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∂tv + v ·∇v = −∇p + ν∇2v, ∇ · v = 0

 3D Navier-Stokes turbulence: 
scaling exponents

Navier-Stokes equation:

Longitudinal velocity increments:

Structure functions:
(at high Reynolds 
numbers R and inertial-
range separations h )

δv�(x, h) ≡ [v(x + h)− v(x)] · h

h

Sp(h) ≡
��

δv�(x, h)
�p� ∝ hζp

Nelkin scaling: pth order “gradmoment” ≡ �(∇v)p� ∼ Rχp

Using very highly resolved 3D direct numerical simulation, it has been checked by Schumacher, 
Sreenivasan and Yakhot that not only such scaling is present, but is already seen at Reynolds 
numbers, well below those where structure functions show any inertial-range scaling.

These Nelkin exponents      are expressible in terms of the multifractal structure 
function exponents    .

Schumacher et. al., New J. Phys. 9, 89 (2007).

M. Nelkin, Phys. Rev. A 42, 7226 (1990).

χp
ζp
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Fig. 5. Log- log plot of (a) <lav(,Yl> and (b) <lAV(r)6l) 

against r/ 'o for the cases J, C18 and C6 (same symbols as Fig. 

1). The solid lines correspond to slopes (a) 1.28 and (b) 1.79, 

respectively, measured for case J. 

Table 2 

Scaling exponents ~'(n) of the velocity structure functions of 

order n obtained from the experiments  described in the text 

using ESS. The error  on the exponents  is about  -+1% 

n st(n) 

1 0.37 

2 0.70 

3 1.00 

4 1.28 

5 1.54 

6 1.78 

7 2.00 

8 2.23 
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Fig. 6. Log-log plot of <lAY(,')41> against (IAV(r)'I) for the 
experiments J, C18 and C6 (same symbols as Fig. 1). The 

solid line corresponds to a slope 1.27. In this figure the 

structure functions corresponding to J and C6 have been 

multiplied by 10 and 0.1, respectively. 

{[Ao(r)[ p) c a n  be written in the following way: 

Fp(r) = CR U o -~ f , (3) 

with U 3= (IAV(L)I3), L = UZ/  being the in- 

tegral scale, ~'(p) the anomalous exponents and 

Cp dimensionless constants selected in such a 
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Fig. 7. Log- log  plot of {IAV(rYI) against (lav(r)~l) for the 

experiments J, C18 and C6 (same symbols as Fig. 1). The 

solid line corresponds to a slope 1.78. In this figure the 

structure functions corresponding to J and C6 have been  

multiplied by 10 and 0.1, respectively. 
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homogeneous turbulence, and, according to an 

analysis by Monin-Yaglom [18], it is not neces- 

sarily to assume isotropy of the large scale 

motion in order to derive Eq. (1). The Kol- 

mogorov equation is the milestone to detect any 

inertial range in fully developed turbulence. 

Defining 7/= (v 3 / e )  1/4 as the Kolmogorov length, 

then for r>>r/ ,  S(r)= 4~r/5. Thus the simplest 

way to detect the existence of an inertial range in 

fully developed turbulence is to check that for 

large enough values of r (in any case smaller 

than the integral scale L) the third order struc- 

ture function is proportional to r. In our experi- 

ments, only case J clearly shows an inertial range 

according to our previous definition. In Fig. 1 we 

show the log-log plot of S(r) against r/rl for the 

experiments C6, C18 and J. 

Although it cannot be rigorously proved, it is 

generally assumed that F3(r ) shows a scaling law 

similar to S(r). This assumption is based on the 

same dimensional arguments leading to the Kol- 

mogorov theory in which AV noc r n/3. More pre- 

cisely, it is assumed that intermittency does not 

affect the scaling behaviour of F3(r ) - or. From a 

purely statistical point of view, the computation 

of S(r) is much more demanding than F3(r ). For 

this reason, it is worthwhile to understand 

whether the scaling of F 3 (r) is consistent with the 

phenomenological assumption previously de- 

scribed. In Fig. 2 we show the log-log plot of 

F3(r ) against S(r) for the different experiments. 

All the available data, with the exception of the 

large scale values (larger anyhow than the integr- 

al scale of motion), fall on a clear straight line 

whose slope is 1.006, i.e. very close to 1. This is 

a very important result because it clarifies, once 

and for all, that the scaling behaviour of F3(r ) 

and S(r) do not differ one from the other even at 

a very small Reynolds number. In the following 

we shall make an extensive use of this result in 

order to compute the self-scaling properties of 

the structure functions. We shall safely use F3(r ) 

instead of S(r) because no appreciable difference 

in the scaling behaviour has been detected. 

Finally we want to remark that Fig. 2 (where 
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Fig. 1. Log-log plot of (AV(r) 3 ) against r/T1 for three 

different experiments referred to in the text, namely J 

(triangles), C18 (squares) and C6 (diamonds). The solid line 

corresponds to a slope equal to I. All logarithms are in base 

10. 

all the points of Fig. 1 with r < L  have been 

reported) tells us that the "dimensional" scaling 

of F3(r ) against S(r) is true not only in the 

inertial range, as expected by phenomenological 

considerations, but also in the dissipation range 

quite close to the Kolmogorov scale. This is the 

typical finding due to ESS as anticipated in the 

introduction. 
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Fig. 2. Log-log plot of (l~v(0'l) against I(AV(r)3}I for the 

experiments J, C18 and C6 (same symbols as Fig. 1) and grid 

turbulence (stars). The solid line corresponds to a slope 

1.006. 

STANDARD PLOTTING  VS ESS PLOTTING

Rλ = 225

Rλ = 342

Rλ = 800

→ IRUV ←

Benzi et. al., Physica D 80, 385 (1995)



UNDERSTANDING ESS  VIA 
THE BURGERS MODEL

p

1

1 p

!

∂tu + u∂xu = ν∂2
xu

“It has been shown that ESS does not hold for the Burgers equation...” (Benzi et. al. 1995)

Sp ≡ (1/2π)
� 2π
0 dx [u(x+ h)− u(x)]p

∼ hζp



ESS WORKS FOR BURGERS (HIGH 
RESOLUTION)

Compensated sixth-order structure function in standard and ESS plotting

For Burgers: S3(h) = −12εh + hot Here ESS uses: S̃3(h) ≡ S3(h)
−12ε
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Chakraborty, Frisch and Ray, J. Fluid Mech. 649, 275-285 (2010). 
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GRADMOMENTS: MOMENTS OF 
VELOCITY GRADIENTS

Mp(R) ≡ 1

2π

� 2π

0
dx

�
∂u(x, t)

∂x

�p

The gradmoments of integer order p, as a function of the Reynolds number
R ≡ 1/ν, are defined as the spatial average over the period 2π:

ε = νM2 = (1/R)M2;

Can moderate Reynolds number scaling (with the Reynolds number) 
for moments of velocity gradients, reported by Schumacher,  Yakhot 

and Sreenivasan, be explained along similar lines?  
Yes, and it can be combined with an ESS-type plotting.

Mp(R) = ApR
χp +BpR

χ(1)
P + CpR

χ(2)
P + . . .

Chakraborty,  Frisch, Pauls and Ray, (2011) (to be submitted).



GRADMOMENTS: LEADING ORDER 
EXPONENT

u

x

• Solutions to the Burgers equation
display shocks broadened by viscosity
over a distance O(ν) = O

�
R−1

�
.

• Within a shock, the pth power of the velocity gradient is O (Rp).

• Shocks cover a fraction O
�
R−1

�
of the one-dimensional spatial domain.

• Hence, for the Burgers equation we expect χp = p− 1.

O(ν)



NELKIN SCALING IN BURGERS

Dashed lines for ESS-type plots;
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Using the method of steepest descent, one can show that, for large R and any
integer p ≥ 2: Mp(R) = ApRp−1 +BpRp−2 + CpRp−3 + . . .

where,

and

.

THEORY: IT IS ALL ABOUT 
SUBDOMINANT TERMS

• R̃ ≡
M2

A2
= R1 +

B2

A2
R0 +O(R−1); [M2 = A2R+B2 + ...],

• Mp = ApR̃
p−1 + B̃pR̃

p−2 +O(R̃p−3); B̃p = Bp −
(p− 1)Ap

A2
B2



DATA PROCESSING USING ASYMPTOTIC 
EXTRAPOLATION

J. van der Hoeven, J. Symb. Comput. 44, 1000 (2009),
W. Pauls and U. Frisch, J. Stat. Phys.127, 1095 (2007).

Table I: Dominant scaling exponents χp and the first two subdominant expo-

nents χ(1)
p and χ(2)

p together with the corresponding coefficients Ap, Bp, and Cp

for the large-R behavior of gradmoments of order p, obtained by asymptotic

extrapolation processing of a 400-digit precision determination of gradmoments

from the Hopf-Cole solution. The theoretical values are χp = p−1, χ(1)
p = p−2,

and χ(2)
p = p− 3.



ESS-TYPE EXTENSION OF 
GRADMOMENTS’ SCALING

• R̃ ≡
M2

A2
= R1 +

B2

A2
R0 +O(R−1); [M2 = A2R+B2 + ...],

• Mp = ApR̃
p−1 + B̃pR̃

p−2 +O(R̃p−3); B̃p = Bp −
(p− 1)Ap

A2
B2

• Mp = ApR
p−1 +BpR

p−2 +O(Rp−3)



RESOLUTION VS PRECISION

Fig: Relative error of Nelkin exponents χ4 and χ6 obtained by asymptotic
extrapolation from pseudo-spectral calculations up to a maximum Reynolds
number Rmax. Upper set of curves: double precision calculations (χ4: red filled
circles, χ6: blue filled triangles); lower set of curves: quadruple precision (χ4:
red inverted triangles, χ6: blue filled squares).
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CONCLUSIONS

●

●

Nelkin scaling for moments of velocity gradients (gradmoments) can be explained along 
similar lines; and it can be combined with an ESS-type plotting in the Burgers equation.

 It seems that increasing the precision, rather than the Reynolds number may be a good 
strategy for determining scaling exponents in Burgers case. 

● ESS works for the Burgers equation. ESS improves scaling because it reduces the intensity 
of subdominant corrections.

●  Also, it remains to be seen if this result precision vs. resolution carries over to a much 
broader class of equations including multi-dimensional problems.

● It will be interesting to check whether ESS-type plotting works for Nelkin scaling in 3D NS 
turbulence.

●



THANK YOU











THEORY: IT IS ALL ABOUT 
SUBDOMINANT TERMS

●

●

●

Understanding  why ESS works and by how much the scaling is improved
in the IR and UV directions can be done for the Burgers equation.

Simplest setting:  deterministic periodic initial conditions, no forcing.
Extension to random initial conditions + forcing can be done too.

Sp(h) ≡ (1/2π)
� 2π

0
dx [u(x + h, t)− u(x, t)]p

● There are two small parameters:         at IR end and        at UV end. 
h

L
η

h

.



2πS6 = ∆6S̃3 −
3
2
∆5(s− + s+)(S̃3)2 + hot

2πS3 = −∆3h +
3
2
∆2(s− + s+)h2 + hot

2πS6 = +∆6h− 3∆5(s− + s+)h2 + hot

S̃3 = −2πS3

∆3
= h− 3

2∆
(s− + s+)h2 + hot

Let there be a shock at xs

Left and right limits of the velocity are denoted u− and u+

Left and right limits of the velocity gradient are denoted s− and s+

Shock amplitude ∆ = u− − u+

DOMINANT PLUS SUBDOMINANT IR TERM

The coefficient of the first subdominant correction with ESS is half  of what it is 
in the standard representation. Hence scaling extends further by a factor two.
For random initial conditions and large time t, scaling is extended by at least a
factor two [From                                 and                                        , which
follows from the convexity of                          .

(standard)

(ESS)

For 0 < h� L = 2π,
.

with left and right velocities u− and u+.

s− ≈ s+ ≈ 1/t �∆6�/�∆5� ≥ �∆3�/�∆2�
q �→ ln�∆q�

.
.



DOMINANT PLUS SUBDOMINANT UV TERM

The coefficient of the first subdominant correction with ESS is smaller by a factor                           
to what it is in the standard representation. Hence scaling extends further by a factor 2.91.  For 
statistically homogeneous forces and (random) initial conditions; and if they have rapidly decreasing 
spatial correlations, ergodicity helps us to conclude that ESS extends the scaling into UV regime by at 
least 2.91.

2192/752 ≈ 2.91

2πS3 = −8h + 12 + tst
2πS6 = 64h− 2192/15 + tst

S̃3 ≡ −
2πS3

8
= h− 3/2 + tst

2πS6 = 64S̃3 − 752/15 + tst

● Due to viscosity, the shock has a tanh structure which causes UV corrections.

● Shift spatial origin to shock location, rescale distances by                      and velocities by η = 4νt/∆ ∆

● To leading order, the shock  becomes                                  andu(x) = − tanhx

2πSp =
� ∞

−∞
dx [tanh(x)− tanh(x + h)]p.

Thus, for large 

(standard)

(ESS)

h

.



ASYMPTOTIC EXTRAPOLATION



ASYMPTOTIC EXTRAPOLATION



ASYMPTOTIC EXTRAPOLATION

α = 1.5


