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1) Density functional theory of freezing: spheres 

1.1) Phenomenological results: 

experiments: 

- liquids crystallize into periodic structures at low temperatures or/and 

  high densities 

-  translational symmetry is broken 

-  one of the most important phase transitions in nature 

- when does it happen? 



empirical facts: 

i) Lindemann-criterion of melting (1910) 

root mean square displacement 

lattice vectors Lindemann parameter: 

criterion:  phenomenological rule  

computer simulation 

Yukawa interaction 

hard spheres 

OCP 



ii) Hansen-Verlet rule of freezing (1963) 

at freezing, all are similar 

criterion:  

liquid freezes, if the first maximum  

of               exceeds the value 2.85 

→ confirmed for Yukawa, OCP,   
     Lennard-Jones, etc... 



1.2) Independent treatment of the different phases 

(a) for the solid 

impose a prescribed solid with lattice constant                        . 

harmonic lattice theory (phonons) 

lattice sum of potential energy per particle. 

→ free energy of solid state:  

→ free energy of the liquid state. 

(b) for the liquid/fluid 

liquid theory (e.g. HNC closure). 



Maxwell-double tangent construction 
(ensures equality of pressure and chemical potentials in the different phases) 

→ phase diagram (typically 1st order freezing) 



1.3) Unifying Microscopic theories 

i) density functional theory (in 3d) 

solid ≡ condensation of liquid density modes 

ii) crystal-based theory (in 2d) (Kosterlitz-Thouless) 

defects in solid 

based on liquid 

liquid ≡ solid with an accumulation of defects 



1.4) Phase diagrams of simple potentials 
(known from computer simulations + theory) 

a) hard spheres 

internal energy 

averaged potential energy 

there is only entropy, packing effects 



phase diagram 

above freezing: state with higher entropy (solid), has higher order 



b) plasma (with neutralizing background) 

phase diagram 

only the combination determines correlations, phase diagram, etc. 

coupling parameter 

c) soft spheres 

freezing into fcc lattice 

freezing into bcc lattice 



d) Yukawa-system 

only 2 reduced parameters: 



e) Lennard-Jones-system 

2 reduced parameters: 

phase diagram: 



f) sticky hard spheres 

is needed to get a liquid 

is needed to get an iso- 
structural solid-solid  
transition 

phase diagram: 



g) ultrasoft interactions 

repulsive, realized for star polymers 
exhibit “exotic“ stable solid lattices like bco, sc, A15, diamond, etc. 

PRL 80, 4450 (1998) 



PRL 82, 5289 (1999) 



h) penetrable potentials, e.g. Gaussian 

J. Phys.: Condens. Matter 12,  5087 (2000) 

also possible: cluster crystals (if V(r) has non-positive Fourier transform) 



1.5) Density Functional Theory (DFT) 

a) Basics 

Basic variational principle: 

There exists a unique grand-canonical free energy-density-functional 

which gets minimal for the equilibrium density 

and then coincides with the real grandcanoncial free energy. 
→ is also valid for systems which are inhomogeneous on a microscopic scale. 

In principle, all fluctuations are included in an external potential which breaks all 
symmetries. 

For interacting systems, in 3d, is not known. 

See also: lectures of Martin Oettel 



exceptions: 
i) soft potentials in the high density limit, ideal gas (low density limit) 

ii) 1d: hard rod fluid, exact Percus functional 

strategy: 
1) chose an approximation 

2) parametrize the density field with variational parameters gas, liquid: 

solid: 

with lattice vectors of bcc or fcc or ... crystals, spacing sets       , vacancies? 

variational parameter 

Gaussian approximation for the solid density orbital is an excellent approximation 

3) minimize with respect to all variational parameters  

=> bulk phase diagram EPL 22, 245 (1993) 



example: 

solid/liquid coexistence 

coexistence implies: 



contour plot of 



Link to liquid state theory 

direct correlation function  (from Ornstein-Zernike relation) 



b) approximations for the density functional 
1) ideal gas, 

since 

„generalized barometric law“ 

This is indeed the equilibrium density of an inhomogeneous gas. 

2) in the interacting case, 

defines the excess free energy functional 



approximations on different levels 

1) LDA, local density approximation:  

where is the excess free energy density in a homogeneous (bulk) 

system, input, valid only for small inhomogeneites 

2) LDA + mean field: 

with 

=> homogeneous limit is respected valid for ”moderate“ inhomogeneites, but not 
     for density variations on the microscopic scale 



(DH approx.) 



3) Ramakrishnan-Yussouf (RY) 1979 

is reproducing the direct correlation function 

exactly at 

results in a solid-fluid transition (for hard spheres) 



4) Weighted density approximation (WDA) Curtin & Ashcroft, 1985 

free energy per particle; weighted density 

determine such that 

for all 

WDA yields excellent data for hard sphere freezing, etc. problem with 
WDA: overlapping hard sphere configurations are not excluded 



5) Rosenfeld functional (for hard spheres) 
(fundamental measure theory (FMT)) 

geometrical measures 

with 



6 weight functions: 

hard sphere diameter 

and 

functional survives dimensional crossover 3D→2D→1D→0D 

PRE 55, 4245 (1997) 



advantages 

- excludes overlapping hard sphere configurations 

- yields                           as output 

- excellent data for hard sphere freezing 

results, hard spheres 



6) Hard sphere pertubation theory 

approximate 

potential with an effective diameter 

(Barker, Henderson) 

by a hard sphere 

then 

good phase diagram for Lennard-Jones (LJ) 



2) Brownian Dynamics and dynamical density 
functional theory 

2.1) Brownian dynamics (BD) 

literature: M.Doi, S.F. Edwards, “Theory of Polymer Dynamics“, Oxford, 1986 

colloidal particles will be randomly kicked by the solvent 

Smoluchowski picture 

Brownian motion is diffusion. time-dependent density field of the particle(s) 



Fick´s law 

current density 

phenomenological diffusion coefficient 

example: 

mass conservation → continuity equation 

→ combined with Fick´s law: 

diffusion equation 



This is valid for free particles with a given intial density 

With an external potential , there is the force 

acting on the particles 

→ drift velocity of the particles resp. an additional current density 

assumption: totally overdamped motion 

friction coefficient 

remark: for a sphere (radius R) in a viscous solvent, Stokes equation yields: 

shear viscosity 



total current density 

in equilibrium: 

i) 

ii) the total current has to vanish, i.e.: 

→ 
Stokes-Einstein-relation 

(special case for fluctuation-dissipation-theorem) 

hence 

→ continuity equation 



Diffusion in phase space 

→ non-interacting particles 

is probability to find a particle at position and time 

→ normalized: 

is identical to except normalization: 

→ 

→ 

Smoluchowski-equation (Focker-Planck-equation) 



now: N interacting particles 

more compact notation: (analogue for all other vectors) 

velocity of particle induces  
flow of solvent 

→ (force) / movement of other particle 

→ hydrodynamic interaction 



linear relation between and 

mobility matrix,  
calculated from  
Navier-Stokes-eq. 

One can show: 

positive definite 

with 

probability density for interacting particles with equation: 

→ generalized Smoluchowski equation for interacting particles 



One can write: 

Smoluchowski operator (compare Liouville operator) 

often: 

(no hydrodynamic interactions,  
 good for low packing fractions             ) 



Langevin-picture 

Smoluchowski-picture: with diffusion dynamics 

Langevin-picture: stochastic trajectories in real-space 

First, we consider only one particle  

in an external potential 

with random force 

→ stochastic differential equation: 

assume: system overdamped comes from random kicks of the  
solvent 

probability distribution for 



observable strategy 

1) solve (∗) for a given 2) average with 

(in principal functional integral) 
Now: is Gaussian distributed 

Equivalence of Langevin and Smoluchowski picture for  
interacting particles (no hydrodynamic interactions) 



with hydrodynamic interactions(HI.): 

depends on 

The Smoluchowski equation (∗∗) is obtained from the  
following Langevin equations: 



2.2) Dynamical density functional theory (DDFT) 
1) Derivation from the Smoluchowski equation 

(Archer, Evans, J.Chem.Phys. 121, 4246 (2004)) 

recall Smoluchowski equation for the N-particle density 

no HI. 

idea: integrate out degrees of freedom 



integration yields 

2-particle density: 

integrating the Smoluchowski equation with 



now: 

1) 



2) 



in equilibrium, necessarily 

3) 



i.e. 

(Yvon, Born, Green hierarchy YBG) 



in equilibrium, DFT says: 

apply 

combined with YBG: 

We postulate that this argument holds also in nonequilibrium. In doing so, non-
equilibrium correlations are approximated by equilibrium ones at the same 
(via a suitable in equilibrium) 



hence: 

DDFT 

applications: 
– time-dependent external potentials 
   DDFT makes very good approximations for the dynamical density fields. 
   even for freezing, glass transitions, crystal growth when tested against 
   BD computer simulations 

example:  dynamics of freezing, crystal growth 



(from A. Imhof and D. Pine)"colloidal particles"

colloidal dispersions 



Non-equilibrium 

phase transformation Kinetics 
(crystallization, glass transition, 
homogeneous and heterogeneous 
nucleation) 

excellent model 
systems 

German-Dutch network SFB TR6  

Equilibrium  
& in   colloidal dispersions 

SPP 1296 Heterogene Keim- und Mikrostrukturbildung: 
Schritte zu einem system-  
und skalenübergreifenden Verständnis 
(coordinator: H. Emmerich) 



The road map of complexity 

H. Löwen, Journal of Physics: Condensed Matter 13, R415 (2001) 



•  spherical colloids confined 
to water/air interface 

•  superparamagnetic due to 
Fe2O3 doping 

•  external magnetic field 
   induced dipole    

 moments  
 tunable interparticle 

potential 

surface normal 
tilt angle 

repulsive no interaction attractive 

  Colloids - controlled by an external magnetic field 



particle configurations for different fields 

 B perp. to surface, liquid 

B perp. to surface, crystal 

in-plane B 
       $

$

(P. Keim, G. Maret et al) 



Crystal growth at externally imposed nucleation clusters 

Idea: impose a cluster of fixed colloidal particles 
         (e.g. by optical tweezer) 

Does this cluster act as a nucleation seed for further crystal 
growth?  

cf: homogeneous nucleation: the cluster occurs by thermal 
fluctuations, here we prescribe them 

How does nucleation depend on cluster size and shape? 

(S. van Teeffelen, C.N. Likos, H. Löwen, PRL, 100,108302 (2008)) 



DDFT, equilibrium functional by Ramakrishnan-Yussouff 

(S. van Teeffelen et al, EPL 75, 583 (2006); J. Phys.: Condensed Matter, 20, 404217 (2008)) 

(magnetic colloids with dipole moments) 

coupling parameter  

equilibrium freezing for 



procedure 



cut-out of a rhombic crystal with N=19 particles 

imposed nucleation seed 

t<0: equilibrium liquid
t>0: undercooled liquid

A



nucleation + growth 



no nucleation 



„island“ for heterogeneous nucleation in 

strongly asymmetric in A 
                symmetric in  

Brownian dynamics 
computer simulation 



 - sub-Brownian time: relaxation to “ideal“ crystal positions 

 - Brownian time: crystal growth 

Two stage process: 

Time evolution of the position of the linear array‘s three rows of crystalline particles           and the position of the 
crystal front             as a function of time.  

Dynamical density functional theory results are compared against Brownian dynamics simulation data.  

The arrows indicate the typical time scales on which the relaxation is occurring and on which the crystal growth sets 
in, respectively. 



•  Snapshots of the central region of the dimensionless density field  
                  of a linear hollow nucleus of two times three infinite rows of hexagonally 
crystalline particles at times t       = 0, 0.01, 0.1, 0.63, 1.0 (from top to bottom).  

      Note that the images display twice the system‘s central region of dimensions  
        for better visiblity. 

Two linear arrays separated by an empty core 



2.3) Hydrodynamic interactions 

How does look like explicitely? 

Solve Stokes/Navier-Stokes equations, difficult problems: 

1) 

2) H.I. have many-body character, pair expansion only possible at low concentrations 

3) H.I. have quite different near-field behaviour. They are divergent, lubrication 

H.I are important for volume fractions 

is long-ranged 



standard approximations: 

each quantity is a 3 × 3 matrix 

0) no H.I. 
hydrodynamic radius 

shear viscosity of solvent 

1) Oseen-Tensor 

with Oseen tensor 

far field term, long ranged of H.I. 

dyadic product or tensor product 



2) Rotne-Prager-tensor 

with 

3) higher-order expansions 

4) triplet contributions (Beenaker, Mazur) 



DDFT for hydrodynamic interactions 

(M. Rex, H. Löwen, Phys. Rev. Letters 101, 148302 (2008)) 

starting point: Smoluchowski equation  total potential energy 

configuration-dependent mobility tensor which 
describes hydrodynamic interactions 

two particle 
approximation: 



Rotne-Prager expression 

Integrating Smoluchowski equation        (Archer, Evans, 2004) 



Possible closure 

with 

easier: 

suitably averaged density 



Application: 

colloids in an oscillating trap 

hard spheres with interaction diameter 

(H) (N) 



the breathing mode 

green/red: blue/purple: (N) (H) 



i =              0        1         2         3          4         5         6 

with  
HI 
(H) 

without  
HI  
(N) 

good agreement between simulation (red) and DDFT (black) 

stroboscopic view 



relaxation to the steady state 

central 
density 

second 
moment 

(D) curve   

C. P. Royall et al, PRL 98, 188304 (2007)) 



3) Density functional theory for rod-like particles 

3.1) Statistical mechanics of rod-like particles 

now: additional orientational degree of freedom 

(1) molecular dipolar fluids 

(2) rod-like colloids 

(3) molecular fluids without dipole moment (apolar), e.g.         molecule 

(4) plate-like objects (clays) 



partition function: 

with: 

while is the inertia tensor and the unit-sphere in 3d. 

central quantity:  
one-particle density 



density of center-of-masses: 

orientational order: 



pair correlation function: 

Different phases are conceivable: 
(1) fluid (disordered) phase, isotropic phase 

center-of-mass-positions and orientations are disordered 



(2) nematic phase 
positions are disordered and orientations are ordered 

nematic director 



nematic order parameter 

3x3 tensor: 

with: 



three eigenvalues with 

largest eigenvalue: 

nematic director: corresponding eigenvector 

perfect orientation: for all nematic director 

→ if the two lower eigenvalues are identical, uniaxial nematics 

→ if biaxial nematics 

experimental effect: birefringence 

→ in isotropic phase: 



(3) smectic A phase 
position ordered along orientation ordered 

(4) smectic B phase 

as smectic A phase but in plane triangular lattice 



(5) columnar phase: 

(6) plastic crystal: 

positions ordered,  
orientations disordered 



(7) full crystalline phases 

positions and orientations ordered 

further more „exotic“ phases: 



3.2) Simple models 

hard objects 

A) Analytical results by Onsager, 1948 

consider limit virial expansion up to 2 order gets exact result: 

there is an isotrop-nematic transition, first order (with density jump) 

at coexistence 

correlations to finite 

irrelevant only for 



B) Computer simulations 

phase diagram of hard  
spherocylinders 

hard ellipsoids 



C) Density functional theory 

There exists a unique grandcanonical free energy functional 

(functional of the one-particle density) which becomes minimal for the equilibrium  

density and equals then the real grand canonical free energy 



for spherocylinders: 

1) SMA (smoothed density approximations) R. Holyst et al, 1988 
→ yields several stable liquid crystalline phases 

(isotropic, nematic, smectic A, crystalline) 

2) MWDA (H. Graf, 1999) 
→ improved results with plastic, AAA phase 

3) extension of Rosenfeld theory (K.Mecke and H.Hansen-Goos) 
other interaction (beyond hard body) 
perturbation theory within mean-field approach 



3.3) Brownian dynamics of rod-like particles 

start from Smoluchowski picture 

full probability density distribution 

Smoluchowski equation: 

(Textbook J.K.G. Dhont) 

Smoluchowski operator 

total potential energy 

ll 



idea of Archer and Evans JCP 121, 4246 (2004) 

integrate Smoluchowski equation 

with average force and torque 

in equilibrium (Gubbins CPL 76, 329 (1980)) 
in general unknown 



“adiabatic“ approximation: assume the pair correlations in 
nonequilibrium are the same as those for an equilibrium system with 
the same one-body density profile (established by a suitable  

with the equilibrium Helmholtz free energy density functional  

DDFT  

(M. Rex, H.H. Wensink, H.L., PRE 76, 021403 (2007)) 



approximation for the density functional  

mean-field 

(caveat: brings ideal rotational dynamics)  

time independent  



Model 

Gaussian segment-segment interaction  

aligning  field 

confining slit 







Results 

full density 

orientationally 
averaged 
density 
orientational  

ordering 
second moment 



slow compression (set-up A) full density 



 0

 2

 4

 6

 8

 10

 12

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

!
(z
)

z/

(a)

0t
t1
t2

t3

t4
5t

6t

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

! S
(z
)

z/

(b)

0t
t1

t4
t3 5t

t2
6t

set-up A       DDFT (solid curves) and BD (dashed curves) 



 0

 2

 4

 6

 8

 10

 12

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

!
(z
)

z/

(a)

6t 5t
t4
t3

t2

t1

0t

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

! S
(z
)

z/

(b)

6t

5t

0t

t1

t4
t3
t2

set-up B       DDFT (solid curves) and BD (dashed curves) 



expansion compression 

transient parallel order transient homeotropic order 
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Conclusions 

- generalization of DDFT towards anisotropic colloidal 
particles 

-  good agreement with BD simulation for nontrivial 
relaxation problems 

future: 

•   more realistic density functionals (FMT) as proposed by 

   Mecke and Hansen-Goos. 

gsee  A. Härtel, R. Blaak, HL,Phys. Rev. E 81, 051703 (2010) 



From „passive“ to „active“ particles 
inert particle  

in an external field 
Self-propelled particles with an 

external motor 

GENUINE NONEQUILIBRIUM 

-   bacteria (E. coli)                  - sperm 

-   colloidal microswimmers („micromotors“) 



arXiv: 0807.1619, L. Baraban, P. Leiderer, A. Erbe et al 

anisotropic (capped)  
colloidal particles 
suspended in water 
+  

trajectories 
Brownian motion is 
relevant 

catalytic chemical 
reaction at the 
surface 
⇒   drive 

plus external 
magnetic field  

COLLOIDAL MICROSWIMMERS 



L. Baraban, private communication 

mixture of „active“ and „passive“ particles in confining geometry 
wall aggregation? 



b) Collective behaviour (no torque) 

-  aggregation near system walls 

-  transient hedgehog clusters 

-   in line with a microscopic 

   dynamical density functional theory 

Self-propelled Brownian rods in a confining channel 

H. H. Wensink, HL, Phys. Rev. E. 78, 
031409 (2008) 














