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3D NAVIER-STOKES TURBULENCE:
SCALING EXPONENTS

Navier-Stokes equation: at’U —+ v - Vv = —VP -+ VVZ’U, V-v=0

h
Longitudinal velocity increments: 51)” (aj7 h) — [’U(ZE + h) _ ’U( )] : E

D ¢ (at high Reynolds
Structure functions: Sp(h) — <(5UH (CL‘, h)) > X h p numbers R and inertial-

range separations h )

Nelkin scaling: pth order “gradmoment” — <(VU)p> ~ RXp

These Nelkin exponents Xp are expressible in terms of the multifractal structure
function exponents (.

Using very highly resolved 3D direct numerical simulation, it has been checked by Schumacher,
Sreenivasan and Yakhot that not only such scaling is present, but is already seen at Reynolds
numbers, well below those where structure functions show any inertial-range scaling.

M. Nelkin, Phys. Rev.A 42,7226 (1990).
Schumacher et. al., New |. Phys. 9,89 (2007).




STANDARD PLOTTING VS ESS PLOTTING
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LULNDERSTANDING ESS VIA
THE BURGERS MODEL

\

8tu -+ u@wu — V(?gu u(x + h) — u(x)|?

t=0

Evolved




ESS WORKS FOR BURGERS (HIGH
RESOLUTION)
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Compensated sixth-order structure function in standard and ESS plotting

_ S3(h)

For Burgers: S3(h) = —12¢h + hot; Here ESS uses: S'g(h) =15
—14&

Chakraborty, Frisch and Ray, J. Fluid Mech. 649, 275-285 (2010).



GRADMOMENTS: MOMENTS OF
VELOCGITY GRADIENTS

— - e — E— —

‘ Can moderate Reynolds number scaling (with the Reynolds number
for moments of velocity gradients, reported by Schumacher, Yakhot
| and Sreenivasan, be explained along similar lines?

Yes, and it can be combined with an ESS-t

—— e — e =

The gradmoments of integer order p, as a function of the Reynolds number
R = 1/v, are defined as the spatial average over the period 2:

ox ’

:277

Mp(R) ! /(; 7T dx _8U(x’t)_p' E — VMQ — (1/R)M2

M,(R) = A,RX» + B,RX* 1 C,RX» + ...

Chakraborty, Frisch, Pauls and Ray, (201 1) (to be submitted).



GRADMOMENTS: LEADING ORDER
EXPONENT

O ( ) | e Solutions to the Burgers equation
v) display shocks broadened by viscosity

over a distance O(v) = O (R™1).

e Within a shock, the pth power of the velocity gradient is O (RP).

e Shocks cover a fraction O (R_l) of the one-dimensional spatial domain.

e Hence, for the Burgers equation we expect x, = p — 1.




NELKIN SCALING IN BURGERS
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Dashed lines for ESS-type plots; R = My /e




THEORY: IT IS ALL ABOUT
SUBDOMINANT TERMS

u(x,t) = —2v0, Inb(x,t)

where,

27
9(3‘), t) = / ecos(cc—g;’)/(Zu) G(:E,,t) d:E,
0

and

k=
Gl i = ~ ikx’ —vk?t
(z',t) = E e .

k=—00

Using the method of steepest descent, one can show that, for large R and any
integer p > 2: M,(R) = A,RP~!' + B,RP™2 + C,RP™> + ...




DATA PROCESSING USING ASYMPTOTIG

EXTRAPOLATION

Xp

A

1
&

B

(2)

C

Ot =

~ O 00 ~ I O

0.9999987
1.999998
2.999996
3.999995
4.999994
5.999993
6.999992
7.999994
9.00001

P
+0.09032605
— 0.03245271

+0.01249279
— 0.00498725

+0.00203621
— 0.00084414

+0.0003539
— 0.0001495

+0.000063

- 0.002
1.00001

2.00001
3.00001

4.00001
5.000008
5.999993
6.99991
7.9995

— 0.090466
+0.045622
— 0.022523
+0.010955
— 0.00526
+0.0025

— 0.0012

P
- 0.2290236
+0.1736854

P
- 1.04
0.03
1.0001
1.99988
2.99993
4.0002
5.002
6.009
7.03

P
+0.201
—0.132
+0.08417
— 0.08209

+0.06103
— 0.0398

+0.024
- 0.01

+0.03

Table I: Dominant scaling exponents Y, and the first two subdominant expo-

nents Xél) and XéQ) together with the corresponding coefficients A,, B,, and C),

for the large-R behavior of gradmoments of order p, obtained by asymptotic
extrapolation processing of a 400-digit precision determination of gradmoments

from the Hopf-Cole solution. The theoretical values are x, = p—1, Xz(yl) =p—2,

(2)

and xp ' =p—3.

J. van der Hoeven, J. Symb. Comput. 44, 1000 (2009),
WV. Pauls and U. Frisch, . Stat. Phys. 127, 1095 (2007).




R, = |Bp/Ap| | Ry = | Bp/Ap|
2.5344 0.0
5.3520 0.2827
7.2414 0.3622
9.1477 0.9906
11.0613 1.6116
12.9785 2.2290
14.8980 2.8440
16.8222 3.4544
19.0604 3.7507

= © 00~ U WN

TABLE II. Estimates of Reynolds numbers beyond which sub-
dominant corrections become small in the Reynolds number
representation (middle column) and the ESS-type represen-

tation (last column).
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RESOLUTION VS PRECISION

Double Precision

10°

Fig: Relative error of Nelkin exponents x4 and yg obtained by asymptotic
extrapolation from pseudo-spectral calculations up to a maximum Reynolds
number R,.¢. Upper set of curves: double precision calculations (y4: red filled
circles, xg: blue filled triangles); lower set of curves: quadruple precision (x4:
red inverted triangles, xg: blue filled squares).



CONCLUSIONS

ESS works for the Burgers equation. ESS improves scaling because it reduces the intensity
of subdominant corrections.

Nelkin scaling for moments of velocity gradients (gradmoments) can be explained along
similar lines; and it can be combined with an ESS-type plotting in the Burgers equation.

It will be interesting to check whether ESS-type plotting works for Nelkin scaling in 3D NS
turbulence.

@ It scems that increasing the precision, rather than the Reynolds number may be a good
strategy for determining scaling exponents in Burgers case.

. Also, it remains to be seen if this result precision vs. resolution carries over to a much
broader class of equations including multi-dimensional problems.



















THEORY: IT IS ALL ABOUT
SUBDOMINANT TERMS

Understanding why ESS works and by how much the scaling is improved
in the IR and UV directions can be done for the Burgers equation.

Simplest setting: deterministic periodic initial conditions, no forcing.
Extension to random initial conditions + forcing can be done too.

Sp(h) = (1/2m) /0 ' dr [u(x + h,t) —u(z,t)|?,

There are two small parameters: — at IR end and Q at UV end.

h




DOMINANT PLUS SUBDOMINANT IR TERM

Let there be a shock at x, with left and right velocities u_ and u_.

Left and right limits of the velocity are denoted u_ and u. .
Left and right limits of the velocity gradient are denoted s_ and s..

Shock amplitude A =u_ —uy For 0 < h <« L =2,
A?(s_ 4+ s.)h* + hot

27’('Sg — —Agh -+ g

2mS¢ = +A°h — 3A°(s_ + s, )h* + hot

S35 = A3 = h QA(3_+5+)h + hot

3 ~

5Af’(s_ +54)(S3)” + hot  (EsS)
The coefficient of the first subdominant correction with ESS is half of what it is
in the standard representation. Hence scaling extends further by a factor two.
For random initial conditions and large time t, scaling is extended by at least a
factor two [From S_— =~ S =~ 1/t and  (A%)/(A°) > (A’)/(A?), which
follows from the convexity of g +— ln<Aq> :

(standard)

2mrSs = A8Ss —




DOMINANT PLUS SUBDOMINANT UV TERM

@ Due to viscosity, the shock has a tanh structure which causes UV corrections.
@ Shift spatial origin to shock location, rescale distances by 1) = 4t /A and velocities by A.

@ To leading order, the shock becomes u(x) = —tanhz and

28, = / dz [tanh(x) — tanh(x + h)|P.

Thus, for large h
2mS3 = —8h + 12 + tst

27TS6 64h — 2192/15 + tst (standard)

~ 21 S
Sg — 3 5

2mSe = 6453 — 752/15 4+ tst  (Ess)

The coefficient of the first subdominant correction with ESS is smaller by a factor 2192/752 ~ 2.91
to what it is in the standard representation. Hence scaling extends further by a factor 2.91. For
statistically homogeneous forces and (random) initial conditions; and if they have rapidly decreasing

spatial correlations, ergodicity helps us to conclude that ESS extends the scaling into UV regime by at
least 2.91.

= h — 3/2 + tst




ASYMPTOTIC EXTRAPOLATION

e Given a function G(r) with assumed leading-order expansion (r — 00)

G(r) ~ Cr—%e=°"

on a regular 1D grid rg, 279, ..., N7g
G, = G(nrg), n=12,...N
can we determine C, « and § numerically with high accuracy? What about
subleading terms?
e Naive method: least square fit

e Improvement: take second ratio (Shelley, Caflisch, Pauls—Matsumoto—Frisch—Bec)

GnGn-a 1 \7°
=gz ‘(1 (n—1>2)

Ignore subleading corrections

B In R,
In(1—1/(n—1)3?)

0

e Is there a more systematic approach?




ASYMPTOTIC EXTRAPOLATION

e Interpolate the sequence (,, in the “most asymptotic” regionn = L, ..., N

e Transformations:

I Inverse: G,
R Ratio: G,
SR Second ratio: G,,
D Difference: G,, — G,, —

e Going down (assuming G,, > 0):
— Test 1: if G,, < 1 apply I

— Test 2: Does G,, grow faster than n5/2?

x Yes: if the growth is exponential apply SR, otherwise R
x No: apply D

— Continue untill obtaining data which are easy to interpolate and clean enough

e Go back by inverting transformations I, R, SR and D




ASYMPTOTIC EXTRAPOLATION
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