

Physics Department University of Genova Italy

Role of polymers in the mixing of Rayleigh-Taylor turbulence

Andrea Mazzino

andrea.mazzino@unige.it

Guido Boffetta: University of Torino (Italy)

Stefano Musacchio: CNRS, Nice (France)

Lara Vozella: CNR-ISAC Torino (Italy)

Filippo Delillo: University of Torino (Italy)

Outline of the talk

I) Rayleigh-Taylor turbulence: quick view to the Newtonian case

2) Viscoelastic Rayleigh-Taylor turbulence

- Effect of Polymers on mixing
- Heat transfer enhancement

Rayleigh-Taylor instability

Instability on the interface of two fluids of different densities with relative acceleration.

Rayleigh (1883): unstable stratification in gravitational field Taylor (1950): generalization to all acceleration mechanisms

Atwood number
$$A \equiv \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$

Linear analysis: exponential growth with rate \sqrt{Agk}

Rayleigh-Taylor turbulence (2D case)

Buoyancy balances inertia at all scales

• Temperature cascades toward small scales

M. Chertkov, PRL 91 (2003)

Velocity: inverse energy cascade (flux not constant)

small scale fluctuations follow Bolgiano scaling

$$\delta_r u(t) \sim (Ag)^{2/5} t^{-1/5} r^{3/5}$$

 $\delta_r T(t) \sim \theta_0 (Ag)^{-1/5} t^{-2/5} r^{1/5}$

A. Celani, A. Mazzino, L. Vozella, PRL 96 (2006)

Biferale et al, PF 22 (2011)

• *Temperature cascades toward small scales*

M. Chertkov, PRL 91 (2003)

• Velocity: direct energy cascade (constant flux)

Temperature cascades toward small scales

M. Chertkov, PRL 91 (2003)

Velocity: direct energy cascade (constant flux)

small scale fluctuations follow Kolmogorov-Obukhov scaling

$$\delta_r u(t) \sim (Ag)^{2/3} t^{1/3} r^{1/3}$$

 $\delta_r T(t) \sim \theta_0 (Ag)^{-1/3} t^{-2/3} r^{1/3}$

G. Boffetta, A. Mazzino, S. Musacchio, L. Vozella, PRE 79 (2009)

From Newtonian to viscoelastic Rayleigh Taylor

Turbulence in dilute polymer solutions

Drag reduction (Toms 1949)

polymers can reduce the friction drag in a pipe flow up to 80%

Dilute polymer solutions

polymers are stretched by velocity gradients they can store and dissipate elastic energy

Viscoelastic models: Oldroyd-B viscous + elastic stress tensor

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} - \beta \mathbf{g} T + \frac{2\nu \eta}{\tau_p} \nabla \cdot \sigma$$

 $\partial_t T + \mathbf{u} \cdot \nabla T = \kappa \Delta T$

 $\partial_t \sigma + \mathbf{u} \cdot \nabla \sigma = (\nabla \mathbf{u})^T \cdot \sigma + \sigma \cdot (\nabla \mathbf{u}) - \frac{2}{\tau_p} (\sigma - \mathbb{I})$

Zimm relaxation time $\tau_p = \frac{\mu R_0^3}{k_B T}$

Conformation tensor

$$\sigma_{\alpha\beta} \equiv \langle R_{\alpha}R_{\beta} \rangle$$

Relevant asymptotics:

1) $\tau_p \to 0$ (Newtonian case) $\alpha_0 = -\nu(1+\eta)k^2 + \sqrt{\omega^2 + [\nu(1+\eta)k^2]^2}$ 2) $\tau_p \to \infty$ (pure solvent Newt. case) $\alpha_\infty = -\nu k^2 + \sqrt{\omega^2 + \nu^2 k^4} \ge \alpha_0$

From implicit differentiation

 $lpha(au_p)$ is monotonic

$$\alpha_{\infty} \ge \alpha_0$$

The instability growth-rate increases with the elasticity

The instability growth-rate increases with the elasticity

Heuristics in the "passive case" (2D)

From mean field arguments:

2D RT obeys Bolgiano-Obukhov phenomenology: $\,\delta_r u(t)\sim (Ag)^{2/5}t^{-1/5}r^{3/5}$

Energy flux flows toward large scales at non-constant flux $\epsilon \sim (Ag)^{6/5} t^{-3/5} r^{4/5}$

Viscous Kolmogorov scale: $\eta \sim \frac{\nu}{\delta_\eta u} = \nu^{5/8} t^{1/8} (Ag)^{-1/4}$

Kolmogorov time scale: $\tau_\eta \sim \frac{\eta}{\delta_\eta u} = \nu^{1/4} t^{1/4} (Ag)^{-1/2}$

Heuristics in the "passive case" (2D)

Weissemberg number:

$$Wi \equiv \frac{\tau_p}{\tau_\eta} \sim t^{-1/4}$$

No coil-stretch transition is expected in 2D

At late times $l_L \ll \eta$

polymers: only contribute to viscosity renormalization

Heuristics in the "passive case" (3D)

From mean field arguments:

3D RT obeys K41 phenomenology: $\delta_r u(t) \sim \epsilon^{1/3} r^{1/3}$

Energy flux flows toward small scales at constant flux $\epsilon \sim (Ag)^2 t$

Viscous Kolmogorov scale: $\eta \sim \frac{\nu}{\delta_\eta u} \sim \nu^{3/4} \epsilon^{-1/4} \sim \nu^{3/4} (Ag)^{-1/2} t^{-1/4}$

Kolmogorov time scale: $\tau_\eta \sim \frac{\eta}{\delta_\eta u} = \nu^{1/2} t^{-1/2} (Ag)^{-1}$

Heuristics in the "passive case" (3D)

Weissemberg number:

$$Wi \equiv \frac{\tau_p}{\tau_\eta} \sim t^{1/2}$$

Coil-stretch transition is expected in 3D

well within the inertial range of scales

DNS of 3D viscoelastic RT turbulence

G. Boffetta, A. Mazzino, S. Musacchio, PRE (2011)

- Parallel pseudo-spectral code
- Second-order Runge-Kutta temporal scheme
- Interface temperature initial perturbation: 10% white noise
- Simulations halted at $L(t) \sim 80\%$ Ly

Run	$N_{x,y}$	N_z	$L_{x,y}$	L_z	θ_0	βg	$\nu = \kappa$	κ_p	η	$ au_p$
Ν	512	1024	2π	4π	1	0.5	$3 \cdot 10^{-4}$	-	-	-
А	512	1024	2π	4π	1	0.5	$3\cdot 10^{-4}$	10^{-3}	0.2	1
В	512	1024	2π	4π	1	0.5	$3\cdot 10^{-4}$	10^{-3}	0.2	2
B2	512	1024	2π	4π	1	0.5	$3\cdot 10^{-4}$	$3\cdot 10^{-3}$	0.2	2
С	512	1024	2π	4π	1	0.5	$3\cdot 10^{-4}$	10^{-3}	0.2	10

Main parameters:

PDF of polymers elongation

Coil-stretch transition at $~t\sim \tau$

An intrinsic exp cutoff emerges for polymers elongation

Energy balance in viscoelastic RT

Kinetic end elastic energy
$$E=K+\Sigma=1/2\langle u^2
angle+(
u\eta/ au_p)\langle tr\sigma
angle$$
 produced from potential energy $P=-eta g\langle zT
angle$

Effects of polymers:

•Speed-up of potential energy consumption

Increase of kinetic energy

•Reduction of viscous dissipation (not shown)

Benzi, De Angelis, Govindarajan and Procaccia, PRE (2003); De Angelis, Casciola, Benzi and Piva, JFM (2005)

Energy balance in viscoelastic RT

Benzi, De Angelis, Govindarajan and Procaccia, PRE (2003); De Angelis, Casciola, Benzi and Piva, JFM (2005)

Quantification of Drag Reduction (DR)

DR = loss of potential energy/plumes kinetic energy

Potential energy: $P = -\beta g \langle zT \rangle$ Kinetic energy: $K \sim 1/2 [\dot{h}(t)]^2$ (Fermi and von Neumann, 1955)

Assuming linear vertical profile for T: $P(t) \sim -1/6Agh(t)$

$$f \equiv \frac{\Delta P}{K} = 1/3Ag \frac{h}{\dot{h}^2} = \frac{1}{12\alpha} \qquad (h(t) = \alpha Agt^2)$$

 $\boldsymbol{\alpha}$ is thus related to f

Quantification of Drag Reduction

22 % of DR for run B 30 % of DR for run C

Quantification of Drag Reduction Energy spectra 10^{2} Increasing Weissemberg

More efficient conversion from potential to kinetic energy
 Polymers:

10⁻⁶

Reduced energy transfer to small scales (reduced dissipation)

10

k

Similarities with isotropic homogeneous turbo:

Benzi, De Angelis, Govindarajan and Procaccia, PRE (2003); De Angelis, Casciola, Benzi and Piva, JFM (2005)

100

Faster growth of mixing layer

h(t)

Faster growth of mixing layer h(t)

a)

More efficient mass transfer

Faster growth of mixing layer

Faster growth of mixing layer h(t)

More efficient mass transfer

a

b

h(t)

Larger temperature variance σ_T

Reduced mixing efficiency at small scale

Heat transfer enhancement

agreement (Benzi et al, PRL 2010); disagreement (Ahlers and Nikolaenko, PRL 2010)

Main Conclusions

- Speed-up of Rayleigh-Taylor instability due to Polymers (linear analysis)
- Polymers increase the rate of large-scale mixing and reduce small-scale mixing in the fully developed turbulence stage
- Many analogies with DR in homogeneous isotropic turbulence
- Heat transport enhancement

Perspectives

- Extension to elastic fibers
- Extension to immiscible Newtonian fluids

Details on the viscoelastic RT:

*

Rayleigh—Taylor instability in a viscoelastic binary fluid
 G. Boffetta, A. Mazzino, S. Musacchio and L.Vozella
 J. Fluid Mech. 643, 127-136 (2010)

Polymer Heat Transport Enhancement in Thermal Convection: The Case of Rayleigh-Taylor Turbulence G. Boffetta, A. Mazzino, S. Musacchio and L.Vozella Phys. Rev. Lett. 104, 184501 (2010)

Effects of polymer additives on Rayleigh-Taylor turbulence

★ G. Boffetta, A. Mazzino and S. Musacchio Phys. Rev. E 83, 056318 (2011)

Relevance of Rayleigh-Taylor instability

Many applications in natural phenomena and technological problems:

- supernova explosion
- acceleration mechanism for thermonuclear flame front
- atmospheric physics (mammatus clouds)
- solar corona heating
- intertial confinement fusion
- etc.

Viscoelastic Rayleigh-Taylor turbulence

Newtonian

Faster and more coherent plumes

Horizontal velocities urms are Vertical velocities wrms are

depleted enhanced

 R_u , R_w half width vel. correlat.

Faster and more coherent plumes

Horizontal velocities urms are Vertical velocities wrms are depleted enhanced

Faster and more coherent

 R_u , R_w half width vel. correlat.