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V.I. Arnold, Ann. Inst. Fourier (1966): incompressible Euler equation
describes geodesics on the group of area-preserving diffeomorphisms

—> can be written on any space with Riemannian metric (gij)

in the form ' ‘ N
Orv® + Ukvkvz = —ng\ajp
Levi—Civita inverse meric
covariant derivative

with incompressibility condition &L(\/g Ui) —= 0 for \/§ =+/det(g:;)

Noether symmetries of the Euler equation are given by currents

(J°,J*) that are conserved: 0:(y/gJ°) + 9i(y/gJ") = 0

In | 2D | incompressibility implies the existence of stream function
such that v/ = €% % ;v

ed

In this case the scalar vorticity w = Vi Viv; = gij Vﬁ)j?ﬂ evolves by

@ L ij
Otw = —v' 0w = ﬁej(c%w)(@j?b)




e Upon addition of the viscous dissipation and a source one obtains the forced

Navier-Stokes equation

Opv® + v Vvt — V<A\”>i = —¢"Eym-F

Laplace—Beltrami operator

(Av)i — gjkvjvkvi + gij(Vij - Vkvj)vk

e In 2D we shall assume random force fz that is a Gaussian process with

covariance

5 ] o B ckiglj
(fHltn, @) f (b2, @2)) = 8t —t2) oty oy OurOa

for C(-) a fast decreasing function, p(x1,®2) the geodesic distance,

and /s the forcing scale




Arnold considered general geometries to study topological properties of flows:

Arnold-Khesin, Topological Methods in Hydrodynamaics, Springer 1998

Our motivation: search of conformal symmetry in 2D inverse cascasde

signaled by numerical discovery of SLE statistics of O-vorticity lines in
Bernard-Boffetta-Celani-Falkovich, Nature Physics 2 (2006)

Main idea: conformal symmetry may be easier to find in different 2D

geometries supporting inverse cascade

This appeared to be the case for the NS flows on the hyperbolic plane
but it did not yet throw light on the (conjectured) SLE statistics




Why hyperbolic plane ?

it is a 2D space with 3-dimensional symmetry group (as the flat plane)
and a constant negative curvature —2R—?

the 2D sphere with constant positive curvature 2R~2 also has a

3-dimensional symmetry group but no space to develope inverse cascade

the hyperbolic plane has more room at large scales than the flat space:

the circumference of the circle of radius p is equal here to 27 R sinh %

no geometric mechanism that would block

the development of inverse cascade




Hyperbolic (upper half-)plane

Lobachevsky-Bolyai plane

Poincaré disc

Upper hyperboloid Hpr in 3D Minkowski
space M?> with signature (4,4, —)

Hrp = {(X1,X2,X3) | X7 +X5 - X5 =-R*, X3>0}

AX;




Isometry group of Hpr = 3D Lorentz group = SL(2,R)/{£1}

Convenient parametrization of Hp :

X1 =rcosp, Xo=rsinp, X3=+\R2+r2

In terms of stream function 1 such that

A/ R2 2 A/ R2 2
vh= — o agowa By = r 0

Rr Rr T‘¢

and vorticity

W =

VA2 o r/REE2 1 oo
(o, Y, + 582 ) v

the Euler equation on Hp becomes

B = Yo ((0rw)(0p) — (Bpw) (Br))




e Noether symmetries of Euler equation on Hp correspond to
conserved currents (J9, J7, J¥)

e time translation invariance gives

1 2 .
Jp = E(RQR—_*_TQ(U )? +7“2(v¢)2)7
AN

energy density

e 3D Lorentz group invariance gives

Jg{ = —(0r X" + v, X¥),
N

momentum density

v/ R24r2 sin ¢
X" = —V/(R?+r?)cosgp X
Y

0

e no analogue of Galilean invariance!!




e In the Navier-Stokes equation with the viscous dissipation and random

Gaussian forcing (fr, f@) as given before one has the energy balance

6t<J]OE> = — V<w2> + (- Ef_QC”(O))

dissipation injection
rate ¢ rate ¢

e Flat space inverse cascade scenario of Kraichnan (1967) and Batchelor

(1969) - well substantiated by theory, simulations, and experiments

Scales: l, < 14 f < P

dissipative forcing running
scale ey e scale

At scales p and long times energy flows into a condensate mode

In terms of stream functions:

<’¢(t,a’;1)¢(t7 :132)> ~ —% L,02t + const. L2/3 ,08/3 4

with p = |1 — 22| and ... not contributing to velocity 2-pt function




Inverse cascade - condensation scenario on Hp

e We postulate that

<¢(t,w1)¢(t,a}2)> ~ Wo(x)t + Yer(x) + ... for x = cosh(%)

\/R2—|—7"% \/RQ—I—T%—T‘l ro cos(p1 —¥9)
R2

with p the hyperbolic distance, cosh(%&)=

One more length-scale present: R > /; !

For /; < p < R this expression should agree with the flat space one,
in particular, we should have

—~R720((1) =«

energy injection rate

We shall try to find the form of modes Wy, Wst for R < p using
scaling arguments

The scenario seems self-consistent but, at the end, its credibility should
be tested numerically!




Scaling theory

e For equal-time velocity correlation n-pt functions

Fﬁ;{ﬁ’aef(t;rl,gpl,...,rn,gon — <H’U (t;ri, 05) Hv trj,goj)>

j=m-+1
one has a tautological scaling relation

A%n—m Fn,m
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The forcing on both sides corresponds to the same energy injection rate ¢

Scaling limit A — oo of RHS should describe stochastic Euler equation
on the (light-)cone Hy in 3D Minkowski space yielding the long time -
large distance asymptotics of the inverse cascade on Hp

e A geometric effect: far away Hp looks like Hp!




Euler equation on Hy = {(X1, X2, X3) | X7 + X3 = X2}

e Parametrization of Hy:

X1 =rcosp, Xg=rsinp, Xz=r

H( inherits from 3D Minkowski space a degenerate metric

Isometry group of H; = szf(Sl) — 1D conformal group

(= half of 2D conformal group) O 3D Lorentz group

Conformal symmetry arises similarly as in the AdS-CFT correspondence!

In terms of stream function 1 such that V' = —0,¢, V¥ =0r¢
and the ”vorticity” w = &n(TQU@) ( 20y ) the Euler equation
takes the standard looking form

Oiw = —(V"0r +v¥0,)w = (Orw)(0,9) — (O,w)(Or)




e Noether symmetries of Euler equation on Hy correspond to
conserved currents

T = (U + P

Ji = gvr—krpgl, Jéo = ngso_pc

2

for any periodic function ((y) (integral of r“v?¥ along each light-ray

in Hy is separately conserved)

o Diff(S') symmetry is spontaneously broken to the Lorentz one in
the A\ — oo scaling limit of the stochastic NS equation on Hp !

The precise nature of this breaking remains to be understood

e The scaling limit has a tautological scale invariance:

2 2
AT Fﬁ(;m()ﬁt; AT1, 0153 ATn, On)

= Fﬁ;m(t;ﬁ,m;---;m,s&n)




e For the velocity 2-pt functions on Hy there are 2 scale invariant

solutions that in terms stream functions have the form
(P(t,x1) P(t, z2)) = (A(ln z)* + B Inz)t — 6A(lnz)tint + ...

(P(t, @) Y(t, ®2)) = Cz/3 + ...

7172 (1—608(901—902))
2

W — with an arbitrary length scale L

e In the inverse cascade-condensate scenario for stochastic NS equation

on Hpr they imply for the condensate and stationary modes the behavior:

Uo(x) = tR?*((Inz)? —Inz) + ...

Ust(x) x§>1 const. 12/3R8/3 £1/3 4 .

(t Int term absorbes a logarithmic divergence of the rescaled 2-pt function

)\_Q/SFI—QI’fiV,C,Ef (/\2/3?5; AT1, P15 AT2, 902))




For the Lorentz-invariant 2-pt function using

Minkowskian scalar product v(t,x1) - v(t,x2)

of vectors tangent to Hp

<’U(t, ml) . ’U(t, w2)> —

where x = cosh (%) this implies that

e the condensate contribution o< ¢ and equal to 2:t for p < R
decreases linearly in hyperbolic distance p for p > R

the stationary contribution —L2/3p2/3 for p < R decreases
exponentially o< — R2/3,2/3¢p/BR) for p>R

no obvious contradiction but what’s the physics behind 7

Spectral interpretation via SL(R, 2)—related Fourier analysis
on Hpr is possible
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p/R

Condensate contribution to the invariant velocity 2-pt function




Flux relation

e In the flat space the inverse cascade scenario implies the flux relation
_ 1 1
O = (20 - v(t,21)) (v(t,@1) -w(t,22)) = Fip

|l —x |

e On Hp the flux relation takes the form

© = ((e(z1,z2) - v(t, z1)) (v(t,x1) - v(t,x2)))

— — ;L sinh (£) ©{ (cosh (£))

where e(ml, :UQ) is the unit vector tangent at a1 to the geodesic curve

joining x1 to @2

e This agrees with the flat space ezpression for p < [ since —R_Q\Ifé(l) —
but behaves like —3.p for p > R
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What is the physics of the inversion of sign of (9p@ around p = R ?




Conclusions

Our analysis confirms the inverse cascade-condensation scenario in
stochastic NS equation on the hyperbolic plane but questions about
physical interpretation of the result remain

Asymptotic behavior of the condensate and stationary modes at distances
p > R were determined by a scaling limit that lives on the cone Hj

Precise way in which this limit breaks the Diff(S') symmetry of
the Euler dynamics on Ky remains to be understood

It may be a clue to an eventual link between this asymptotic symmetry
and the SLE statistics of O-vorticity lines

Numerical simulations of forced NS flows on Hp would be welcome

Experimental realizations of such flows are difficult since Hpr cannot be
embedded isometrically into the 3D Euclidian space!

In particular, soap films would not do but they may provide indication
on the effect of negative curvature on the inverse cascade




Croyez que tout mortel a besoin d’indulgence

Fénelon




