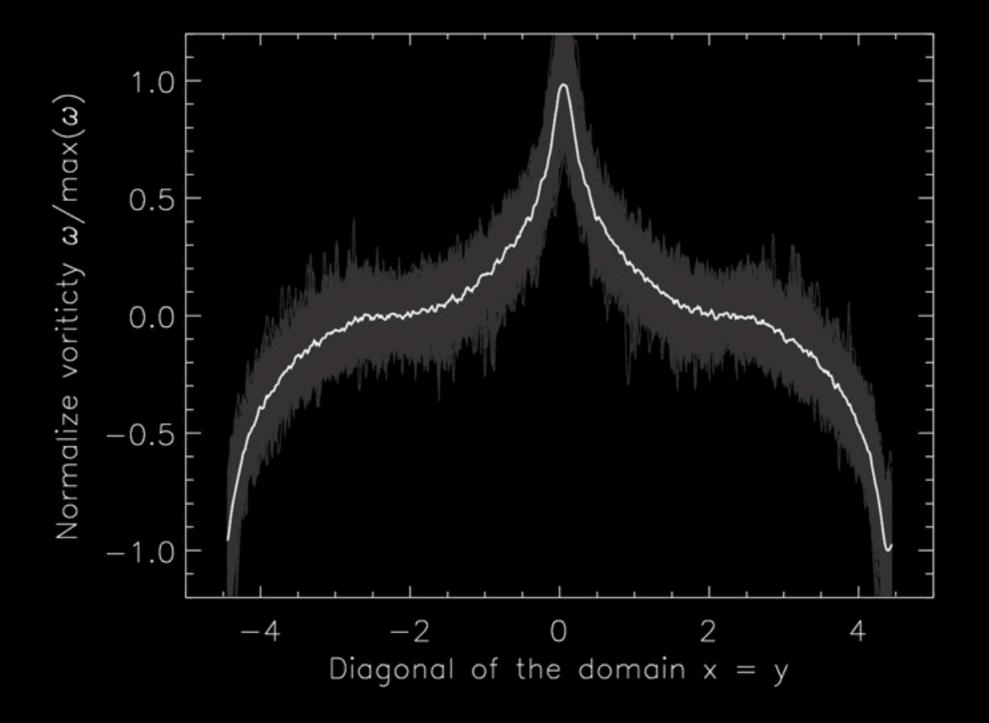
Remember the offset from the prediction? Compare the simulation with model On top of the broken power law there is a peak

Shape of Condensate Vortices



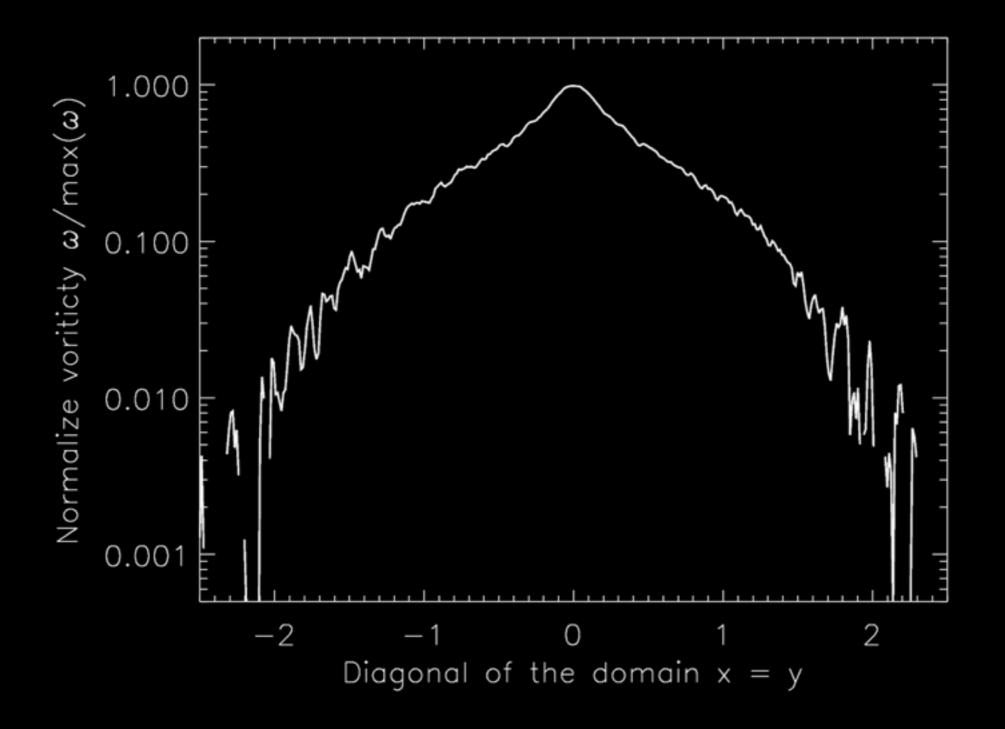
If we can compute the trajectory, we can do the opposite Fix the vortices, compute the average The shape is non-trivial

Shape of Condensate Vortices



If we can compute the trajectory, we can do the opposite Fix the vortices, compute the average The shape is non-trivial

Shape of Condensate Vortices



If we can compute the trajectory, we can do the opposite Fix the vortices, compute the average The shape is non-trivial

Symmetry of the Vortices

* Assuming $\tilde{\omega} \approx f(\overline{\omega})$, the "shape function" f(x) is odd * Taylor expanding, $1 \leq 1 \leq 1 \leq 5$

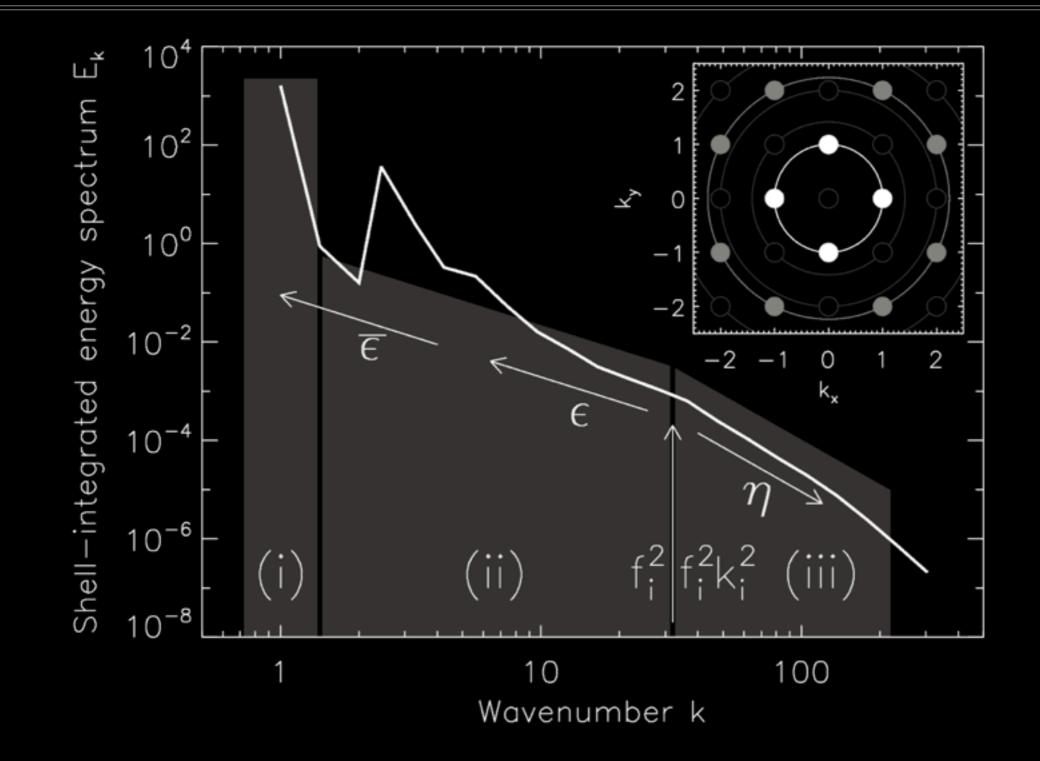
$$f(x) \approx f_0' x + \frac{1}{3!} f_0^{(3)} x^3 + \frac{1}{5!} f_0^{(5)} x^5 + \dots$$

Hence,

$$\begin{split} f(\overline{\omega}) &\approx \dots e^{ix} + \dots e^{iy} \\ &+ \dots e^{3ix} + \dots e^{2ix + iy} + \dots e^{ix + 2iy} + \dots e^{3iy} \\ &+ \dots \end{split}$$

Use a symmetry argument The large scale vortex occupy modes with odd $k_x + k_y$

Higher Harmonics



In inset, white circles are k_1 modes, grey are first harmonics The harmonics increase the enstrophy Z' So they decrease the condensate energy E

Summary

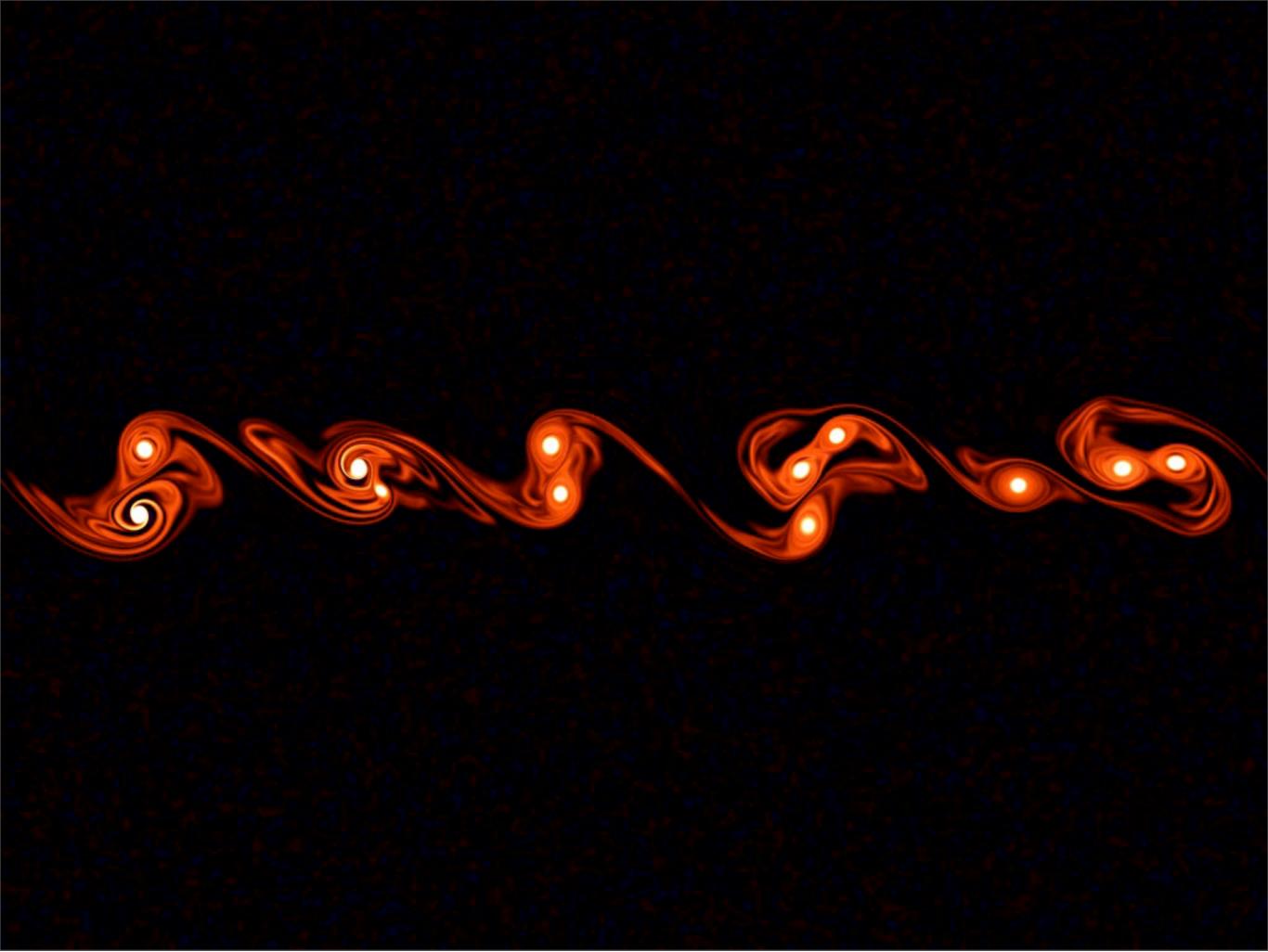
* The rumor is not wrong, it is just not useful!

$$\lim_{t \to \infty} \left(\lim_{\nu \to 0} \overline{E} \right) = f_i^2 t \quad \text{vs. } \lim_{\nu \to 0} \left(\lim_{t \to \infty} \overline{E} \right) = \frac{f_i^2}{2\nu k_1^2}$$

Condensate saturates at viscous time scale

- * Three-scale model predicts/explains saturation level
- Condensate movement is "inertial" Brownian
- * Higher harmonics probably offsets the saturation
- * GPUs rock! http://sg2.googlecode.com

Uriel: order of taking limit is important!



Show off the GPU code, 4096^2 simulation of KH instability, done in couple hours