# Atomic Gas Experiments





# BEC-BCS cross-over







#### Expansion experiments



#### Bragg spectroscopy



Thursday, January 20, 2011







### Hydrodynamic Expansion $\rho \partial_t \mathbf{u} = -\nabla P$



Thomas Lab, Duke 2004



Grimm Lab, Innsbruck 2009

"Perfect" Fluid 10000 thinner than air

Ideal and Viscous Fluids Hydrodynamics (Low energy eff. theory) • Continuity:  $\partial_t \rho + \nabla(\rho \mathbf{v}) = 0$  $\odot$  Euler:  $\partial_t(\rho v_i) + \partial_k \Pi_{ik} = 0$  $\Pi_{ik} = P\delta_{ik} + \rho v_i v_k - \eta \left(\partial_i v_j - \partial_j v_i - \frac{2}{3}\delta_{ij}\nabla \cdot \mathbf{v}\right) - \zeta \delta_{ij}(\nabla \mathbf{v})$ Ideal Fluid Dissipative

#### Shear Viscosity: "Friction"



(E) CILINDER ABOVE CRITICAL RETROLDS SUMBER WITH CD. = 0.3.



(A) FLOW FATTERS OF CIRCULAR CILINDER IN NON'FISCOUS FLOW: NO DRAG.

$$\frac{F}{A} = \eta \partial_y v_x$$



#### Kinetic Picture



Low collision rate -> Large Viscosity High collision rate -> Small Viscosity

#### Small Viscosity means strong interactions

Liquid Helium

Cold Gases

Quark-Gluon Plasma

T≈10<sup>-7</sup>K Coldest place on planet  $\eta \sim 10^{-15} Pa \cdot s$ 

T≈1K  $η \sim 10^{-6} Pa \cdot s$   $\begin{array}{l} {\rm T} \approx 10^{12} {\rm K} \\ {\rm Hottest} \ {\rm place} \\ {\rm on \ planet} \\ \eta \sim 10^{11} Pa \cdot s \end{array}$ 



## String-theory & AdS/CFT: $\frac{\eta}{s} \geq \frac{\hbar}{4\pi k_B}$ Cold Gases T≈10<sup>-7</sup>K Liquid HeliumT≈1K



# Perspectives

 Optical lattices. Spin physics, Hubbard model ...



Dipolar molecules/atoms. New phases ..

Ø Polarized systems ....

Bose-Fermi mixtures, multicomponent systems, ..





Thursday, January 20, 2011