STABILITY AND BIFURCATIONS OF HETEROCLINIC CYCLES OF TYPE Z

http://arxiv.org/abs/1108.4204 (submitted to "Nonlinearity")

Olga Podvigina E-mail: olgap@mitp.ru

We consider a smooth dynanical system

$$\dot{\mathbf{x}} = f(\mathbf{x}), \quad f: \mathbb{R}^n \to \mathbb{R}^n.$$

Suppose it possesses:

equilibria $\xi_1, \ldots, \xi_m \in \mathbb{R}^n$;

connecting trajectories $\kappa_j: \xi_j \to \xi_{j+1}$ for all $1 \leq j \leq m$ (where $\xi_{m+1} = \xi_1$).

The union of the **equilibria** and the **connecting trajectories** is called a **heteroclinic cycle**. ξ_{0}

Example of a heteroclinic cycle with three equilibria.

In a generic system heteroclinic cycles are of <u>codimension at least one</u>.

In a Γ -equivariant system, i.e.

$$\gamma f(\mathbf{x}) = f(\gamma \mathbf{x}) \text{ for any } \gamma \in \Gamma,$$

where $\Gamma \subset O(n)$, heteroclinic cycles can be of <u>codimension zero</u>.

A heteroclinic cycle is **structurally stable (or robust)**, if for any j there exists an invariant subspace P_j , such that

- ξ_{j+1} is a sink in P_j ;
- $\kappa_j \subset P_j$.

Eigenvalues of $df(\xi_j)$ can be divided into four classes:

- radial eigenvalues with associated eigenvectors in $L_j = P_j \cap P_{j-1}$
- contracting eigenvalues with associated eigenvectors in $P_{j-1} \ominus L_j$
- **expanding** eigenvalues with associated eigenvectors in $P_j \ominus L_j$
- transverse other eigenvalues

A structurally stable heteroclinic cycle $X \in \mathbb{R}^n \setminus \{0\}$ is **simple**, if for any j

- all eigenvalues of $df(\xi_j)$ are distinct;
- $\dim(P_j \ominus L_j) = 1$.

Poincaré map is a superposition of local and global maps.

Eigenvectors of $df(\xi_j)$ constitute a basis, used in a neighbourhood of ξ_j . The respective local coordinates of a point are $(\mathbf{u}, v, w, \mathbf{z})$, split into the radial, contracting, expanding and transverse components. $H_j^{(\text{in})}$ intersects κ_{j-1} at $(\mathbf{u}_0, v_0, 0, 0)$, $|(\mathbf{u}_0, v_0)| = \tilde{\delta}$; $H_j^{(\text{out})}$ is the plane $w = \tilde{\delta}$.

Local map $\phi_j: H_j^{(\text{in})} \to H_j^{(\text{out})}$

Global map $\psi_j: H_j^{(\text{out})} \to H_{j+1}^{(\text{in})}$

Denote $g_j = \psi_j \phi_j : H_j^{(\text{in})} \to H_{j+1}^{(\text{in})}$.

Poincaré map $g^{(j)}: H_j^{(\mathrm{in})} \to H_j^{(\mathrm{in})}$ is the superposition $g^{(j)} = g_{j-1} \dots g_1 g_m \dots g_j$.

Near ξ_j , the equation $\dot{\mathbf{x}} = f(\mathbf{x})$ reduces to

$$\dot{v} = -c_j v$$

$$\dot{w} = e_j w$$

$$\dot{z}_s = t_{j,s} z_s$$

 $(g_j \text{ is contracting in radial directions} \Rightarrow \text{radial coordinates are ignored}),$ where c_j , e_j and $\{t_{j,s}\}$, $1 \leq s \leq n_t$, are contracting, expanding and transverse eigenvalues of $df(\xi_j)$.

 \Rightarrow The **local map** takes the form

$$\phi_j(w, \mathbf{z}) = (v_0 w^{c_j/e_j}, z_1 w^{-t_{j,1}/e_1}, ..., z_{n_t} w^{-t_{j,n_t}/e_{n_t}}).$$

The **global map** is predominantly linear:

$$\psi_j \left(\begin{array}{c} w \\ \mathbf{z} \end{array} \right) = B_j \left(\begin{array}{c} w \\ \mathbf{z} \end{array} \right).$$

Definition.

 \overline{A} heteroclinic cycle is of **type Z**, if for all j

$$B_j = C_j D_j,$$

where

 C_j is a **permutation matrix**;

 D_j is a diagonal matrix.

Why this name?

Stability and bifurcations of simple heteroclinic cycles in particular systems:

Aguiar, Castro, *Physica D* **239**, 1598–1609, 2010;

Brannath, *Nonlinearity* 7, 1367–1384, 1994;

Chossat, Krupa, Melbourne, Scheel, *Physica D* **100**, 85–100, 1997;

Driesse, Homburg, J. Differential Equations 246, 2681–2705, 2009;

Kirk, Silber, *Nonlinearity* 7, 1605–1621, 1994;

Krupa, Melbourne, Proc. Roy. Soc. Edinburgh 134A, 1177–1197, 2004;

Podvigina, Ashwin, Nonlinearity 24, 887–929, 2011;

Postlethwaite, Dawes, Nonlinearity 23, 621–642, 2010.

Necessary and sufficient conditions for asymptotic stability of **type A** cycles: Krupa, Melbourne, *Ergodic Theory Dyn. Syst.*, **15**, 121–148, 1995.

All simple non-type-A cycles, studied so far, are of type Z.

New coordinates: $\eta = (\ln |w|, \ln |z_1|, ..., \ln |z_{n_t}|).$

The map g_j reduces to $\mathcal{M}_j \boldsymbol{\eta} = M_j \boldsymbol{\eta} + F_j$, where

$$M_j := C_j A_j = C_j \left(egin{array}{cccc} a_{j,1} & 0 & 0 & \dots & 0 \ a_{j,2} & 1 & 0 & \dots & 0 \ a_{j,3} & 0 & 1 & \dots & 0 \ & \ddots & \ddots & \ddots & \ddots \ a_{j,N} & 0 & 0 & \dots & 1 \end{array}
ight)$$

$$a_{j,1} = -c_j/e_j$$
, $a_{j,l+1} = -t_{j,l}/e_j$, $1 \le l \le n_t$, $1 \le j \le m$.

Finite F_j are ignored \Rightarrow the **Poincaré map** $g^{(j)}: H_j^{(\mathrm{in})} \to H_j^{(\mathrm{in})}$ is now

$$M^{(j)} = M_{j-1} \dots M_1 M_m \dots M_j.$$

<u>Theorem 1</u>.

Suppose all transverse eigenvalues of $df(\xi_j)$ are negative for all j. Let λ_{\max} denote the largest in absolute value eigenvalue of $M^{(1)} = M_m \dots M_1$. Then

- If $|\lambda_{\text{max}}| > 1$, then the heteroclinic cycle is asymptotically stable;
- If $|\lambda_{\max}| \leq 1$, then it is unstable.

Example of a set, which is not asymptotically stable, but is **fragmentarily asymptotically stable**:

$$\mathcal{B}_{\delta}(X) = \{ \mathbf{x} \in \mathbb{R}^n : d(\Phi_t(\mathbf{x}), X) < \delta \ \forall \ t \geq 0 \text{ and } \lim_{t \to \infty} d(\Phi_t(\mathbf{x}), X) = 0 \}$$
 Definition.

A compact invariant set X is **fragmentarily asymptotically stable**, if $\mu(\mathcal{B}_{\delta}(X)) > 0$ for any $\delta > 0$.

Denote

 λ_{\max}^{j} the largest in absolute value eigenvalue of

$$M^{(j)} = M_{j-1} \dots M_1 M_m \dots M_j,$$

 \mathbf{v}^{j} the associated eigenvector.

<u>Theorem 2</u>.

Suppose some transverse eigenvalues of $df(\xi_j)$ are positive for some j. Then

- If λ_{\max}^j is real, $\lambda_{\max}^j > 1$ and $v_s^j v_k^j > 0$ for all j, s and k, then the heteroclinic cycle is **fragmentarily asymptotically stable**.
- Otherwise it is **unstable**.

Bifurcations of a heteroclinic cycle in the system

$$\dot{\mathbf{x}} = f(\mathbf{x}, \alpha), \quad f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$$

We assume that the heteroclinic cycle exists for $\alpha_{-} \leq \alpha \leq \alpha_{+}$, where $\alpha_{-} < 0$ and $\alpha_{+} > 0$.

Theorem 3.

Suppose transverse eigenvalues of $df(\xi_j)$ are negative for all j, $|\lambda_{\max}| > 1$ for $\alpha < 0$, and $|\lambda_{\max}| < 1$ for $\alpha > 0$.

Then a periodic orbit bifurcates from the heteroclinic cycle. If the orbit exists for $\alpha > 0$, then it is asymptotically stable. If the orbit exists for $\alpha < 0$, then it is unstable.

Theorem 4.

Suppose for some j some transverse eigenvalues of $df(\xi_j)$ are positive, for $\alpha < 0$ conditions of Theorem 2 are satisfied, and for $\alpha > 0$ they are not satisfied. Then

- if |λ_{max}| < 1 for α > 0, then
 a periodic orbit bifurcates from the heteroclinic cycle.
 If the orbit exists for α > 0, then it is asymptotically stable.
 If the orbit exists for α < 0, then it is unstable.
- if $|\lambda_{\text{max}}| > 1$ for $\alpha > 0$, then no periodic orbits or other invariant sets bifurcate from the cycle.