
Time scales, persistence, and dynamic
multiscaling in homogeneous, isotropic fluid

turbulence

Rahul Pandit

Centre for Condensed Matter Theory
Department of Physics

Indian Institute of Science
Bangalore, India.

19 October 2011
NORDITA, Stockholm.



Many happy returns of the day!



◮ This work has been done with
◮ Dhrubaditya Mitra
◮ Prasad Perlekar
◮ Samriddhi Sankar Ray

◮ Support: CSIR, DST, UGC (India) and SERC (IISc)



References

◮ Dynamic Multiscaling in Fluid Turbulence : An Overview, D. Mitra
and R. Pandit, Physica A 318, 179 (2003).

◮ Varieties of Dynamic Multiscaling in Fluid Turbulence, D. Mitra and
R. Pandit. Phys. Rev. Lett. 93, 024501 (2004).

◮ Dynamics of Passive-Scalar Turbulence, D. Mitra, R. Pandit, Phys.
Rev. Lett. 95, 144501 (2005).

◮ Dynamic Multiscaling in Turbulence, R. Pandit, S. S. Ray, and D.
Mitra, Eur. Phys. J. B 64, 463 (2008).

◮ The Universality of Dynamic Multiscaling in Homogeneous,

Isotropic Navier-Stokes and Passive-Scalar Turbulence, S. S. Ray, D.
Mitra, and R. Pandit, New J. of Phys. 10, 033003 (2008).

◮ The Persistence Problem in Two-Dimensional Fluid Turbulence, P.
Perlekar, S. S. Ray, D. Mitra, and R. Pandit, Phys. Rev. Lett. 106,
054501 (2011).

◮ Dynamic Multiscaling in Two-dimensional Turbulence, S. S. Ray, D.
Mitra, P. Perlekar, and R. Pandit, Phys. Rev. Lett., in press.



Preview

◮ Long residence time of tracers in vortical regions.

◮ τℓ ∼ ℓ
z

◮ K41: τℓ ∼ ℓ/vℓ ∼ ℓ
2/3 ⇒ zK41 = 2/3.

◮ Mean flow: ℓ = Uτℓ ⇒ z = 1 (Heisenberg and Onsager).



Outline

◮ Two-dimensional turbulence in soap films :
◮ Persistence

◮ Multiscaling in homogeneous, isotropic, turbulence:
◮ Structure functions;
◮ Kolmogorov 1941 - simple scaling;
◮ Multiscaling and dynamic multiscaling.

◮ Conclusions.



Two-dimensional turbulence in
soap films.



Monday, October 17, 2011 O.
Cardoso, B. Gluckmann, O. Parcollet, and P. Tabeling, Phys.
Fluids 8 (1), 1996.



Two-dimensional turbulence:

◮ Study of high-Reynolds-number solution of the incompressible
Navier-Stokes equations:

Dtu = −∇p + ν∇2u, (1)

∇.u ≡ 0

or

Dtω = ν∇2ω, (2)

∇2ψ = ω,

ω ≡ ∇× u,

ux = −∂yψ,

uy = ∂xψ.

◮ No vortex stretching, ω.∇u is absent.



Conservation laws:

◮ Energy conservation in the inviscid, unforced limit.

∂tE = −2νΩ, (3)

E = 1/2

∫

x∈R3

|u|2,

Ω = 1/2

∫

x∈R3

|ω|2,

(4)

◮ Enstrophy conservation in the inviscid, unforced limit.

∂tΩ = −2νP , (5)

P = 1/2

∫

x∈R3

|∇×ω|2.

(6)



Cascades

[Kraichnan, Phys. Fluids, 10, (1967a), Batchelor, Phys. Fluids
Suppl. II , 12, (1969)]

◮ Energy injected at a length scale linj will inverse-cascade to
large length scales with E (k) ∼ k−5/3.

◮ Energy injected at a length scale linj will forward-cascade to
small length scales with E (k) ∼ k−3.



Electromagnetically forced soap films

[M. Rivera, Ph.D. Thesis, arXiv:physics/010305v1]

◮ Soap film: 400ml distilled water + 40ml glycerol + 5ml

commercial liquid detergent,

◮ The soap film is suspended on a rectangular frame,

◮ The magnetic array produces a Kolmogorov forcing
Fx = F0sin(kyy).



Modelling soap films: Incompressible limit

[Chomaz et al., PRA, 41, (1990), Chomaz, JFM, (2001), P. Fast,
arXiv:physics/0511175v1, (2005).]

◮ Mach Number Me ≡ urms/c , where c is the speed of the
sound in the soap films. For the experiments with
electromagnetically forced soap films Me ∼ 0.06.

◮ To leading order soap-film behaviour is governed by the
Navier-Stokes (NS) equations in two dimensions + an air drag

Dtu = ν∇2u−∇p − αu,

∇ · u = 0.

◮ Dt ≡ ∂t + u · ∇, p ≡ pressure, and u ≡ the velocity



Direct Numerical Simulation(DNS)

◮ Vorticity-streamfunction formulation:

Dtω = ν∇2ω− αω,

∇2ψ = ω,

ux = −∂yψ, uy = ∂xψ.

◮ Incompressibility satisfied by construction.

◮ No-slip boundary condition on the walls.



DNS for forced soap films:

◮ Impose the Kolmogorov forcing Fy = F0 sin(kxx) at all times.

◮ Study the evolution of the energy E and the dissipation rate ǫ
with α and ν.

◮ Study velocity and vorticity structure functions.

◮ Study the topological properties via PDFs of the Weiss
parameter Λ.



Evolution of energy and dissipation

Time evolution of E (t)/E ′ [(a) and (b)], ǫ(t)/ǫ′ [(c) and (d)] ,
and ǫe(t)/ǫ

′ [(e) and (f )].

In (a), (c), and (d) we keep G fixed and vary γ (γ = 0.25(red lines
with circles) and γ = 0.71(black line)). In (b), (d), and (f ) we
maintain Re ≃ 21.2 and vary γ (γ = 0.25(red lines with circles)
and γ = 0.71(black line with squares)).



Pseudocolor plots

Pseudocolor plots of (a) S2(rc,R), for rc = (2, 2), (b) S2(R)
(average of S2(rc,R) over rc), (c) S

ω
2 (rc,R), for rc = (2, 2), and

(d) Sω2 (R) (average of Sω2 (rc,R) over rc).



Velocity Structure Functions
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Vorticity Structure Functions
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Distribution of centers and saddles

A. Okubo, Deep-Sea Res. 17, 17 (1970),
J. Weiss, Physica, 48D, 273 (1991).

◮ Local flow topology determined by

Λ ≡

∣

∣

∣

∣

∂xux ∂xuy
∂yux ∂yuy

∣

∣

∣

∣

and

D ≡ ∇ · u

◮ For incompressible flows, D = 0

◮ Λ = (ω2 − σ2)/4, ω2 ≡
∑

i ,j(∂iuj − ∂jui)
2/2,

σ2 ≡
∑

i ,j(∂iuj + ∂jui)
2/2.

◮ At a point (x , y), Λ(x , y) > 0 =⇒ centers, and
Λ(x , y) < 0 =⇒ saddles.



ψ and Λ

◮ Contours of ψ overlayed on the pseudocolor plot of Λ.

◮ Λ > 0(centers)

◮ Λ < 0(saddles)



PDF of Λ: fixed Re

◮ runs R4 and R6

◮ Left: Our DNS. γ = 0.25(red), γ = 0.71(blue).

◮ Right: Experiments. γ = 0.28(diamond), γ = 0.56(triangle),
γ = 0.97(circle).



PDF of Λ: fixed Re
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◮ runs R4 and R6

◮ PDF normalized by Λrms .

◮ Left: Our DNS. γ = 0.25(red), γ = 0.71(blue).

◮ Right: Experiments. γ = 0.28(diamond), γ = 0.56(triangle),
γ = 0.97(circle).



Persistence problem

◮ Satya N. Majumdar, Persistence in Nonequilibrium Systems,
Curent Science, 77, 370 (1999); cond-mat/9907407v1
Let φ(x , t) be a nonequilibrium field fluctuating in space and
time according to some dynamics. Persistence is simply the
probability P0(t) that, at a fixed point in space, the quantity
sgn[φ(x , t) − 〈φ(x , t)〉] does not change upto time t.

◮ Pφ(τ) ∼ τ−β as τ→ ∞, where β is the persistence exponent.



The Okubo-Weiss parameter

◮ From the velocity-gradient tensor A, with components
Aij ≡ ∂iuj , we obtain the Okubo-Weiss parameter Λ, the
discriminant of the characteristic equation for A.

◮ If Λ is positive (negative) then the flow is
vortical (extensional).

◮ In an incompressible flow in two dimensions Λ = detA; and
the PDF of Λ has been shown to be asymmetrical about
Λ = 0 (vortical regions are more likely to occur than
strain-dominated ones).



Motivation

◮ Note 〈Λ〉 = 0.

◮ How long does a Lagrangian particle stay in region where
Λ > 0 (center) or where Λ < 0 (saddle).

◮ How long does the Λ field not change sign at a position (x , y)

i.e., persistence time of a center or a saddle.



Persistence in two-dimensional turbulence

◮ Lagrangian persistence: We follow Np particles and evaluate
Λ along their trajectories.

◮ Eulerian persistence: We monitor the time evolution of Λ at
N positions in the simulation domain.

◮ For both the cases we find the time-intervals τ over which
Λ > 0 or Λ < 0. The PDF of these intervals characterizes the
analog of persistence in two dimensional turbulence.



Persistence-time PDF

◮ We denote the persistence-time PDFs by P ; the subscripts E
and L on these PDFs signify Eulerian and Lagrangian frames,
respectively; and the superscripts + or − distinguish PDFs
from vortical points from those from extensional ones.

◮ To find out the persistence-time PDF P+
E (τ) [resp., P

−
E (τ)] we

analyse the time-series of Λ obtained from each of the Np

Eulerian points and construct the PDF of the time-intervals τ
over which Λ remains positive (resp., negative).

◮ The same method applied to the time series of Λ, obtained
from each of the Np Lagrangian particles, yields P+

L (τ) [resp.,
P−
L (τ)].



Simulation details

N ν µ F0 kinj ld λ Reλ T−

E
T−

L
T+

E

512 0.016 0.1 45 10 0.023 0.17 59.2 0.6 0.12 0.34
512 0.016 0.45 45 10 0.021 0.11 26.8 0.4 0.15 0.28

1024 10−5 0.01 0.005 10 0.0043 0.125 827.3 20.0 9.9 14.28

1024 10−5 0.01 0.005 4 0.0054 0.198 1318.8 33.3 12.5 25.0



Time series of Λ

Lagrangian versus Eulerian frame

◮ Lagrangian Λ tracks (red) show rapid fluctuations in
comparison to the corresponding Eulerian tracks (black).

◮ Autocorrelation CΛ = 〈Λ(t0)Λ(t0 + t)〉 decays faster for the
Lagrangian case.



Persistence: particle in a vortex

◮ Re = 59.2, kinj = 10, α = 0.1 (×),

◮ Re = 26.8, kinj = 10, α = 0.45 (�),

◮ Re = 827.3, kinj = 4, α = 0.01 (△),

◮ Re = 1318.8, kinj = 10, α = 0.01 (+).



Persistence: particle in a vortex

◮ PC (τ) = τ−(β−1), β = 2.9± 0.2.

◮ Independent of Re, kinj , and α



Persistence: particle in a region of strain

◮ Lin-log plot of the persistence time of the particle in a region
of strain.



Persistence: Region of vorticity at (x , y)

◮ Lin-log plot of the persistence time of the region of vorticity
at position (x , y).



Persistence: Region of strain at (x , y)

◮ Lin-log plot of the persistence time of the region of strain at
position (x , y).



Conclusion

◮ The Okubo-Weiss parameter provides us with a natural way of
formulating and studying the persistence problem in
two-dimensional fluid turbulence.

◮ The persistence-time PDF of Lagrangian particles in vortical
and strain-dominated regions are different.

◮ The persistence-time PDF of Lagrangian particles in vortical
regions show a power-law tail with an exponent β = 2.9.

◮ The persistence-time PDF of Lagrangian particles in
strain-dominated regions shows an exponential tail.



Multiscaling in Fluid and
Passive-Scalar Turbulence



Multiscaling in homogeneous, isotropic, turbulence:

◮ Structure functions;

◮ Kolmogorov 1941 - simple scaling;

◮ multiscaling and dynamic multiscaling;

◮ passive-scalar turbulence.



Critical Phenomena

Γ(r , t, h) ≈ 1
rd−2+ηF(tνξ, h/t∆)

◮ r : separation between the spins in d dimensions

◮ t ≡ (T − Tc)/Tc

◮ h ≡ H/kBTc

◮ kB : Boltzmann constant

◮ T : temperature

◮ Tc : critical temperature

◮ H: magnetic field

◮ ξ: correlation length (diverges at criticality)

◮ η, ν and ∆: static critical exponents

◮ F : universal scaling function



Critical Phenomena

In Fourier space
Γ̃(q, t, h) ≈ 1

q2−ηF(tνξ, h/t∆);

~q: wave vector with magnitude q

Dynamic scaling for time-dependent correlation functions in the
vicinity of a critical point.
Γ̃(q,ω, t, h) ≈ 1

q2−ηG(q
−zω, tνξ, h/t∆);

◮ z : dynamic critical exponent

◮ ω: frequency

◮ G: a scaling function

Relaxation time τ diverges as

τ ∼ ξz .



Equal-Time Structure Functions

◮ Order-p, equal-time, structure functions:

Sp(r) ≡ 〈[δu‖(~x ,~r , t)]
p〉 ∼ rζp

δu‖(~x ,~r , t) ≡ [~u(~x +~r , t) − ~u(~x , t)] ·
~r

r

ηd : Kolmogorov dissipation scale;
L: large length scale at which energy is injected into the
system.

◮ Experiments favour multiscaling: ζp a nonlinear, convex
monotone increasing function of p.

◮ Simple-scaling prediction of Kolmogorov: ζK41
p = p/3.



Introduction : Frames of Reference

◮ Eulerian :
The Navier-Stokes equation is written in terms of the Eulerian
velocity u at position x and time t. In the Eulerian case the
frame of reference is fixed with respect to the fluid;

◮ Lagrangian :
Frame of reference fixed to a fluid particle; this fictitious
particle moves with the flow and its path is known as a
Lagrangian trajectory.

v =

(

dR

dt

)

r0

;

◮ Quasi-Lagrangian :
It uses the following transformation for an Eulerian field
ψ(r, t):

ψ̂(r, t) ≡ ψ[r+R(t ; r0, 0), t].



Time-Dependent Structure Functions

◮ The order-p, time-dependent longitudinal structure function:

Fp(r , {t1, . . . , tp}) ≡ 〈[δu‖(~x , t1, r) . . . δu‖(~x , tp, r)]〉

For simplicity we consider t1 = t and t2 = . . . = tp = 0.

◮ Given F(r , t), different ways of extracting time scales yield
different exponents that are defined via dynamic-multiscaling
ansätze:

Tp(r) ∼ r zp .



The GOY Shell Model

The evolution equation for the GOY shell model takes the form,

[
d

dt
+ νk2n ]un = i(anun+1un+2 + bnun−1un+1 + cnun−1un−2)

∗ + fn.

◮ In the shell model equation,
◮ kn = k02

n, where k0 = 1/16;
◮ an = kn, bn = −δkn−1, cn = −(1− δ)kn−2, where δ = 1/2.



Simulation Details

◮ We use the slaved Adams-Bashforth scheme to integrate the
GOY shell model equation with 22 shells.

◮ We use δt = 10−4 and ν = 10−7.

◮ For statistically steady turbulence, we use external forcing to
drive the system.

◮ We study decaying turbulence by using two kinds of initial
conditions:

1. a random configuration where all the energy is concentrated at
large length scales;

2. a configuration obtained from a statistically steady turbulent
state.



Details: Forced Turbulence

◮ We start from an initial condition where all the energy is

concentrated in the large length scales, i.e., v0n = k
−1/3
n e iθn

(for n = 1,2) and v0n = 0 (for n = 3 to 22), with θn a random
phase angle distributed uniformly between 0 and 2π.

◮ The system is then driven to a statistically steady state with a
force fn = δn,1(i + i)× 5× 10−3.

◮ All measurements are made once the system reaches a
statistically steady state.



Details: Decaying Turbulence

◮ For the first initial condition we use v0n = k
1/2
n e iθn (for n =

1,2) and v0n = k
1/2
n e−kn

2
e iθn (for n = 3 to 22) with θn a

random phase angle distributed uniformly between 0 and 2π.

◮ For the second initial condition, we first achieve a forced
statistically steady state, with fn = δn,1(i + i)× 5× 10−3 .
The force is then switched off at some time origin t0 and the
system is allowed to decay freely.

◮ Our exponents are independent of the kind of initial condition
we choose.



Error Estimates (GOY)

◮ Static solution exhibit a 3-cycle in the shell index n.

◮ Obtain 50 different values of each of the exponents from 50
independent simulations.

◮ Time-averaging is done over a time Tav = 105 × τL to obtain
the results for statistically steady state quantities. For
decaying turbulence, we average over 20000 statistically
independent initial configurations.

◮ The means of these 50 values for each of the
dynamic-multiscaling exponents are shown in figure and the
standard deviation yields error.

◮ This averaging is another way of removing the effects of the
3-cycle mentioned above.



Principal Results: Fluid Turbulence

◮ Simple dynamic scaling for Eulerian-velocity structure
functions (zEp = 1).

◮ Dynamic multiscaling is obtained for Lagrangian or
Quasi-Lagrangian structure functions.

◮ Dynamic multiscaling exponents zp depend on how Tp(r) is
extracted.

◮ zp is related to the equal-time exponents via bridge relations.

◮ Universality of dynamic exponents: the same for decaying and
statistically steady turbulence.



Integral Time Scale

◮ From the longitudinal, time-dependent, order-p structure
functions, the order-p, degree-M, integral time scale is defined
as,

T I
p,M(r) ≡

[

1

Sp(r)

∫
∞

0
Fp(r , t)t

(M−1)dt

](1/M)

◮ The integral dynamic multiscaling exponent z Ip,M is defined as

T I
p,M(r) ∼ r

z I
p,M .



Derivative Time Scale

◮ Similarly, the order-p, degree-M derivative time scale is
defined as

T D
p,M(r) ≡

[

1

Sp(r)

∂MFp(r , t)

∂tM

](−1/M)

◮ The derivative dynamic multiscaling exponent zDp,M is defined
as

T D
p,M(r) ∼ r

zD
p,M .



Theoretical Prediction

◮ The multifractal model predicts the following bridge relations:

z Ip,M = 1+
[ζp−M − ζp]

M
;

zDp,M = 1+
[ζp − ζp+M ]

M
.



Extending the Frisch-Parisi Multifractal Model

Dynamic Structure Functions

Fp(ℓ, t) ∝

∫

I
dµ(h)(

ℓ

L
)Z(h)Gp,h(

t

τp,h
),

where Gp,h( t
τp,h

) has a characteristic decay time

τp,h ∼ ℓ/δv(ℓ) ∼ ℓ1−h, and Gp,h(0) = 1. If
∫
∞

0 t(M−1)Gp,hdt exists,
then the order-p, degree-M, integral time scale is

T I
p,M(ℓ) ≡

[

1

Sp(ℓ)

∫
∞

0
Fp(ℓ, t)t

(M−1)dt

](1/M)

.

* V.S. L’vov, E. Podivilov, and I. Procaccia, Phys. Rev. E 55,7030
(1997).



Multifractal Model

T I
p,1(ℓ) ≡

[

1

Sp(ℓ)

∫
∞

0
Fp(ℓ, t)dt

](1/M)

∝

[

1

Sp(ℓ)

∫

I
dµ(h)(

ℓ

L
)Z(h)

∫
∞

0
dtGp,h(

t

τp,h
)

]

∝

[

1

Sp(ℓ)

∫

I
dµ(h)(

ℓ

L
)ph+3−D(h)ℓ1−h

]

In the last step, we have used :

τp,h ∼ ℓ/δv(ℓ) ∼ ℓ1−h



Multifractal Model

◮ Corresponding Bridge Relations :

z Ip,1 = 1+ [ζp−1 − ζp],

zDp,2 = 1+ [ζp − ζp+2]/2.

◮ Bridge relations reduce to zK41
p = 2/3 if we assume K41

scaling for the equal-time structure functions.



Numerical studies of dynamic multiscaling

◮ L. Biferale, G. Bofetta, A. Celani, and F. Toschi, Physica D
127 187 (1999); this study uses an exit-time method.

◮ Our group has concentrated on an elucidation of dynamic
multiscaling by using time-dependent structure functions and
(a) shell models and
(b) the two-dimensional Navier-Stokes equation with friction.

In the following slides we give an overview of our results without
technical details.



Results
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Plots of order-p structure functions vs the dimensionless time for
various shells for statistically steady (left) and decaying (right)
turbulence.



Integral Time Scales

1 1.5 3 3.5
1

1.2

2.8

log
10

(k
n
)

lo
g

1
0
(T

I 5
,1

(n
))

  
  

  
  

zI
5,1

 = 0.75 

(c) 

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

log
10

(k
n
)

lo
g

1
0
[T

I 6
,1

(k
n
)] zI

6,1
 = 0.76 

Log-log plots of integral times for statistically steady (left) and
decaying (right) turbulence for order-p structure functions; the
slopes of these graphs yield z Ip,1. The integration is carried out
over time 0 to tu, where we choose tu such that Fp(n, tu) (or
Qp(n, tu)) = α for all n and p.



Derivative Time Scales
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The analogue of the previous figure for derivative time scales yields
zDp,1. We use a centered, sixth-order, finite-difference scheme by
extending Fp(n, t) (or Qp(n, t)) to negative t via Fp(n,−t)(or
Qp(n,−t)) = Fp(n, t)(or Qp(n, t)) to obtain the derivative time
scales.



Passive Scalars

◮ We use two different kinds of velocity fields in the
advection-diffusion equation for both statistically steady and
decaying turbulence:

◮ Model A : The Kraichnan ensemble where each component of
u is a zero-mean, delta-correlated Gaussian random variable.

◮ Model B : Velocities from the GOY shell model.



Principal Results: Passive-Scalars

◮ Dynamic multiscaling is obtained only if the advecting velocity
is intermittent.

◮ Simple dynamic scaling is obtained for a simple version of the
passive-scalar problem (Kraichnan), in which the advecting
velocity field is Gaussian, even though equal-time structure
functions display multiscaling in this model.

◮ For intermittent velocity fields, different time scales can be
extracted.

◮ zp related to ζp through bridge relations.

◮ Universality: Dynamic exponents for decaying and statistically
steady passive-scalar turbulence are equal.



Model A

◮ The covariance of the field is

< ui(x, t)uj (x + r, t ′) >= 2Dijδ(t − t ′)

where the Fourier Transform of Dij has the form

D̃ij(q) ∝
(

q2 +
1

L2

)−(d+ξ)/2
e−ηq

2[

δij −
qiqj

q2

]

.

In the limits L Γ→ ∞ and η Γ→ 0, Dij in real space is

Dij(r) = D0δij −
1

2
dij(r))

where,

dij = D1r
ξ
[

(d − 1+ ξ)δij − ξ
ri rj

r2

]



Passive-scalar shell models

[

d

dt
+ κk2

n

]

θn = ı

[

an(θ
∗

n+1u
∗

n−1 − θ
∗

n−1u
∗

n+1) + bn(θ
∗

n−1u
∗

n−2 + θ
∗

n−2un−1)

+ cn(θ
∗

n+2un+1 + θ
∗

n+1u
∗

n+2)

]

+ fn,

where the asterisks denote complex conjugation, an = kn/2,
bn = −kn−1/2, and cn = kn+1/2; fn is an additive force that is
used to drive the system to a steady state; the boundary conditions
are u−1 = u0 = θ−1 = θ0 = 0; uN+1 = uN+2 = θN+1 = θN+2 = 0.

◮ For the Kraichnan model, the advecting velocity variables are
taken to be zero-mean, white-in-time, Gaussian random
complex variables with covariance
〈un(t)u

∗
m(t

′)〉 = C2k
−ξ
n δmnδ(t − t ′).

◮ For a ”turbulent” passive-scalar field, the advecting velocity
field is a solution of the GOY shell model.



Model A

This model shows multiscaling for equal-time passive-scalar
structure functions for 0 < ξ < 2.



Dynamic Multiscaling in Passive-Scalars

Multifractal model predicts:

◮ zDp,M = 1− ζuM/M

◮ z Ip,M = 1− |ζu−M |/M

◮ Breakdown of simple scaling.

◮ Does structure functions with negative exponents exists?



Analytical and Numerical Results
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A comparison of our numerical and analytical results for model A
second-order structure function in decaying turbulence.



Model A: Numerical Results

◮ Analytical work shows that for Model A the time-dependent
structure functions decay exponentially.

◮ A log-log plot of the characteristic decay time vs the wave
vectors yield the dynamic exponent zp.

◮ It is shown analytically that for all order-p time-dependent
structure functions, zp = 2− ξ.

◮ Our numerics support this prediction for decaying
passive-scalar fields.



Model A: Numerical Results
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A plot of the fourth-order structure function (ξ = 0.6) vs time for
statistically steady turbulence. The scaling exponent is extracted
from the decay constant of the curves.



Model A: Numerical Results

0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

log
10

(k
m
)

lo
g

1
0
(T

m
)

z
4
 = 1.39

(b)

The slope of a log-log plot of the decay constant vs the
wave-vector yields the dynamic scaling exponent for the
fourth-order structure function.



Model A: Numerical Results
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A plot of the second-order dynamic structure function for decaying
turbulence. The slope of a log-log plot (inset) of the decay time vs

the wave-vector yields the dynamic exponent .



Model B: Numerical Results
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Plots of the second-order time-dependent structure function vs the
dimensionless time for statistically steady (left) and decaying
turbulence (right).



Cumulative pdf for um
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Negative Exponents

◮ For small |um |, P
cum[|um |] ∼ |um|

1.8.

◮ P [|um |] ∼ |um |
0.8.

◮ S−1(m) ≡
∫
P [x ] 1

x
dx ∼

∫
x−0.2dx exists.

◮ But Sp(m) for p ≈ −1.8 does not.

◮ T I
p,M for M > 2 does not exist.

◮ Measurement of a static quantity (P(x)) gives us information
about existence of a dynamic quantity T I

p,M .



Model B: Integral Time Scale
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A log-log plot of the integral time scale vs the wave-vector in
decaying turbulence. The linear fit gives us the scaling exponent
z Ip,M .



Derivative Time Scale
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A log-log plot of the derivative time scale vs the wave-vector in
decaying turbulence. The linear fit gives us the scaling exponent
zDp,M .



Exponents for dynamic multiscaling in shell models

order(p) ζup z I,up,1[Theory] z I,up,1 zD,u
p,2 [Theory] zD,u

p,2

1 0.379 ± 0.008 0.621 ± 0.008 0.61 ± 0.03 0.68 ± 0.01 0.699 ± 0.008
2 0.711 ± 0.002 0.66 ± 0.01 0.68 ± 0.01 0.716 ± 0.008 0.723 ± 0.006
3 1.007 ± 0.003 0.704 ± 0.005 0.711 ± 0.001 0.74 ± 0.01 0.752 ± 0.005
4 1.279 ± 0.006 0.728 ± 0.009 0.734 ± 0.002 0.76 ± 0.02 0.76 ± 0.01
5 1.525 ± 0.009 0.75 ± 0.02 0.755 ± 0.002 0.77 ± 0.02 0.77 ± 0.02
6 1.74 ± 0.01 0.78 ± 0.02 0.78 ± 0.03 0.77 ± 0.03 0.78 ± 0.02

order(p) ζθp z I,θp,1 zD,θ
p,2

1 0.342 ± 0.002 0.522 ± 0.002 0.632 ± 0.003
2 0.634 ± 0.003 0.531 ± 0.004 0.647 ± 0.003
3 0.873 ± 0.003 0.553 ± 0.006 0.646 ± 0.003
4 1.072 ± 0.004 0.563 ± 0.003 0.642 ± 0.005
5 1.245 ± 0.004 0.562 ± 0.006 0.643 ± 0.006
6 1.370 ± 0.006 0.576 ± 0.006 0.640 ± 0.005



Multiscaling and quasi-Lagrangian Structure Functions in

2D flows

◮ Multiscaling in equal-time, Eulerian vorticity structure
functions.

◮ Investigating dynamic-multiscaling in time-dependent,
quasi-Lagrangian vorticity structure functions.

◮ Tracking a single particle in a 2D flow with friction to
generate quasi-Lagrangian fields.

Movie



Steady State quasi-Lagrangian Vorticity Field

A pseudocolor plot of the quasi-Lagrangian vorticity field in the
statistically steady state.



Equal-time Structure Functions
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◮ Left : Sω3 (R) for the quasi-Lagrangian field, obtained by
averaging over the centers rc .

◮ Right : Scaling exponents for equal-time, vorticity structure
functions, for both the Eulerian and quasi-Lagrangian fields.



Time-dependent Structure Functions
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A loglog plot of T I
2,1 versus the separation r ; the data points are

shown by open red circles and the straight black line shows the line
of best fit in the inertial range.



Effect of Friction
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A log-log plot of the energy spectrum versus the wavevector k for
various values of µ.



Time-dependent multiscaling exponents
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Plots of the vorticity, dynamic-multiscaling, quasi-Lagrangian
exponents z I ,QL

p,1 (open red circles) and z
D,QL
p,2 (full blue circles)

versus p with the error bars



Exponents from 2D DNS

order(p) ζqLp z
I,qL
p,1 [Theory] z

I,qL
p,1 z

D,qL
p,2 [Theory] z

D,qL
p,2

1 0.625 ± 0.003 0.375 ± 0.007 0.37 ± 0.02 0.541 ± 0.008 0.53 ± 0.02
2 1.131 ± 0.005 0.49 ± 0.02 0.48 ± 0.01 0.618 ± 0.009 0.62 ± 0.2
3 1.541 ± 0.005 0.58 ± 0.01 0.57 ± 0.01 0.66 ± 0.01 0.67 ± 0.01
4 1.895 ± 0.004 0.65 ± 0.01 0.65 ± 0.01 0.675 ± 0.008 0.66 ± 0.03
5 2.222 ± 0.008 0.67 ± 0.01 0.65 ± 0.02 0.70 ± 0.01 0.70 ± 0.02
6 2.544 ± 0.004 0.68 ± 0.01 0.66 ± 0.02 0.71 ± 0.02 0.71 ± 0.03



Conclusions

◮ The calculation of dynamic-multiscaling exponents has been
limited so far to shell models for 3D, homogeneous, isotropic
fluid and passive-scalar turbulence.

◮ We have presented the first study of such dynamic
multiscaling in the direct-cascade régime of 2D fluid
turbulence with friction by calculating both quasi-Lagrangian
and Eulerian structure functions.

◮ Our work brings out clearly the need for an infinity of time
scales and associated exponents to characterize such
multiscaling; and it verifies, within the accuracy of our
numerical calculations, the linear bridge relations for a
representative value of µ.

◮ We find that friction also suppresses sweeping effects so, with
such friction, even Eulerian vorticity structure functions
exhibit dynamic multiscaling with exponents that are
consistent with their quasi-Lagrangian counterparts.


