INVERSE CASCADE on HYPERBOLIC PLANE

Krzysztof Gawedzki - based on work in progress with Grisha Falkovich
Nordita, October 2011

> to Uriel

No road is long with good company
turkish proverb

- V.I. Arnold, Ann. Inst. Fourier (1966): incompressible Euler equation describes geodesics on the group of area-preserving diffeomorphisms
- \Rightarrow can be written on any space with Riemannian metric $\left(g_{i j}\right)$ in the form

$$
\begin{gathered}
\partial_{t} v^{i}+v^{k} \nabla_{k} v^{i}=-g_{\nwarrow}^{i j} \partial_{j} p \\
\text { Levi-Civita } \\
\text { covariant derivative }
\end{gathered}
$$

with incompressibility condition $\quad \partial_{i}\left(\sqrt{g} v^{i}\right)=0 \quad$ for $\quad \sqrt{g} \equiv \sqrt{\operatorname{det}\left(g_{i j}\right)}$

- Noether symmetries of the Euler equation are given by currents $\left(J^{0}, J^{i}\right)$ that are conserved: $\partial_{t}\left(\sqrt{g} J^{0}\right)+\partial_{i}\left(\sqrt{g} J^{i}\right)=0$
- In 2 D incompressibility implies the existence of stream function ψ such that $v^{j}=\epsilon^{i j} \frac{1}{\sqrt{g}} \partial_{i} \psi$
- In this case the scalar vorticity $\omega=\frac{\epsilon^{i j}}{\sqrt{g}} \nabla_{i} v_{j}=g^{i j} \nabla_{i} \partial_{j} \psi \quad$ evolves by

$$
\partial_{t} \omega=-v^{i} \partial_{i} \omega=\frac{1}{\sqrt{g}} \epsilon^{i j}\left(\partial_{i} \omega\right)\left(\partial_{j} \psi\right)
$$

- Upon addition of the viscous dissipation and a source one obtains the forced Navier-Stokes equation
with

$$
(\Delta v)^{i}=g^{j k} \nabla_{j} \nabla_{k} v^{i}+g^{i j}\left(\nabla_{j} \nabla_{k}-\nabla_{k} \nabla_{j}\right) v^{k}
$$

- In 2D we shall assume random force f^{i} that is a Gaussian process with covariance

$$
\left\langle f^{i}\left(t_{1}, \boldsymbol{x}_{1}\right) f^{j}\left(t_{2}, \boldsymbol{x}_{2}\right)\right\rangle=\delta\left(t_{1}-t_{2}\right) \frac{\epsilon^{k i} \epsilon^{l j}}{\sqrt{g}\left(\boldsymbol{x}_{1}\right) \sqrt{g}\left(\boldsymbol{x}_{2}\right)} \partial_{x_{1}^{k}} \partial_{x_{2}^{l}} \mathcal{C}\left(\frac{\rho\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}{\ell_{f}}\right)
$$

for $\mathcal{C}(\cdot)$ a fast decreasing function, $\rho\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ the geodesic distance, and ℓ_{f} the forcing scale

- Arnold considered general geometries to study topological properties of flows: Arnold-Khesin, Topological Methods in Hydrodynamics, Springer 1998
- Our motivation: search of conformal symmetry in 2D inverse cascasde signaled by numerical discovery of SLE statistics of 0-vorticity lines in Bernard-Boffetta-Celani-Falkovich, Nature Physics 2 (2006)
- Main idea: conformal symmetry may be easier to find in different 2D geometries supporting inverse cascade
- This appeared to be the case for the NS flows on the hyperbolic plane but it did not yet throw light on the (conjectured) SLE statistics

Why hyperbolic plane?

- it is a 2D space with 3-dimensional symmetry group (as the flat plane) and a constant negative curvature $-2 R^{-2}$
- the 2 D sphere with constant positive curvature $2 R^{-2}$ also has a 3-dimensional symmetry group but no space to develope inverse cascade
- the hyperbolic plane has more room at large scales than the flat space: the circumference of the circle of radius ρ is equal here to $2 \pi R \sinh \frac{\rho}{R}$
- no geometric mechanism that would block the development of inverse cascade

Hyperbolic (upper half-)plane ||
Lobachevsky-Bolyai plane ||
Poincaré disc
||
Upper hyperboloid \boldsymbol{H}_{R} in 3D Minkowski space M^{3} with signature $(+,+,-)$

$$
\boldsymbol{H}_{R}=\left\{\left(X_{1}, X_{2}, X_{3}\right) \mid X_{1}^{2}+X_{2}^{3}-X_{3}^{2}=-R^{2}, \quad X_{3}>0\right\}
$$

- Isometry group of $\boldsymbol{H}_{R}=3 \mathrm{D}$ Lorentz group $=S L(2, \boldsymbol{R}) /\{ \pm 1\}$
- Convenient parametrization of \boldsymbol{H}_{R} :

$$
X_{1}=r \cos \varphi, \quad X_{2}=r \sin \varphi, \quad X_{3}=\sqrt{R^{2}+r^{2}}
$$

- In terms of stream function ψ such that

$$
v^{r}=-\frac{\sqrt{R^{2}+r^{2}}}{R r} \partial_{\varphi} \psi, \quad v^{\varphi}=\frac{\sqrt{R^{2}+r^{2}}}{R r} \partial_{r} \psi
$$

and vorticity

$$
\omega=\left(\frac{\sqrt{R^{2}+r^{2}}}{R r} \partial_{r} \frac{r \sqrt{R^{2}+r^{2}}}{R} \partial_{r}+\frac{1}{r^{2}} \partial_{\varphi}^{2}\right) \psi
$$

the Euler equation on \boldsymbol{H}_{R} becomes

$$
\partial_{t} \omega=\frac{\sqrt{R^{2}+r^{2}}}{R r}\left(\left(\partial_{r} \omega\right)\left(\partial_{\varphi} \psi\right)-\left(\partial_{\varphi} \omega\right)\left(\partial_{r} \psi\right)\right)
$$

- Noether symmetries of Euler equation on \boldsymbol{H}_{R} correspond to conserved currents $\left(J^{0}, J^{r}, J^{\varphi}\right)$
- time translation invariance gives

$$
\begin{aligned}
& J_{E}^{0}=\frac{1}{2}\left(\frac{R^{2}}{R^{2}+r^{2}}\left(v^{r}\right)^{2}+r^{2}\left(v^{\varphi}\right)^{2}\right), \quad J_{E}^{r, \varphi}=\left(J_{E}^{0}+p\right) v^{r, \varphi} \\
& \quad \text { energy density }
\end{aligned}
$$

- 3D Lorentz group invariance gives

$$
\begin{array}{ll}
J_{X}^{0}=-\left(v_{r} X^{r}+v_{\varphi} X^{\varphi}\right), & J_{X}^{r, \varphi}=J_{X}^{0} v^{r, \varphi}-p X^{r, \varphi} \\
\quad \text { momentum density } \\
& X^{r}=\left\{\begin{array}{c}
\sqrt{R^{2}+r^{2}} \sin \varphi \\
-\sqrt{\left(R^{2}+r^{2}\right) \cos \varphi} \\
0
\end{array},\right.
\end{array} X^{\varphi}=\left\{\begin{array}{c}
-1+r-1 \sqrt{R^{2}+r^{2}} \cos \varphi \\
r^{-1} \sqrt{R^{2}+r^{2}} \sin \varphi \\
-2
\end{array}\right) .
$$

for

- no analogue of Galilean invariance!
- In the Navier-Stokes equation with the viscous dissipation and random Gaussian forcing $\left(f^{r}, f^{\varphi}\right)$ as given before one has the energy balance

$$
\partial_{t}\left\langle J_{E}^{0}\right\rangle=-\underset{\substack{\text { dissipation } \\ \text { rate } \varepsilon}}{\nu\left\langle\omega^{2}\right\rangle}+\left(-\ell_{f}^{\ell_{f}-2} C^{\prime \prime}(0)\right)
$$

- Flat space inverse cascade scenario of Kraichnan (1967) and Batchelor (1969) - well substantiated by theory, simulations, and experiments
- Scales:

- At scales ρ and long times energy flows into a condensate mode
- In terms of stream functions:

$$
\left\langle\psi\left(t, \boldsymbol{x}_{1}\right) \psi\left(t, \boldsymbol{x}_{2}\right)\right\rangle \approx-\frac{1}{2} \iota \rho^{2} t+\text { const. } \iota \frac{2 / 3}{} \rho^{8 / 3}+\ldots
$$

with $\rho=\left|x_{1}-x_{2}\right|$ and \ldots not contributing to velocity $2-\mathrm{pt}$ function

Inverse cascade - condensation scenario on \boldsymbol{H}_{R}

- We postulate that

$$
\left\langle\psi\left(t, \boldsymbol{x}_{1}\right) \psi\left(t, \boldsymbol{x}_{2}\right)\right\rangle \approx \Psi_{0}(x) t+\Psi_{s t}(x)+\ldots \quad \text { for } \quad x \equiv \cosh \left(\frac{\rho}{R}\right)
$$

with ρ the hyperbolic distance, $\cosh \left(\frac{\rho}{R}\right)=\frac{\sqrt{R^{2}+r_{1}^{2}} \sqrt{R^{2}+r_{2}^{2}}-r_{1} r_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)}{R^{2}}$

- One more length-scale present: $R \gg \ell_{f}$!
- For $\ell_{f} \ll \rho \ll R$ this expression should agree with the flat space one, in particular, we should have

$$
-R^{-2} \Psi_{0}^{\prime}(1)=\iota_{\nwarrow} \text { energy injection rate }
$$

- We shall try to find the form of modes $\Psi_{0}, \Psi_{s t}$ for $R \ll \rho$ using scaling arguments
- The scenario seems self-consistent but, at the end, its credibility should be tested numerically!

Scaling theory

- For equal-time velocity correlation n-pt functions

$$
F_{\boldsymbol{H}_{R}, \nu, \mathcal{C}, \ell_{f}}^{n, m}\left(t ; r_{1}, \varphi_{1}, \ldots, r_{n}, \varphi_{n}\right)=\left\langle\prod_{j=1}^{m} v^{r}\left(t ; r_{j}, \varphi_{j}\right) \prod_{j=m+1}^{n} v^{\varphi}\left(t ; r_{j}, \varphi_{j}\right)\right\rangle
$$

one has a tautological scaling relation

$$
\begin{aligned}
& \lambda^{\frac{2}{3} n-m} F_{\boldsymbol{H}_{R}, \nu, \mathcal{C}, \ell_{f}}^{n, m}\left(\lambda^{\frac{2}{3}} t ; \lambda r_{1}, \varphi_{1} ; \ldots ; \lambda r_{n}, \varphi_{n}\right) \\
& \quad=F_{\boldsymbol{H}_{R / \lambda}, \lambda-4 / 3_{\nu, \lambda-2}, \ell_{f} / \lambda}^{n, m}\left(t ; r_{1}, \varphi_{1} ; \ldots ; r_{n}, \varphi_{n}\right)
\end{aligned}
$$

- The forcing on both sides corresponds to the same energy injection rate ι
- Scaling limit $\lambda \rightarrow \infty$ of RHS should describe stochastic Euler equation on the (light-)cone \boldsymbol{H}_{0} in 3 D Minkowski space yielding the long time large distance asymptotics of the inverse cascade on \boldsymbol{H}_{R}
- A geometric effect: far away \boldsymbol{H}_{R} looks like \boldsymbol{H}_{0} !

Euler equation on $\boldsymbol{H}_{0}=\left\{\left(X_{1}, X_{2}, X_{3}\right) \mid X_{1}^{2}+X_{2}^{2}=X_{3}^{2}\right\}$

- Parametrization of \boldsymbol{H}_{0} :

$$
X_{1}=r \cos \varphi, \quad X_{2}=r \sin \varphi, \quad X_{3}=r
$$

- H_{0} inherits from 3D Minkowski space a degenerate metric
- Isometry group of $\boldsymbol{H}_{0}=\operatorname{Diff}\left(S^{1}\right)=1 \mathrm{D}$ conformal group

$$
(=\text { half of } 2 \mathrm{D} \text { conformal group }) \supset 3 \mathrm{D} \text { Lorentz group }
$$

- Conformal symmetry arises similarly as in the AdS-CFT correspondence!
- In terms of stream function ψ such that $v^{r}=-\partial_{\varphi} \psi, \quad v^{\varphi}=\partial_{r} \psi$ and the "vorticity" $\omega=\partial_{r}\left(r^{2} v^{\varphi}\right)=\partial_{r}\left(r^{2} \partial_{r} \psi\right)$ the Euler equation takes the standard looking form

$$
\partial_{t} \omega=-\left(v^{r} \partial_{r}+v^{\varphi} \partial_{\varphi}\right) \omega=\left(\partial_{r} \omega\right)\left(\partial_{\varphi} \psi\right)-\left(\partial_{\varphi} \omega\right)\left(\partial_{r} \psi\right)
$$

- Noether symmetries of Euler equation on \boldsymbol{H}_{0} correspond to conserved currents

$$
\begin{array}{ll}
J_{E}^{0}=\frac{1}{2} r^{2}\left(v^{\varphi}\right)^{2}, & J_{E}^{r, \varphi}=\left(J_{E}^{0}+p\right) v^{r, \varphi} \\
J_{\zeta}^{0}=-r^{2} v^{\varphi} \zeta, & J_{\zeta}^{r}=J_{\zeta}^{0} v^{r}+r p \zeta^{\prime}, \quad J_{\zeta}^{\varphi}=J_{\zeta}^{0} v^{\varphi}-p \zeta
\end{array}
$$

for any periodic function $\zeta(\varphi)$ (integral of $r^{2} v^{\varphi}$ along each light-ray in \boldsymbol{H}_{0} is separately conserved)

- $\operatorname{Diff}\left(S^{1}\right)$ symmetry is spontaneously broken to the Lorentz one in the $\lambda \rightarrow \infty$ scaling limit of the stochastic NS equation on \boldsymbol{H}_{R} ! The precise nature of this breaking remains to be understood
- The scaling limit has a tautological scale invariance:

$$
\begin{gathered}
\lambda^{\frac{2}{3} n-m} F_{\boldsymbol{H}_{0}^{n, m}}^{n,}\left(\lambda^{\frac{2}{3}} t ; \lambda r_{1}, \varphi_{1} ; \ldots ; \lambda r_{n}, \varphi_{n}\right) \\
=F_{\boldsymbol{H}_{0}}^{n, m}\left(t ; r_{1}, \varphi_{1} ; \ldots ; r_{n}, \varphi_{n}\right)
\end{gathered}
$$

- For the velocity 2 -pt functions on \boldsymbol{H}_{0} there are 2 scale invariant solutions that in terms stream functions have the form

$$
\begin{aligned}
& \quad \begin{array}{l}
\left\langle\psi\left(t, \boldsymbol{x}_{1}\right) \psi\left(t, \boldsymbol{x}_{2}\right)\right\rangle=\left(A(\ln x)^{2}+B \ln x\right) t-6 A(\ln x) t \ln t+\ldots \\
\\
\left\langle\psi\left(t, \boldsymbol{x}_{1}\right) \psi\left(t, \boldsymbol{x}_{2}\right)\right\rangle=C x^{1 / 3}+\ldots \\
\text { for } \\
\end{array} x=\frac{r_{1} r_{2}\left(1-\cos \left(\varphi_{1}-\varphi_{2}\right)\right)}{L^{2}} \text { with an arbitrary length scale } L
\end{aligned}
$$

- In the inverse cascade-condensate scenario for stochastic NS equation on \boldsymbol{H}_{R} they imply for the condensate and stationary modes the behavior:

$$
\begin{array}{lll}
\Psi_{0}(x) & \underset{x \gg 1}{\approx} & \iota R^{2}\left((\ln x)^{2}-\ln x\right)+\ldots \\
\Psi_{s t}(x) & \underset{x \gg 1}{\approx} & \text { const. } \iota^{2 / 3} R^{8 / 3} x^{1 / 3}+\ldots
\end{array}
$$

($t \ln t$ term absorbes a logarithmic divergence of the rescaled 2-pt function $\left.\lambda^{-2 / 3} F_{\boldsymbol{H}_{R}, \nu, \mathcal{C}, \ell_{f}}^{2,2}\left(\lambda^{2 / 3} t ; \lambda r_{1}, \varphi_{1} ; \lambda r_{2}, \varphi_{2}\right)\right)$

- For the Lorentz-invariant 2-pt function using Minkowskian scalar product $\boldsymbol{v}\left(t, \boldsymbol{x}_{1}\right) \cdot \boldsymbol{v}\left(t, \boldsymbol{x}_{2}\right)$ of vectors tangent to \boldsymbol{H}_{R}

$$
\left\langle v\left(t, \boldsymbol{x}_{1}\right) \cdot v\left(t, \boldsymbol{x}_{2}\right)\right\rangle=-R^{-2} \partial_{x}\left(x^{2}-1\right) \partial_{x}\left(\Psi_{0}(x) t+\Psi_{s t}(x)\right)
$$

where $x=\cosh \left(\frac{\rho}{R}\right)$ this implies that

- the condensate contribution $\propto t$ and equal to $2 \iota t$ for $\rho \ll R$ decreases linearly in hyperbolic distance ρ for $\rho \gg R$
- the stationary contribution $\propto-\iota^{2 / 3} \rho^{2 / 3}$ for $\rho \ll R$ decreases exponentially $\propto-R^{2 / 3} \iota^{2 / 3} \mathrm{e}^{\rho /(3 R)}$ for $\rho \gg R$
- no obvious contradiction but what's the physics behind ?
- Spectral interpretation via $S L(\boldsymbol{R}, 2)$-related Fourier analysis on \boldsymbol{H}_{R} is possible

Condensate contribution to the invariant velocity 2-pt function

Flux relation

- In the flat space the inverse cascade scenario implies the flux relation

$$
\Theta \equiv\left\langle\left(\frac{\boldsymbol{x}_{2}-\boldsymbol{x}_{1}}{\left|\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right|} \cdot \boldsymbol{v}\left(t, x_{1}\right)\right)\left(\boldsymbol{v}\left(t, \boldsymbol{x}_{1}\right) \cdot \boldsymbol{v}\left(t, \boldsymbol{x}_{2}\right)\right\rangle=\frac{1}{2} \iota \rho\right.
$$

- On \boldsymbol{H}_{R} the flux relation takes the form

$$
\begin{aligned}
\Theta \equiv\left\langle\left(\boldsymbol{e}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \cdot \boldsymbol{v}\left(t, \boldsymbol{x}_{1}\right)\right)(\boldsymbol{v}(\right. & \left.\left.\left.t, \boldsymbol{x}_{1}\right) \cdot \boldsymbol{v}\left(t, \boldsymbol{x}_{2}\right)\right)\right\rangle \\
& =-\frac{1}{2 R} \sinh \left(\frac{\rho}{R}\right) \Psi_{0}^{\prime}\left(\cosh \left(\frac{\rho}{R}\right)\right)
\end{aligned}
$$

where $\boldsymbol{e}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ is the unit vector tangent at \boldsymbol{x}_{1} to the geodesic curve joining x_{1} to x_{2}

- This agrees with the flat space ezpression for $\rho \ll R$ since $-R^{-2} \Psi_{0}^{\prime}(1)=\iota$ but behaves like $-\frac{1}{2} \iota \rho$ for $\rho \gg R$

What is the physics of the inversion of sign of $\partial_{\rho} \Theta$ around $\rho=R \boldsymbol{?}$

Conclusions

- Our analysis confirms the inverse cascade-condensation scenario in stochastic NS equation on the hyperbolic plane but questions about physical interpretation of the result remain
- Asymptotic behavior of the condensate and stationary modes at distances $\rho \gg R$ were determined by a scaling limit that lives on the cone \boldsymbol{H}_{0}
- Precise way in which this limit breaks the $\operatorname{Diff}\left(S^{1}\right)$ symmetry of the Euler dynamics on \boldsymbol{H}_{0} remains to be understood
- It may be a clue to an eventual link between this asymptotic symmetry and the SLE statistics of 0 -vorticity lines
- Numerical simulations of forced NS flows on \boldsymbol{H}_{R} would be welcome
- Experimental realizations of such flows are difficult since \boldsymbol{H}_{R} cannot be embedded isometrically into the 3D Euclidian space!
- In particular, soap films would not do but they may provide indication on the effect of negative curvature on the inverse cascade

Croyez que tout mortel a besoin d'indulgence
Fénelon

