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2) Viscoelastic Rayleigh-Taylor 
turbulence

• Effect of Polymers on mixing

• Heat transfer enhancement

1) Rayleigh-Taylor turbulence: 
quick view to the Newtonian 
case

Outline of the talk



Rayleigh-Taylor instability

Instability on the interface of two 
fluids of different  densities with 
relative acceleration.

Rayleigh (1883): unstable stratification
in gravitational field
Taylor (1950): generalization to all
acceleration mechanisms

ρ1

ρ2 < ρ1Atwood number A≡ ρ1−ρ2
ρ1+ρ2

Linear analysis: exponential growth with rate 
√

Agk

g



Rayleigh-Taylor turbulence (2D case)

∂tu + u · ∂u = −∂p + ν∂2u− βgT

∂tT + u · ∂T = κ∂2T

Buoyancy balances inertia at all scales

• Temperature cascades toward small scales

• Velocity: inverse energy cascade (flux not constant)

small scale fluctuations follow Bolgiano scaling

Biferale et al, PF 22 (2011)

M. Chertkov, PRL 91 (2003)

A. Celani, A. Mazzino, L. Vozella, PRL 96 (2006)



∂tu + u · ∂u = −∂p + ν∂2u− βgT

∂tT + u · ∂T = κ∂2T

• Temperature cascades toward small scales

• Velocity: direct energy cascade (constant flux)
M. Chertkov, PRL 91 (2003)

Buoyancy is negligible at small  scales

Rayleigh-Taylor turbulence (3D case)



∂tu + u · ∂u = −∂p + ν∂2u− βgT

∂tT + u · ∂T = κ∂2T

• Temperature cascades toward small scales

• Velocity: direct energy cascade (constant flux)
M. Chertkov, PRL 91 (2003)

small scale fluctuations follow Kolmogorov-Obukhov scaling

G. Boffetta, A. Mazzino, S. Musacchio, L. Vozella, PRE 79 (2009)

Buoyancy is negligible at small  scales

Rayleigh-Taylor turbulence (3D case)



From Newtonian to viscoelastic Rayleigh Taylor



Turbulence in dilute polymer solutions

Drag reduction (Toms 1949)
polymers can reduce the friction drag in a pipe flow
up to 80% 

Dilute polymer solutions
polymers are stretched by velocity gradients
they can store and dissipate elastic energy Zimm relaxation time

Viscoelastic models: Oldroyd-B
viscous + elastic stress tensor

σαβ ≡ 〈RαRβ〉
Conformation tensor

τp = ζR2
0

kBTτp =
µR3

0

kBT



Viscoelastic Rayleigh-Taylor: linear stability

zero-shear polymer contribution to total viscosity

Linear stability analysis on the Oldroyd-B perturbation growth-rate α

ω =
√

Agk

α( τp)3 + 2( τp)2(1 + νk2τp) + τ [4ν(1 + cη)k2τp − ω2τ2
p ]− 2ω2τ2

p = 0α α

Zimm relaxation time

Relevant asymptotics:

τp → 01) (Newtonian case) α0 = −ν(1 + cη)k2 +
√

ω2 + [ν(1 + cη)k2]2

2) τp →∞ (pure solvent Newt. case) α∞ = −νk2 +
√

ω2 + ν2k4 ≥ α0



Viscoelastic Rayleigh-Taylor: linear stability

From implicit differentiation α(τp) is monotonic

α∞ ≥ α0



Viscoelastic Rayleigh-Taylor: linear stability

From implicit differentiation α(τp) is monotonic

Because

The instability growth-rate increases with the elasticity

G. Boffetta, A. Mazzino, S. Musacchio, 
L. Vozella, JFM 643 (2010)

α∞ ≥ α0



Viscoelastic Rayleigh-Taylor: linear stability

From implicit differentiation α(τp) is monotonic

?? Similar speed-up in turbulence ??

Because

The instability growth-rate increases with the elasticity

G. Boffetta, A. Mazzino, S. Musacchio, 
L. Vozella, JFM 643 (2010)

α∞ ≥ α0



Heuristics in the “passive case” (2D)

2D RT obeys Bolgiano-Obukhov phenomenology: 

Energy flux flows toward large scales at non-constant flux ε ∼ (Ag)6/5t−3/5r4/5

Viscous Kolmogorov scale: η ∼ ν

δηu
= ν5/8t1/8(Ag)−1/4

Kolmogorov time scale: τη ∼
η

δηu
= ν1/4t1/4(Ag)−1/2

From mean field arguments:



Heuristics in the “passive case” (2D)

Weissemberg number: Wi ≡ τp

τη
∼ t−1/4

No coil-stretch transition is expected in 2D

Lumley scale:
lL

δlLu
∼ τp lL ∼ τ5/2

p (Ag)t−1/2

polymers: only contribute to viscosity renormalization

At late times lL ! η



Heuristics in the “passive case” (3D)

3D RT obeys K41 phenomenology: 

Energy flux flows toward small scales at constant flux

Viscous Kolmogorov scale:

Kolmogorov time scale:

From mean field arguments:

δru(t) ∼ ε1/3r1/3

ε ∼ (Ag)2t

τη ∼
η

δηu
= ν1/2t−1/2(Ag)−1

η ∼ ν

δηu
∼ ν3/4ε−1/4 ∼ ν3/4(Ag)−1/2t−1/4



Heuristics in the “passive case” (3D)

Weissemberg number:

Coil-stretch transition is expected in 3D

Lumley scale:
lL

δlLu
∼ τp

well within the inertial range of scales

Wi ≡ τp

τη
∼ t1/2

lL ∼ τ3/2
p (Ag)t1/2

η ! lL ! L



DNS of 3D viscoelastic RT turbulence

• Parallel pseudo-spectral code

• Second-order Runge-Kutta temporal scheme

• Interface temperature initial perturbation:  10% white noise

• Simulations halted at L(t) ~ 80% Ly

η

Main parameters:

G. Boffetta, A. Mazzino, S. Musacchio, PRE (2011)



PDF of polymers elongation

Run C

linear

Coil-stretch transition at t ∼ τ

An intrinsic exp cutoff emerges for polymers elongation



Energy balance in viscoelastic RT

Kinetic end elastic energy

produced from potential energy

Effects of polymers:

•Speed-up of potential energy
consumption

•Increase of kinetic energy

•Reduction of viscous dissipation 
  (not shown)

“Drag reduction”

Benzi, De Angelis, Govindarajan and Procaccia, PRE  (2003); 
De Angelis, Casciola, Benzi and Piva, JFM (2005)



Energy balance in viscoelastic RT

Kinetic end elastic energy

produced from potential energy

Effects of polymers:

•Speed-up of potential energy
consumption

•Increase of kinetic energy

•Reduction of viscous dissipation 
  (not shown)

“Drag reduction”

Newtonian

Viscoel.

Benzi, De Angelis, Govindarajan and Procaccia, PRE  (2003); 
De Angelis, Casciola, Benzi and Piva, JFM (2005)



Quantification of Drag Reduction (DR)

DR = loss of potential energy/plumes kinetic energy

Kinetic energy: K ∼ 1/2[ḣ(t)]2
Potential energy: P = −βg〈zT 〉

Assuming linear vertical profile for T:

(Fermi and von Neumann, 1955)

P (t) ∼ −1/6Agh(t)

f ≡ ∆P

K
= 1/3Ag

h

ḣ2
=

1
12α

(h(t) = αAgt2)

is thus related to fα
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FIG. 7: Temporal evolution of the potential energy P (panel a), kinetic energy K panel (b),

elastic energy Σ (panel c) and viscous energy dissipation (panel d). Newtonian flow: solid line.

Viscoelastic flows: dashed line (Run A), dotted line (Run B).
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FIG. 8: Time evolution of the drag reduction factor f . Newtonian flow: solid line. Viscoelastic

flows: dashed line (Run A), dotted line (Run B), dash-dotted line (Run C).

accelerated growth of mixing layer. Part of the potential energy is indeed converted into

elastic energy and finally dissipated by polymers relaxation to equilibrium.

The increase of kinetic energy is accompanied by a reduction of viscous dissipation

(Fig. 7d). This is a clear fingerprint of a drag reduction phenomenon as defined for

homogeneous-isotropic turbulence [4, 5], i.e. a reduction of turbulent energy dissipation
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Increasing Weissemberg

22 % of DR for run B

30 % of DR for run C

run B

run C

Quantification of Drag Reduction 

Newtonian



Quantification of Drag Reduction 
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FIG. 9: Energy spectra of the vertical velocity component at time t = 3.1τ Newtonian flow: solid

line. Viscoelastic flows: dashed line (Run A), dotted line (Run B), dash-dotted line (Run C).

at given kinetic energy. In the present case, a quantitative measure of the drag reduction

is provided by the ratio between the loss of potential energy and the resulting plumes ki-

netic energy. The first can be easily computed by the definition of the potential energy

P = −βg〈zT 〉 assuming a linear temperature profile within the mixing layer, which gives

∆P = P (0)−P (t) $ 1/6Agh(t). An estimate of the kinetic energy associated with large scale

plumes can be obtained in terms of the mixing layer growth rate ḣ(t) as KL ∼ 1/2(ḣ(t))2.

We remark that a similar estimation was proposed by Fermi for modeling the growth of

mixing layer (see Appendix). The drag reduction coefficient f is then defined as

f =
∆P

KL
= 1/3Ag

h

ḣ2
=

1

12α
(4)

which turns out to be inversely proportional to the coefficient α which characterizes the

mixing layer growth rate [20]. With this definition, we measure 22% of drag reduction for

the viscoelastic run B and 30% for the run C (see Fig. 8)

The scenario which emerges from these results is that polymers reduce the turbulent drag

between rising and sinking plumes. The RT viscoelastic system is therefore able to convert

more efficiently potential energy into kinetic energy contained in large plumes. Conversely,

the turbulent transfer of kinetic energy to small-scale structures is reduced, which results in

a reduction of the viscous energy dissipation. This picture is confirmed by the inspection of

the energy spectra (see Fig. 9). At small scales we found a suppression of turbulent kinetic

12

Increasing Weissemberg

Energy spectra

• More efficient conversion from potential  to kinetic energy

• Reduced energy transfer to small scales (reduced dissipation)
Polymers:

Benzi, De Angelis, Govindarajan and Procaccia, PRE  (2003); 
De Angelis, Casciola, Benzi and Piva, JFM (2005)Similarities with isotropic homogeneous turbo:



Faster growth of mixing layer

Faster growth of mixing layer h(t)

More efficient mass transfer

a)

viscoelastic



Faster growth of mixing layer

Faster growth of mixing layer h(t)

More efficient mass transfer

a)

Reduced mixing efficiency at small scale

Larger temperature variance σT

b)

viscoelastic



Heat transfer enhancement

Nusselt increases both vs time and vs  Rayleigh

Nusselt

Reynolds

Rayleigh
Ra≡ βgθ0h3

κν

Re≡ urmsh
ν

Nu≡ Corr(wT )hwrms

κ

because: Corr(w T) wrms h increase, ,
w.r.t. RB convection:  

agreement (Benzi et al, PRL 2010);  disagreement (Ahlers and Nikolaenko, PRL 
2010)



• Speed-up of Rayleigh-Taylor instability due to 
Polymers (linear analysis)

• Polymers increase the rate of large-scale mixing 
and reduce small-scale  mixing in the fully 
developed turbulence stage

• Many analogies with DR in homogeneous 
isotropic turbulence

• Heat transport enhancement

• Extension to elastic fibers

• Extension to immiscible Newtonian fluids

Perspectives

Main Conclusions



Details on the viscoelastic RT:

Rayleigh--Taylor instability in a viscoelastic binary fluid
G. Boffetta, A. Mazzino, S. Musacchio and L. Vozella
J. Fluid Mech. 643, 127-136 (2010)*

Polymer Heat Transport Enhancement in Thermal 
Convection: The Case of Rayleigh-Taylor Turbulence 
G. Boffetta,  A. Mazzino, S. Musacchio and L. Vozella
Phys. Rev. Lett. 104, 184501 (2010) 

*

Effects of polymer additives on Rayleigh-Taylor 
turbulence 
G. Boffetta,  A. Mazzino and  S. Musacchio
Phys. Rev. E 83, 056318 (2011)   

*



Relevance of Rayleigh-Taylor instability

Many applications in natural phenomena and
technological problems:

- supernova explosion
- acceleration mechanism for thermonuclear flame front
- atmospheric physics (mammatus clouds)
- solar corona heating
- intertial confinement fusion
- etc.



Viscoelastic Rayleigh-Taylor turbulence

Newtonian Viscoelastic



Horizontal velocities urms are     depleted
Vertical     velocities wrms are     enhanced

Faster and more coherent plumes

Viscoel.

Newtonian

,Ru Rw half width vel. correlat.

Wi



Horizontal velocities urms are     depleted
Vertical     velocities wrms are     enhanced

Faster and more coherent 

Faster and more coherent plumes

Viscoel.

Newtonian

,Ru Rw half width vel. correlat.

Wi


