NELKIN SCALNG IN "BURGULENCE"

Sagar Chakraborty

(NBIA, Niels Bohr Institute, Copenhagen, Denmark)

Uriel Frisch (Observatoire de la Côte d'Azur, Nice, France)
Walter Pauls (Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany)
Samriddhi Sankar Ray (Observatoire de la Côte d'Azur, Nice, France)

3D NAVIER-STロKES TURBULENCE: SCALING EXPロNENTS

Navier-Stokes equation:

$$
\partial_{t} \boldsymbol{v}+\boldsymbol{v} \cdot \nabla \boldsymbol{v}=-\nabla p+\nu \nabla^{2} \boldsymbol{v}, \quad \nabla \cdot \boldsymbol{v}=0
$$

Longitudinal velocity increments: $\delta v_{\|}(\boldsymbol{x}, \boldsymbol{h}) \equiv[\boldsymbol{v}(\boldsymbol{x}+\boldsymbol{h})-\boldsymbol{v}(\boldsymbol{x})] \cdot \frac{\boldsymbol{h}}{h}$
Structure functions: $\quad S_{p}(h) \equiv\left\langle\left(\delta v_{\|}(\boldsymbol{x}, \boldsymbol{h})\right)^{p}\right\rangle \propto h^{\zeta_{p}}$
(at high Reynolds numbers R and inertialrange separations h)

Nelkin scaling: p th order "gradmoment" $\equiv\left\langle(\nabla v)^{p}\right\rangle \sim R^{\chi_{p}}$
These Nelkin exponents χ_{p} are expressible in terms of the multifractal structure function exponents ζ_{p}.

Using very highly resolved 3D direct numerical simulation, it has been checked by Schumacher, Sreenivasan and Yakhot that not only such scaling is present, but is already seen at Reynolds numbers, well below those where structure functions show any inertial-range scaling.
M. Nelkin, Phys. Rev.A 42, 7226 (1990).

Schumacher et. al., New J. Phys. 9, 89 (2007).

STANDARD PLロTTING VS ESS PLロTTING

UV \leftarrow

Benzi et. al., Physica D 80, 385 (1995)

\rightarrow IR

UNDERSTANDING ESS VIA THE BURGERS MODEL

"It has been shown that ESS does not hold for the Burgers equation..." (Benzi et. al. I995)

ESS WロRKS FロR BURGERS（HIGH RESロLUTIロN）

Compensated sixth－order structure function in standard and ESS plotting
For Burgers：$S_{3}(h)=-12 \varepsilon h+$ hot；Here ESS uses：$\tilde{S}_{3}(h) \equiv \frac{S_{3}(h)}{-12 \varepsilon}$
Chakraborty，Frisch and Ray，J．Fluid Mech．649，275－285（20I0）．

GRADMロMENTS：MロMENTS ロF VELロロITY GRADIENTS

Can moderate Reynolds number scaling（with the Reynolds number） for moments of velocity gradients，reported by Schumacher，Yakhot and Sreenivasan，be explained along similar lines？ Yes，and it can be combined with an ESS－type plotting．

The gradmoments of integer order p ，as a function of the Reynolds number $R \equiv 1 / \nu$ ，are defined as the spatial average over the period 2π ：

$$
\begin{aligned}
& M_{p}(R) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d x\left[\frac{\partial u(x, t)}{\partial x}\right]^{p} ; \quad \varepsilon=\nu M_{2}=(1 / R) M_{2} \\
& M_{p}(R)=A_{p} R^{\chi_{p}}+B_{p} R^{\chi_{P}^{(1)}}+C_{p} R^{\chi_{P}^{(2)}}+\ldots
\end{aligned}
$$

Chakraborty，Frisch，Pauls and Ray，（201I）（to be submitted）．

GRADMロMENTS：LEADING ロRDER EXPロNENT

－Within a shock，the p th power of the velocity gradient is $\mathcal{O}\left(R^{p}\right)$ ．
－Shocks cover a fraction $\mathcal{O}\left(R^{-1}\right)$ of the one－dimensional spatial domain．
－Hence，for the Burgers equation we expect $\chi_{p}=p-1$ ．

NELKIN SCALING IN BURGERS

Dashed lines for ESS-type plots; $\tilde{R} \equiv M_{2} / \varepsilon$

THEロRY：IT IS ALL ABロபT SபBDロMINANT TERMS

$$
u(x, t)=-2 \nu \partial_{x} \ln \theta(x, t)
$$

where，

$$
\theta(x, t)=\int_{0}^{2 \pi} \mathrm{e}^{\cos \left(x-x^{\prime}\right) /(2 \nu)} G\left(x^{\prime}, t\right) d x^{\prime}
$$

and

$$
G\left(x^{\prime}, t\right)=\sum_{k=-\infty}^{k=\infty} \mathrm{e}^{\mathrm{i} k x^{\prime}-\nu k^{2} t}
$$

Using the method of steepest descent，one can show that，for large R and any integer $p \geq 2: M_{p}(R)=A_{p} R^{p-1}+B_{p} R^{p-2}+C_{p} R^{p-3}+\ldots$
－$\quad \tilde{R} \equiv \frac{M_{2}}{A_{2}}=R^{1}+\frac{B_{2}}{A_{2}} R^{0}+\mathcal{O}\left(R^{-1}\right) ; \quad\left[M_{2}=A_{2} R+B_{2}+\ldots\right]$,
－$\quad M_{p}=A_{p} \tilde{R}^{p-1}+\tilde{B}_{p} \tilde{R}^{p-2}+\mathcal{O}\left(\tilde{R}^{p-3}\right) ; \quad \tilde{B}_{p}=B_{p}-\frac{(p-1) A_{p}}{A_{2}} B_{2}$

DATA PRロロESSING பSING ASYMPTロTIC EXTRAPロLATIロN

$\operatorname{order}(p)$	χ_{p}	A_{p}	$\chi_{p}^{(1)}$	B_{p}	$\chi_{p}^{(2)}$	C_{p}
2	0.9999987	+0.09032605	-0.002	-0.2290236	-1.04	+0.201
3	1.999998	-0.03245271	1.00001	+0.1736854	0.03	-0.132
4	2.999996	+0.01249279	2.00001	-0.090466	1.0001	+0.08417
5	3.999995	-0.00498725	3.00001	+0.045622	1.99988	-0.08209
6	4.999994	+0.00203621	4.00001	-0.022523	2.99993	+0.06103
7	5.999993	-0.00084414	5.000008	+0.010955	4.0002	-0.0398
8	6.999992	+0.0003539	5.999993	-0.00526	5.002	+0.024
9	7.999994	-0.0001495	6.99991	+0.0025	6.009	-0.01
10	9.00001	+0.000063	7.9995	-0.0012	7.03	+0.03

Table I：Dominant scaling exponents χ_{p} and the first two subdominant expo－ nents $\chi_{p}^{(1)}$ and $\chi_{p}^{(2)}$ together with the corresponding coefficients A_{p}, B_{p} ，and C_{p} for the large－R behavior of gradmoments of order p ，obtained by asymptotic extrapolation processing of a 400－digit precision determination of gradmoments from the Hopf－Cole solution．The theoretical values are $\chi_{p}=p-1, \chi_{p}^{(1)}=p-2$ ， and $\chi_{p}^{(2)}=p-3$ ．

J．van der Hoeven，J．Symb．Comput．44，I000（2009）， W．Pauls and U．Frisch，J．Stat．Phys．I 27，I095（2007）．

ESS－TYPE EXTENSIロN ロF GRADMロMENTS＇SCALING

$\operatorname{order}(p)$	$R_{p}^{\star}=\left\|B_{p} / A_{p}\right\|$	$\tilde{R}_{p}^{\star}=\left\|\tilde{B}_{p} / A_{p}\right\|$
2	2.53444	0.0
3	5.3520	0.2827
4	7.2414	0.3622
5	9.1477	0.9906
6	11.0613	1.6116
7	12.9785	2.2290
8	14.8980	2.8440
9	16.8222	3.4544
10	19.0604	3.7507

TABLE II．Estimates of Reynolds numbers beyond which sub－ dominant corrections become small in the Reynolds number representation（middle column）and the ESS－type represen－ tation（last column）．

$$
M_{p}=A_{p} R^{p-1}+B_{p} R^{p-2}+\mathcal{O}\left(R^{p-3}\right)
$$

$$
\tilde{R} \equiv \frac{M_{2}}{A_{2}}=R^{1}+\frac{B_{2}}{A_{2}} R^{0}+\mathcal{O}\left(R^{-1}\right) ; \quad\left[M_{2}=A_{2} R+B_{2}+\ldots\right]
$$

$$
M_{p}=A_{p} \tilde{R}^{p-1}+\tilde{B}_{p} \tilde{R}^{p-2}+\mathcal{O}\left(\tilde{R}^{p-3}\right) ; \quad \tilde{B}_{p}=B_{p}-\frac{(p-1) A_{p}}{A_{2}} B_{2}
$$

RESロLUTIロN VS PRECISIロN

Fig：Relative error of Nelkin exponents χ_{4} and χ_{6} obtained by asymptotic extrapolation from pseudo－spectral calculations up to a maximum Reynolds number $R_{\text {max }}$ ．Upper set of curves：double precision calculations（ χ_{4} ：red filled circles，χ_{6} ：blue filled triangles）；lower set of curves：quadruple precision $\left(\chi_{4}\right.$ ： red inverted triangles，χ_{6} ：blue filled squares）．

ㄷロNロレபSIロNS

ESS works for the Burgers equation．ESS improves scaling because it reduces the intensity of subdominant corrections．

Nelkin scaling for moments of velocity gradients（gradmoments）can be explained along similar lines；and it can be combined with an ESS－type plotting in the Burgers equation．

It will be interesting to check whether ESS－type plotting works for Nelkin scaling in 3D NS turbulence．

It seems that increasing the precision，rather than the Reynolds number may be a good strategy for determining scaling exponents in Burgers case．

Also，it remains to be seen if this result precision vs．resolution carries over to a much broader class of equations including multi－dimensional problems．

THANK Yロப

THEDRY: IT IS ALL ABロபT SUBDOMINANT TERMS

Understanding why ESS works and by how much the scaling is improved in the IR and UV directions can be done for the Burgers equation.

Simplest setting: deterministic periodic initial conditions, no forcing. Extension to random initial conditions + forcing can be done too.
$S_{p}(h) \equiv(1 / 2 \pi) \int_{0}^{2 \pi} d x[u(x+h, t)-u(x, t)]^{p}$.

There are two small parameters: $\frac{h}{L}$ at IR end and $\frac{\eta}{h}$ at UV end.

DロMINANT PLUS SUBDロMINANT IR TERM

Let there be a shock at x_{s} with left and right velocities u_{-}and u_{+}.
Left and right limits of the velocity are denoted u_{-}and u_{+}. Left and right limits of the velocity gradient are denoted s_{-}and s_{+}. Shock amplitude $\frac{\Delta}{3}=u_{-}-u_{+}$For $0<h \ll L=2 \pi$, $2 \pi S_{3}=-\Delta^{3} h+\frac{3}{2} \Delta^{2}\left(s_{-}+s_{+}\right) h^{2}+$ hot \quad (standard) $2 \pi S_{6}=+\Delta^{6} h-3 \Delta^{5}\left(s_{-}+s_{+}\right) h^{2}+$ hot

$$
\tilde{S}_{3}=-\frac{2 \pi S_{3}}{\Delta^{3}}=h-\frac{3}{2 \Delta}\left(s_{-}+s_{+}\right) h^{2}+\text { hot }
$$

$$
\begin{equation*}
2 \pi S_{6}=\Delta^{6} \tilde{S}_{3}-\frac{3}{2} \Delta^{5}\left(s_{-}+s_{+}\right)\left(\tilde{S}_{3}\right)^{2}+\operatorname{hot} \tag{ESS}
\end{equation*}
$$

The coefficient of the first subdominant correction with ESS is half of what it is in the standard representation. Hence scaling extends further by a factor two. For random initial conditions and large time t, scaling is extended by at least a factor two [From $s_{-} \approx s_{+} \approx 1 / t$ and $\left\langle\Delta^{6}\right\rangle /\left\langle\Delta^{5}\right\rangle \geq\left\langle\Delta^{3}\right\rangle /\left\langle\Delta^{2}\right\rangle$, which follows from the convexity of $\quad q \mapsto \ln \left\langle\Delta^{q}\right\rangle$.

DロMINANT PLUS SUBDロMINANT UV TERM

Due to viscosity, the shock has a tanh structure which causes UV corrections.

Shift spatial origin to shock location, rescale distances by $\eta=4 \nu t / \Delta$ and velocities by Δ.

To leading order, the shock becomes $u(x)=-\tanh x$ and

$$
2 \pi S_{p}=\int_{-\infty}^{\infty} d x[\tanh (x)-\tanh (x+h)]^{p}
$$

Thus, for large h

$$
\begin{align*}
2 \pi S_{3}= & -8 h+12+\mathrm{tst} \\
2 \pi S_{6}= & 64 h-2192 / 15+\mathrm{tst} \\
& \tilde{S}_{3} \equiv-\frac{2 \pi S_{3}}{8}=h-3 / 2+\mathrm{tst} \\
2 \pi S_{6}= & 64 \tilde{S}_{3}-752 / 15+\mathrm{tst} \tag{ESS}
\end{align*}
$$

The coefficient of the first subdominant correction with ESS is smaller by a factor $2192 / 752 \approx 2.91$ to what it is in the standard representation. Hence scaling extends further by a factor 2.91. For statistically homogeneous forces and (random) initial conditions; and if they have rapidly decreasing spatial correlations, ergodicity helps us to conclude that ESS extends the scaling into UV regime by at least 2.91.

ASYMPTITIC EXTRAPロLATIロN

- Given a function $G(r)$ with assumed leading-order expansion $(r \rightarrow \infty)$

$$
G(r) \simeq C r^{-\alpha} e^{-\delta r}
$$

on a regular 1D grid $r_{0}, 2 r_{0}, \ldots, N r_{0}$

$$
G_{n}=G\left(n r_{0}\right), \quad n=1,2, \ldots, N
$$

can we determine C, α and δ numerically with high accuracy? What about subleading terms?

- Naive method: least square fit
- Improvement: take second ratio (Shelley, Caflisch, Pauls-Matsumoto-Frisch-Bec)

$$
R_{n} \simeq \frac{G_{n} G_{n-2}}{G_{n-1}^{2}}=\left(1-\frac{1}{(n-1)^{2}}\right)^{-\alpha}
$$

Ignore subleading corrections

$$
\alpha=-\frac{\ln R_{n}}{\ln \left(1-1 /(n-1)^{2}\right)}
$$

- Is there a more systematic approach?

ASYMPTOTIC EXTRAPGLATIUN

- Interpolate the sequence G_{n} in the "most asymptotic" region $n=L, \ldots, N$
- Transformations:

I Inverse: $G_{n} \longrightarrow \frac{1}{G_{n}}$
R Ratio: $G_{n} \longrightarrow \frac{G_{n}}{G_{n-1}}$
SR Second ratio: $G_{n} \longrightarrow \frac{G_{n} G_{n-2}}{G_{n-1}^{2}}$
D Difference: $G_{n} \longrightarrow G_{n}-G_{n-1}$

- Going down (assuming $G_{n}>0$):
- Test 1: if $G_{n}<1$ apply I
- Test 2: Does G_{n} grow faster than $n^{5 / 2}$?
* Yes: if the growth is exponential apply $\mathbf{S R}$, otherwise \mathbf{R}
* No: apply D
- Continue untill obtaining data which are easy to interpolate and clean enough
- Go back by inverting transformations I, R, SR and D

ASYMPTロTIC EXTRAPロLATIロN

$$
C k^{-\alpha} e^{-\delta k} \xrightarrow{\mathbf{S R}} 1+\frac{\alpha}{k^{2}} \xrightarrow{-\mathbf{D}} \frac{2 \alpha}{k^{3}} \xrightarrow{\mathbf{I}} \frac{k^{3}}{2 \alpha} \xrightarrow{\mathbf{D}} \frac{3 k^{2}}{2 \alpha} \xrightarrow{\mathbf{D}} \frac{3 k}{\alpha} \xrightarrow{\mathbf{D}} \frac{3}{\alpha}
$$

