Higgs boson production in association with a photon in Vector Boson Fusion at LHC

Emidio Gabrielli Uppsala University and Helsinki Institute of Physics

work made in coll. with F.Maltoni, B. Mele, M.Moretti, F.Piccinini, R.Pittau (hep-ph/0702119) to appear on NPB

Higgs boson decay in bb(bar)

 not a discovery channel, but very important for measuring the Yukawa Hbb coupling at LHC
 up to now, more serious studies only for Htt

optimized x-sections of signal are of the order of O(10 fb). Htt has been disfavored by recent CMS analyses

A new promising channel to measure bbH coupling at LHC

E.G., F. Maltoni, B. Mele, M. Moretti, F.Piccinini, R.Pittau (hep-ph/0702119)

same mechanism of H production by VV fusion + emission of a γ

signal at partonic level

main advantages

trigger on gamma at high p_T

the large gluon component in QCD bckg is idle in radiating a photon

dynamical effects suppress radiation of central photon with respect to signal

O(10fb) x-section

could provide a new independent test of Hbb and HWW couplings

signal cross section pp-2444ji

minimal set of kinematical cuts

$$\Delta R_{\gamma j} > 0.4$$
 $p_T^{\gamma} \ge 20 \text{ GeV}$ $Q^{2_{ik}} > 100 \text{ GeV}^2$

$m_H (\text{GeV})$	110	120	130	140
$\sigma(H\gamma jj)~[fb]$	67.4	64.0	60.4	56.1
$\mathcal{BR}(H \to b\bar{b})$	0.770	0.678	0.525	0.341

Higgs BR to bb(bar)→HDECAY

- full EW tree-level matrix element
 to pp → H γ jj computed with
 ALPGEN + MADEVENT
- PDF set is CTEQ5L

$$\Delta R_{ij} \equiv \sqrt{\Delta \eta_{ij}}^2 + (\Delta \varphi_{ij})^2$$

Higgs production in VBF

the basic partonic process is $qq \rightarrow qq$ H

Mangano, Moretti, Piccinini, Pittau, Polosa (2003)

$$p_T(j) \approx 40 \text{ GeV}$$

characteristic of the signal: $pp \rightarrow H(\rightarrow b\bar{b}) + 2j$

- two Jets with large invariant mass
- widely separated in rapidity (forward/backward)
- typical transverse momentum of jets $p_T(j) \sim 40$ GeV
- Higgs decay products lying at intermediate rapidity

QCD background to Higgs boson production via VBF

the signal has large x-section, BUT it is difficult to measure due to the huge QCD background

how the emission of a photon affects the background

one would expect by naive QED rescaling

$$(S/\sqrt{B})|_{H\gamma jj} \sim \sqrt{\alpha} (S/\sqrt{B})|_{Hjj}$$

- if so, then there would be no advantage in considering a photon emission
- QED naive rescaling holds for inclusive processes but not always when restricted regions of phase space are considered !
- requirement of centrality dramatically increases S/B ratio, while signal cross section roughly follows QED naive rescaling

cuts made at partonic level (we considered also partonic shower effects)

optimized sub-set of kinematical cuts enhancing S/B

• m(jj) > 800 GeV• mH(1-10%) < m(bb) < mH(1+10%)• $p_T(\gamma) > 20 \text{ GeV}$

leading contribution to bckg of VVB fusion

sub-processes	$\sigma_i (\mathrm{pb})$	σ_i/σ	σ_i^{γ} (fb)	$\sigma_i^\gamma/\sigma^\gamma$
$gq \to b\bar{b}gq(\gamma)$	57.2(1)	55.3~%	17.3(1)	51.6~%
$gg \to b\bar{b}gg\left(\gamma\right)$	25.2(1)	24.4 %	3.93(3)	11.7 %
$qq' \rightarrow b\bar{b} qq' (\gamma)$	7.76(3)	7.5 %	4.04(2)	12.1~%
$qq \rightarrow b\bar{b}qq(\gamma)$	6.52(2)	6.3 %	4.49(3)	13.4 %
$q\bar{q}' \to b\bar{b} q\bar{q}' (\gamma)$	4.60(2)	4.4 %	2.28(2)	6.8 %
$q\bar{q} \rightarrow b\bar{b} q\bar{q} (\gamma)$	2.13(2)	2.1 %	1.21(2)	3.6 %
$gg \to b\bar{b} q\bar{q} (\gamma)$	0.0332(7)	0.03~%	0.124(3)	0.37~%
$q\bar{q} \rightarrow b\bar{b}gg\left(\gamma\right)$	0.0137(2)	0.01 %	0.094(2)	0.28~%
$q\bar{q} \longrightarrow b\bar{b} q'\bar{q}' (\gamma)$	0.000080(3)	$0.\overline{00007}$ %	$0.\overline{00080(8)}$	0.002~%

 $bckg(\gamma) / bckg \sim 1/3000$

signal(γ) / signal ~ 1/100

main bckg to pp \rightarrow H γ + j j

bckg is less active by requiring a central photon

dynamical effect: destructive interference for gamma at large angles a) + b) and c)+ d)

dominant effect, but suppressed by the b-quark electric charge

what happens if the radiation of a photon from b-coupling is switched off

radiation of photon from b-coupling is switched off. Partial cross sections

sub-processes	σ_i^{γ} [no <i>b</i> rad] (fb)	σ_i^{γ} [no <i>b</i> rad]/ σ^{γ} [no <i>b</i> rad]
$gq ightarrow b ar{b} gq \gamma$	8.19(6)	47.8 %
$gg \rightarrow b \bar{b} g g \gamma$	0	0 %
$qq' \rightarrow b\bar{b} qq'\gamma$	2.80(2)	16.4 %
$qq \rightarrow b \overline{b} q q \gamma$	3.49(3)	20.4 %
$q\bar{q}' \rightarrow b\bar{b} q\bar{q}'\gamma$	1.57(2)	9.2 %
$q\bar{q} \rightarrow b\bar{b} q\bar{q}\gamma$	0.87(1)	5.1 %
$gg \rightarrow b\bar{b} q\bar{q}\gamma$	0.10(2)	0.6%
$q\bar{q} ightarrow b\bar{b}gg\gamma$	0.096(2)	0.6 %
$q\bar{q} \rightarrow b\bar{b} q'\bar{q}'\gamma$	0.0009(1)	0.005 %

SIGNAL no destructive interference at large angle, due to the charged gauge boson

 different angular photon distribution with respect to bckg other advantages of requiring a central photon

• depletes HZZ amplitudes with respect to WWH $\frac{\sigma^{(N)}(H\gamma jj)}{\sigma^{(N)}(H jj)} = 0.0016, \qquad \frac{\sigma^{(C)}(H\gamma jj)}{\sigma^{(C)}(H jj)} = 0.013$

 $p_{\mathrm{T}}^{\gamma} \geq 20 \,\mathrm{GeV}, \ |\eta_{\gamma}| \leq 2.5, \ \mathrm{and} \ \Delta R_{j\gamma} \geq 0.7$

VBF is sensitive to both WWH and 222H

eensitivity to WWH

Suppress contaminations from g^{*} g^{*} → H induced by loop of top

basic kinematical cuts (see next slide)

■ with pt >20 GeV → reduction factor of $\frac{\delta \times 10}{\delta \times 10}$ for σ (H γ jj) with respect to σ (H jj) (induced by $g^* g^* \rightarrow$ H)

E cross section ~ 0.21 fb (negligible !)

basic cuts

$$\begin{array}{ll} p_{\rm T}^{j} \geq 30 \,{\rm GeV}, & p_{\rm T}^{b} \geq 30 \,{\rm GeV}, & \Delta R_{ik} \geq 0.7, \\ |\eta_{\gamma}| \leq 2.5, & |\eta_{b}| \leq 2.5, & |\eta_{j}| \leq 5, \\ m_{jj} > 400 \,{\rm GeV}, & m_{H}(1 - 10\%) \leq m_{b\bar{b}} \leq m_{H}(1 + 10\%) \\ 1) & p_{\rm T}^{\gamma} \geq 20 \,{\rm GeV}, \\ 2) & p_{\rm T}^{\gamma} \geq 30 \,{\rm GeV}, \end{array}$$

$$\frac{d\sigma}{dm_{jj}}, \quad \frac{d\sigma}{dp_{\rm T}^{j1}}, \quad \frac{d\sigma}{dp_{\rm T}^{b1}}, \quad \frac{d\sigma}{dm_{\gamma H}}, \quad \frac{d\sigma}{|\Delta\eta_{jj}|},$$

crucial distribution m(j,j)

\rightarrow optimized cuts follow:

$$\begin{split} m_{jj} &\geq 800 \,\mathrm{GeV}, \quad p_{\mathrm{T}}^{j1} \geq 60 \,\mathrm{GeV}, \quad p_{\mathrm{T}}^{b1} \geq 60 \,\mathrm{GeV}, \\ |\Delta \eta_{jj}| > 4, \quad m_{\gamma H} \geq 160 \,\mathrm{GeV}, \quad \Delta R_{\gamma b/\gamma j} \geq 1.2, \end{split}$$

$$N(B) = \mathcal{L} \sigma_{B} \operatorname{BR} \varepsilon(b) \varepsilon(\overline{b}) \varepsilon(b\overline{b})$$

$$N(S) = \mathcal{L} \sigma_{S} \operatorname{BR} \varepsilon(b) \varepsilon(\overline{b})$$

$$\operatorname{signf} = \frac{N(S)}{\sqrt{N(B)}}$$

we used

L = 100 fb⁻¹

$$\mathcal{E}(b) = 60\% \rightarrow eff. b-tag$$

 $\mathcal{E}(bb) = 70\% \rightarrow due$ to (+/-10 %) bb mass resolution

$pp \rightarrow H \gamma + jj$: optimized cross sections

	$p_{\mathrm{T}}^{\gamma,cut}$	$m_H = 120 \text{ GeV}$	$m_H = 130 \text{ GeV}$	$m_H = 140 \text{ GeV}$
$\sigma[H(\to b\bar{b})\gamma jj]$	$20 { m GeV}$	3.59(7) fb	2.92(4) fb	1.98(3) fb
	$30~{\rm GeV}$	2.62(3) fb	2.10(2) fb	1.50(3) fb
$\sigma[b\bar{b}\gamma jj]$	$20 { m GeV}$	33.5(1) fb	37.8(2) fb	40.2(1) fb
	$30~{\rm GeV}$	25.7(1) fb	27.7(1) fb	28.9(2) fb
$\sigma[H(\to b\bar{b})jj]$		320(1) fb	254.8(6) fb	167.7(3) fb
$\sigma[bar{b}jj]$		103.4(2) pb	102.0(2) pb	98.4(2) pb

	$p_{\mathrm{T}}^{\gamma,cut}$	$m_H = 120 \text{ GeV}$	$m_H = 130 \text{ GeV}$	$m_H = 140 \text{ GeV}$
$S/\sqrt{B} _{H\gammajj}$	$20~{\rm GeV}$	2.6	2.0	1.3
$S/\sqrt{B} _{H\gammajj}$	$30~{\rm GeV}$	2.2	1.7	1.2
$S/\sqrt{B} _{Hjj}$		3.5	2.8	1.9

L=100 fb⁻¹

S/B ~ 1/300

Reducide backarounds

- **pp** $\rightarrow \gamma + 4$ **jets** where two among the light jets are faked-tagged as b-jets
- **pp** \rightarrow **bb** + 3 **jets** where one of the light jets is misidentified as a photon
- pp → 5 jets where one of the light jets is misidentified as a photon and two light jets are faketagged as b-jets

almozrof avants (mHel20 cav)

	$p_{\rm T}^{\gamma} \ge 20 {\rm GeV}$	$p_{\rm T}^{\gamma} \ge 30 { m ~GeV}$
$pp \to \gamma H(\to b\bar{b}) + 2j$	90	66
$pp \rightarrow \gamma b\bar{b} + 2j$	1206	925
$pp \rightarrow \gamma + 4j$	23	17
$pp \rightarrow b\bar{b} + 3j$	440	324
$pp \to 5j$	14	11
S/\sqrt{B}	2.2	1.8

 $\varepsilon_{fake} \rightarrow$ for mistagging light-jet as a b-jet

$$\varepsilon_{\text{fake}} = 1$$
 $\varepsilon_{\gamma j} = 1/5000$ (ATLAS)

Phonics showlar chicads and and chicad phiness actively phiness

- no color is exchanged in the signal between initial and final fermionic lines
- on the contrary, bckg is characterized by the presence of t-channel virtual gluons
- more QCD radiation is expected for background
- invariant mass and rapidity separation between the tagging jets are expected to decrease in the bckg events with respect to partonic configurations.

hvo different algorithnes for ters

the identification of light tagging jets not uniquely defined, due to extra QCD radiation

n1-highest and second highest pT with pT(j1)> 60 GeV pT(j2)> 30 GeV

pair of jets with highest invariant mass, pT(j1)> 60 GeV pT(j2)> 30 GeV

jest multiplicity distribution

pT distribution of the third highest pT jet A veto on additional jet activity in the central rapidity region could be very effective in suppressing bckg versus signal

at least a factor 4 improvement is expected for S/B

a more refined analysis will be necessary for quantitative statements

what if $\gamma \rightarrow W$: $\psi = e, \mu$

it could help in constraining bbH coupling

however, accurate studies of background and parton shower effects are missing

I relevant cross section is smaller than H γ jj

 $\sigma(H\gamma_{ij}) \sim 4.4 \times \sigma(HW/j_i)$

with same optimized event selection criteria (with constraints on photon applied to charged lepton) for mH=120 GeV and $pT(\gamma) > 20$ GeV we get

Conclusions

The measure of Hbb coupling is challenging at the LHC we propose a promising channel $pp \rightarrow H jj + \gamma$ (VV fusion) main advantages with respect to Hjj in VBF - trigger on photon - less active bckg after requiring a central photon after suitable cuts \rightarrow signf ~ 3 (for L=100 fb^{-1} , mH= 120 GeV) can help in constraining both https://www.selfand.com and -N/M/ couplings