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Disclaimer

These slides were used as part of a 4-lecture NORDITA minicourse for 
beginning condensed matter theory graduate students.

Please keep in mind that they were supplemented by considerable blackboard 
teaching, especially on the quantum Hall effect, topological field theories, and spin 
liquids.  Even for topics covered in the slides, some details and references that 
were provided in verbal comments or blackboard notes are not evident in the 
slides.

The author is grateful to Prof. E. Ardonne for the opportunity to give this course.



Outline of lectures

1. Overview of experimental background and idea of 
“topological order”.  Basic notions of topology relevant
to condensed matter.

2. Integer quantum Hall physics.  Berry phases in metals
and insulators.  Thouless-type order.

3. Fractional quantum Hall physics.  Composite fermions.
Wen-type order.

4. Some current directions:
A. Topological spin liquids.
B. Entanglement entropy and topology.
C. Topological field theories.



Types of order
Much of condensed matter is about how different kinds of order emerge from 
interactions between many simple constituents.

Until 1980, all ordered phases could be understood as “symmetry breaking”:

an ordered state appears at low temperature when the system spontaneously 
loses one of the symmetries present at high temperature.

Examples:
Crystals break the translational and rotational symmetries of free space.
The “liquid crystal” in an LCD breaks rotational but not translational symmetry.
Magnets break time-reversal symmetry and the rotational symmetry of spin space.
Superfluids break an internal symmetry of quantum mechanics.



Types of order
At high temperature, entropy dominates and leads to a disordered state.
At low temperature, energy dominates and leads to an ordered state.

In case this sounds too philosophical, there are testable results that come out of 
the “Landau theory” of symmetry-breaking:

“Universality” at continuous phase transitions (Wilson, Fisher, Kadanoff, ...)
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Types of order
In 1980, the first ordered phase beyond symmetry breaking was discovered.

Electrons confined to a plane and in a strong magnetic field show, at low enough 
temperature, plateaus in the “Hall conductance”:

force I along x and measure V along y

on a plateau, get

at least within 1 in 109 or so.

What type of order causes
this precise quantization?

Note I: the AC Josephson effect between superconductors similarly allows 
determination of e/h.
Note II: there are also fractional plateaus, about which more later.

σxy = n
e2

h



Topological order

Definition I:

In a topologically ordered phase, some physical response function is given by a 
“topological invariant”.

What is a topological invariant?  How does this explain the observation?

Definition II:

A topological phase is insulating but always has metallic edges/surfaces when put 
next to vacuum or an ordinary phase.

What does this have to do with Definition I?

“Topological invariant” = quantity that does not 
change under continuous deformation

(A third definition: phase is described by a “topological field theory”)

What type of order causes the precise quantization
in the Integer Quantum Hall Effect (IQHE)?



Traditional picture:
Landau levels

Normally the Hall ratio is (here n is a density)

Then the value (now n is an integer)

corresponds to an areal density

This is exactly the density of “Landau levels”, the discrete spectrum of eigenstates 
of a 2D particle in an orbital magnetic field, spaced by the cyclotron energy.  The 
only “surprise” is how precise the quantization is.
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Traditional picture:
Landau levels and edge states

So a large system has massively degenerate Landau levels if there is no applied 
potential.

σxy = n
e2

h

n

2π�2
= neB/hc.

E = (n+ 1/2)�ωc, ωc = cyclotron frequency

In a slowly varying applied potential, the local occupation changes; at some 
points Landau levels are fractionally filled and there are metallic “edge states”. 

Blackboard interlude: What happens with disorder?
Where is the topology? (Laughlin argument and edge vs. bulk transport)

Note: for a relativistic fermion, as in graphene, n goes as sqrt(B).



Topological invariants
Most topological invariants in physics arise as integrals of some geometric quantity.

Consider a two-dimensional surface.

At any point on the surface, there are two radii of curvature.
We define the signed “Gaussian curvature”

Now consider closed surfaces.

The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).

where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators
have negative, 0, positive

Gaussian curvature

κ = (r1r2)−1

�

M
κ dA = 2πχ = 2π(2− 2g)



Topological invariants

Bloch’s theorem:
One-electron wavefunctions in a crystal
(i.e., periodic potential) can be written

where k is “crystal momentum” and u is periodic (the same in every unit cell).

Crystal momentum k can be restricted to the Brillouin zone, a region of k-space 
with periodic boundaries.
As k changes, we map out an “energy band”.  Set of all bands = “band structure”.

The Brillouin zone will play the role of the “surface” as in the previous example,

which will give us the “curvature”.

Good news:
for the invariants in the IQHE and topological insulators,

we need one fact about solids

and one property of quantum mechanics, the Berry phase

ψ(r) = eik·ruk(r)



Berry phase
What kind of “curvature” can exist for electrons in a solid?

Consider a quantum-mechanical system in its (nondegenerate)
ground state.

The adiabatic theorem in quantum mechanics implies that,
if the Hamiltonian is now changed slowly, the system remains in 
its time-dependent ground state.

But this is actually very incomplete (Berry).

When the Hamiltonian goes around a closed loop k(t) in 
parameter space, there can be an irreducible phase

relative to the initial state.

Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

Michael Berry
φ =

�
A · dk, A = �ψk|− i∇k|ψk�



Berry phase
Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:

Under this change, the “Berry connection” A changes by a
gradient,

just like the vector potential in electrodynamics.

So loop integrals of A will be gauge-invariant,
as will the curl of A, which we call the “Berry curvature”.

Michael Berry

φ =
�

A · dk, A = �ψk|− i∇k|ψk�

ψk → eiχ(k)ψk

A→ A+∇kχ

F = ∇×A



Berry phase in solids
In a solid, the natural parameter space is electron momentum.

The change in the electron wavefunction within the unit cell leads 
to a Berry connection and Berry curvature:

We keep finding more physical properties that are determined 
by these quantum geometric quantities.

The first was that the integer quantum Hall effect in a 2D crystal 
follows from the integral of F (like Gauss-Bonnet!).  Explicitly,

S. S. Chern
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The importance of the edge
But wait a moment...

This invariant exists if we have energy bands that are
either full or empty, i.e., a “band insulator”.

How does an insulator conduct charge?

Answer: (Laughlin; Halperin)

There are metallic edges at the boundaries of our 2D
electronic system, where the conduction occurs.

These metallic edges are “chiral” quantum wires (one-way 

streets).  Each wire gives one conductance quantum (e2/h).

The topological invariant of the bulk 2D material just tells how 
many wires there have to be at the boundaries of the system.

How does the bulk topological invariant “force” an edge mode?

σxy = n
e2

h

n=1
IQHE

Ordinary insulator

e



The importance of the edge
The topological invariant of the bulk 2D material 
just tells how many wires there have to be at the 
boundaries of the system.

How does the bulk topological invariant “force” an 
edge mode?

Answer:

Imagine a “smooth” edge where the system 
gradually evolves from IQHE to ordinary insulator.  
The topological invariant must change.

But the definition of our “topological invariant” 
means that, if the system remains insulating so that 
every band is either full or empty, the invariant 
cannot change.

∴ the system must not remain insulating.

n=1
IQHE

Ordinary insulator

e

(What is “knotted” are the electron wavefunctions)

IQHE Ordinary insulator
(or vacuum)



2005-present and
“topological insulators” 

The same idea will apply in the new topological 
phases discovered recently:

a “topological invariant”, based on the Berry phase, 
leads to a nontrivial edge or surface state at any 
boundary to an ordinary insulator or vacuum.

However, the physical origin, dimensionality, and 
experiments are all different.

n=1
IQHE

Ordinary insulator

e

We discussed the IQHE so far in an unusual way.  The magnetic field entered 
only through its effect on the Bloch wavefunctions (no Landau levels!).

This is not very natural for a magnetic field.
It is ideal for spin-orbit coupling in a crystal.



The “quantum spin Hall effect”
Spin-orbit coupling appears in nearly every atom and 
solid.  Consider the standard atomic expression

For a given spin, this term leads to a momentum-
dependent force on the electron, somewhat like a 
magnetic field.

The spin-dependence means that the time-reversal 
symmetry of SO coupling (even) is different from a real 
magnetic field (odd).

It is possible to design lattice models where spin-orbit 
coupling has a remarkable effect: (Murakami, Nagaosa, 
Zhang 04; Kane, Mele 05)

spin-up and spin-down electrons are in IQHE states, 
with opposite “effective magnetic fields”.

n=1
IQHE

Ordinary insulator

e

HSO = λL · S

2D topological
insulator

Ordinary insulator



The “quantum spin Hall effect”
In this type of model, electron spin is conserved, and 
there can be a “spin current”.

An applied electrical field causes oppositely directed 
Hall currents of up and down spins.

The charge current is zero, but the “spin current”
is nonzero, and even quantized!

2D topological
insulator

Ordinary insulator

J i
j = σ

s
HεijkEk

However...
1. In real solids there is no conserved direction of spin.

2. So in real solids, it was expected that “up” and “down” would always 
mix and the edge to disappear.

3. The theory of the above model state is just two copies of the IQHE.



The 2D topological insulator
It was shown in 2005 (Kane and Mele) that, in real 
solids with all spins mixed and no “spin current”, 
something of this physics does survive.

In a material with only spin-orbit, the “Chern number” 
mentioned before always vanishes.

Kane and Mele found a new topological invariant in 
time-reversal-invariant systems of fermions.

But it isn’t an integer! It is a Chern parity (“odd” or 
“even”), or a “Z2 invariant”.

2D topological
insulator

Ordinary insulator

Systems in the “odd” class are “2D topological insulators”

1. Where does this “odd-even” effect come from?
2. What is the Berry phase expression of the invariant?
3. How can this edge be seen?



The “Chern insulator” and 
QSHE

Haldane showed that although broken time-reversal is necessary 
for the QHE, it is not necessary to have a net magnetic flux.

Imagine constructing a system (“model graphene”) for which 
spin-up electrons feel a pseudofield along z, and spin-down 
electrons feel a pseudofield along -z.

Then SU(2) (spin rotation symmetry) is broken, but time-
reversal symmetry is not:

an edge will have (in the simplest case)
a clockwise-moving spin-up mode
and a counterclockwise-moving
spin-down mode
(Murakami, Nagaosa, Zhang, ’04)

Topological
insulator

Ordinary insulator

e

e



The spin-independent part consists of a tight-binding term
on the honeycomb lattice, plus possibly a sublattice staggering

The first term gives a semimetal with Dirac nodes (as in 
graphene).

The second term, which appears if the sublattices are 
inequivalent (e.g., BN), opens up a (spin-independent) gap. 

When the Fermi level is in this gap, we have an ordinary band 
insulator.

Example: Kane-Mele-Haldane model for graphene
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The spin-independent part consists of a tight-binding term
on the honeycomb lattice, plus possibly a sublattice staggering

The spin-dependent part contains two SO couplings

The first spin-orbit term is the key: it involves second-neighbor hopping (vij is ±1 
depending on the sites) and Sz.  It opens a gap in the bulk and acts as the desired 
“pseudofield” if large enough.

Claim: the system with an SO-induced gap is fundamentally different from
the system with a sublattice gap: it is in a different phase.
It has gapless edge states for any edge (not just zigzag).

Example: Kane-Mele-Haldane model for graphene

H
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Example: Kane-Mele-Haldane model for graphene

Without Rashba term (second SO coupling), have two copies of Haldane’s 
IQHE model.  All physics is the same as IQHE physics.

The Rashba term violates conservation of Sz--how does 
this change the phase?  Why should it be stable once up 
and down spins mix?
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Invariants in T-invariant systems?
If a quantum number (e.g., Sz) can be used to divide 
bands into “up” and “down”, then with T invariance,
one can define a “spin Chern integer” that counts the 
number of Kramers pairs of edge modes:

n↑ + n↓ = 0, n↑ − n↓ = 2ns



What about T-invariant systems?
If a quantum number (e.g., Sz) can be used to divide 
bands into “up” and “down”, then with T invariance,
one can define a “spin Chern number” that counts the 
number of Kramers pairs of edge modes:

For general spin-orbit coupling, there is no conserved quantity that can be 
used to classify bands in this way, and no integer topological invariant.

Instead, a fairly technical analysis shows

1. each pair of spin-orbit-coupled bands in 2D has a Z2 invariant (is either 
“even” or “odd”), essentially as an integral over half the Brillouin zone;

2. the state is given by the overall Z2 sum of occupied bands:
if the sum is odd, then the system is in the “topological insulator” phase

n↑ + n↓ = 0, n↑ − n↓ = 2ns



The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).



The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).

But this rule does not protect
an ordinary quantum wire
with 2 Kramers pairs:

E

k

E

k

✓

The topological vs. ordinary distinction depends on time-reversal symmetry.



The 2D topological insulator

2. What is the Berry phase expression of the invariant?
It is an integral over half the Brillouin zone,

3. How can this edge be seen?
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Experimental signatures
Key physics of the edges: robust to disorder and hence good 
charge conductors .

The topological insulator is therefore detectable by 
measuring the two-terminal conductance of a finite sample: 
should see maximal 1D conductance. 

In other words, spin transport does not have to be measured 
to observe the phase.

Materials recently proposed: Bi, InSb, strained Sn (3d), 
HgTe (2d) (Bernevig, Hughes, and Zhang, Science (2006); experiments 
by Molenkamp et al. (2007) see an edge, but G ~ 0.3 G0)

G =
2e2

h



The 2D topological insulator
Key: the topological invariant predicts the “number of quantum wires”.

While the wires are not one-way, so the Hall conductance is zero, they still contribute to 
the ordinary (two-terminal) conductance.

There should be a low-temperature edge conductance from one spin channel at each edge:

G =
2e2

h

This appears in (Hg,Cd)Te quantum wells as a quantum Hall-like plateau in zero magnetic field.

König et al., 
Science (2007)

Laurens 
Molenkamp



Review of 3D facts

The 2D conclusion is that band insulators come in two classes:
ordinary insulators (with an even number of edge modes, generally 0)
“topological insulators” (with an odd number of Kramers pairs of edge modes, generally 1).

What about 3D?  The only 3D IQHE states are essentially layered versions of 2D states:
Mathematically, there are three Chern integers:

Cxy (for xy planes in the 3D Brillouin torus), Cyz, Cxz

There are similar layered versions of the topological insulator, but these are not very 
stable; intuitively, adding parities from different layers is not as stable as adding integers.

However, there is an unexpected 3D topological insulator state that does not have any 
simple quantum Hall analogue.  For example, it cannot be realized in any model where up 
and down spins do not mix!

General description of invariant from JEM and L. Balents, PRB RC 2007.
The connection to physical consequences in inversion-symmetric case (proposal of BiSb, 
Dirac surface state):  Fu, Kane, Mele, PRL 2007.  See also R. Roy, arXiv.



Build 3D from 2D
Note that only at special momenta like k=0 is the “Bloch Hamiltonian” time-reversal 
invariant: rather, k and -k have T-conjugate Hamiltonians.  Imagine a square BZ:

CB

A

B

A

C

(a) (b)

H(−k) = TH(k)T−1

“effective BZ”
In 3D, we can take the BZ to be a cube (with periodic boundary conditions):

think about xy planes

2 inequivalent planes
look like 2D problem

kz = π/a

kz = −π/a

kz = 0

3D “strong topological insulators” go 
from an 2D ordinary insulator to a 2D 
topological insulator (or vice versa) in 
going from kz=0 to kz=±π/a.

This is allowed because intermediate 
planes have no time-reversal constraint.



Topological insulators in 3D
1. This fourth invariant gives a robust 3D “strong topological insulator” whose metallic 
surface state in the simplest case is a single “Dirac fermion” (Fu-Kane-Mele, 2007)

2. Some fairly common 3D materials might be topological insulators! (Fu-Kane, 2007)

Claim:
Certain insulators will always have metallic surfaces with strongly spin-dependent structure

How can we look at the metallic surface state of a 3D material to test this prediction?
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ky

(a) (b)



ARPES of topological insulators
Imagine carrying out a “photoelectric effect” experiment very carefully.

Measure as many properties as possible of the outgoing electron
to deduce the momentum, energy, and spin it had while still in the solid.

This is “angle-resolved photoemission spectroscopy”, or ARPES.



ARPES of topological insulators
First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.

This is later data on Bi2Se3 from the same group in 2009:

The states shown are in the “energy gap” of the bulk material--in general no 
states would be expected, and especially not the Dirac-conical shape.



STM of topological insulators
The surface of a simple topological insulator like Bi2Se3 is “1/4 of graphene”:
it has the Dirac cone but no valley or spin degeneracies.

Scanning tunneling microscopy image (Roushan et al., Yazdani group, 2009)

STM can see the absence of scattering within a Kramers pair (cf. analysis of 
superconductors using quasiparticle interference, D.-H. Lee and S. Davis).
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Spintronic applications of 3D TIs
This is a very active area on the archive, but most of what is discussed is very simple:

kx

ky

E

EF

kx

ky

(a) (b)

a charge current at one TI surface has a nonzero average spin.  The same is true for a Rashba 
quantum well, where the two electron sheets almost cancel; in a TI there is only one sheet 
and the effect is much stronger.



Stability, or
Phases versus points

True quantum phases in condensed matter systems should 
be robust to disorder and interactions.

Examples:
The Fermi gas is robust to repulsive interactions in 2D and 3D (the 
“Fermi liquid”) but not in 1D.  In 1D, conventional metallic behavior is 
only seen at one fine-tuned point in the space of interactions.

The Fermi gas is robust to disorder in 3D but not in 1D or 2D 
(Anderson localization): the clean system is only a point in phase space 
in 1D or 2D.

The IQHE is a phase robust to both disorder and interactions.

What about the SQHE?  Is it a new phase of condensed matter?



TKNN, 1982: the Hall conductance is related to an 
integral over the magnetic Brillouin zone:

Niu, Thouless, Wu, 1985: many-body generalization
more generally, introducing “twist angles” around the two circles of a torus and 
considering the (assumed unique) ground state as a function of these angles,

This quantity is an integer.
For T-invariant systems, all ordinary Chern numbers are zero.

Remark on simple
generalization of IQHE topology
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Redefining the Berry phase
with disorder

!
2

!
1

Suppose that the parameters in H do not 
have exact lattice periodicity.

Imagine adding boundary phases to a finite 
system, or alternately considering a 
“supercell”.  Limit of large supercells -> 
disordered system.

Effect of boundary phase is to shift k: 
alternate picture of topological invariant is 
in terms of half the (Φ1,Φ2) torus.

Can define Chern parities by pumping, analogous to Chern 
numbers, and study phase diagram w/disorder



Spin-orbit T=0 phase diagram (fix spin-independent part):
instead of a point transition between ordinary and topological 
insulators, have a symplectic metal in between. 

We compute this numerically using Fukui-Hatsugai algorithm (PRB 2007) to 
compute invariants in terms of boundary phases (A. Essin and JEM, PRB 2007).  
See also Obuse et al., Onoda et al. for other approaches with higher 
accuracy->scaling exponents for transitions; Ryu et al. for theory.

The 2D topological insulator with disorder

!
2

!
1

λr

λs

Topological insulator

Ordinary insulator

IQHE-class

transition

2D spin-orbit (symplectic) metal

Symplectic metal-insulator transitions



Summary of recent experiments

1. There are now at least 3 strong topological insulators that have been seen 
experimentally (BixSb1-x, Bi2Se3, Bi2Te3).

2. Their metallic surfaces exist in zero field and have the predicted form.

3. These are fairly common bulk 3D materials (and also 3He B).

4. The temperature over which topological behavior is observed can extend up 
to room temperature or so.

What is the physical effect or response that defines a topological insulator 
beyond single electrons?

(What are they good for?)

Are there more profound consequences of geometry and topologiy?
Lecture 2: Many basic phenomena in matter
Lecture 3: New types of particles, with new types of statistics
Lecture 4: The future

But first we need a few basic notions from topology.

What’s left



What is the physical effect or response that defines a topological insulator 
beyond single electrons?

What are they good for?

1. Berry phases--what do they mean?

2. Are there other ways to tell if a material is a topological insulator?

3. What’s quantized in a topological insulator?

4. What do we learn about general “multiferroic” materials?

(materials that break inversion and time-reversal symmetries)

What’s left



Outline of lecture 2

1. Intuitive picture of the Berry phase.  What does it control in insulators and 
metals?

Insulators: Polarization, IQHE, “topological insulators”, ...

Metals: New semiclassical term for electron motion.  

2, How do we define Berry phases in a disordered system?

3. What is the physical effect or response that defines a topological insulator 
beyond single electrons?  Quantized magnetoelectric effect

4. What do we learn about magnetoelectric effects more generally?
(“multiferroic” materials)

5. Experimental probes



Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:

Under this change, the “Berry connection” A changes by a
gradient,

just like the vector potential in electrodynamics.

So loop integrals of A will be gauge-invariant,
as will the curl of A, which we call the “Berry curvature”.

φ =
�

A · dk, A = �ψk|− i∇k|ψk�

ψk → eiχ(k)ψk

A→ A+∇kχ

F = ∇×A

Berry phase review



To get a physical interpretation of what A means, note that
if we consider a plane wave exp(i k r), then the vector potential 
just gives the position r.

Now in a periodic crystal, the position can’t be uniquely 
defined, but we nevertheless expect that A might reflect 
something to do with the position of the wavefunction within the 
unit cell.

φ =
�

A · dk, A = �ψk|− i∇k|ψk�

F = ∇×A

How can we picture A?



What about non-magnetic insulators?
Electrical polarization: another simple Berry phase in solids
(Will eventually give another picture of topological insulators)

Sum the integral of A over bands: in one spatial dimension,

Intuitive idea: think about the momentum-position commutation relation,

There is an ambiguity of e per transverse unit cell, the “polarization quantum.”

Note: just as dA=F is a “closed form” and very useful to define Chern number,
in 4 dimensions there is a “second Chern form”

Fact from cohomology:
Odd dimensions have Chern-Simons forms that have a “quantum” ambiguity;
Even dimensions have Chern forms that are quantized.

A = �uk|− i∇k|uk� ≈ �r�

P =
�

v

e

�
dq

2π
�uv(q)| − i∂q|uv(q)�



But what does F do?
It is useful to get some intuition about what the Berry F means in simpler 
physical systems first.

Its simplest consequence is that it modifies the semiclassical equations of 
motion of a Bloch wavepacket:

a “magnetic field” in momentum space.

The anomalous velocity results from changes in the electron distribution within 
the unit cell: the Berry phase is connected to the electron spatial location.

Example I: the intrinsic anomalous Hall effect in itinerant magnets
still no universal agreement on its existence

Example II: helicity-dependent photocurrents in optically active materials
(Berry phases in nonlinear transport)

dxa

dt
=

1
�

∂�n(k)
∂ka

+ Fab
n (k)

dkb

dt
.



But what does F do?
Example I: the anomalous Hall effect in itinerant magnets

An electrical field E induces a transverse current through the anomalous 
velocity if F is nonzero averaged over the ground state.

A nonzero Hall current requires T breaking; microscopically this follows since 
time-reversal symmetry implies

Smit’s objection: in steady state the electron distribution is stationary; why 
should the anomalous velocity contribute at all?

(In a quantum treatment, the answer is as if dk/dt resulted only from the 
macroscopic applied field, which is mostly consistent with experiment)

dxa

dt
=

1
�

∂�n(k)
∂ka

+ Fab
n (k)

dkb

dt
.

Fab(k) = −Fab(−k).



But what does F do?
To try to resolve the question of what the semiclassical 
equation means:

Example II: helicity-dependent photocurrents in optically 
active materials
(Berry phases in nonlinear transport)

In a T-symmetric material, the Berry phase is still important
at finite frequency.  Consider circular polarization:

The small deviation in the electron distribution generated 
by the electrical field gives an anomalous velocity 
contribution that need not average to zero over the wave.

kx

ky

dk/dt

eE
v1

v0



Smit vs. Luttinger
The resulting formula has 3 terms, of which one is “Smit-type” (i.e., nonzero even 
with the full E) and two are “Luttinger-type”.

(JEM and J. Orenstein, 2009).  The full semiclassical transport theory of this effect 
was given by Deyo, Golub, Ivchenko, and Spivak (arXiv, 2009).

We believe that the circularly switched term actually explains a decade of 
experiments on helicity-dependent photocurrents in GaAs quantum wells.

Bulk GaAs has too much symmetry to allow the effect; these quantum wells show 
the effect because the well confinement breaks the symmetry
(“confinement-induced Berry phase”).

β =
∂F

∂kx

jdc =
βne3

2�2

1
1/τ2 + ω2

�
iω(ExE∗

y − EyE∗
x)x̂

+1/τ(ExE∗
y + EyE∗

x)x̂ + |Ex|2ŷ
�
.



Confinement-induced Berry phases

Bulk GaAs has too much symmetry to 
allow the effect; these quantum wells 
show the effect because the well 
confinement breaks the symmetry
(“confinement-induced Berry phase”).

Our numerics and envelope 
approximation suggest
a magnitude of 1 nA for incident power 
1W in a (110) well, which is consistent 
with experiments by S. D. Ganichev et al. 
(Regensburg).

Only one parameter of GaAs is needed 
to describe F at the Brillouin zone origin:
symmetries force

(0,0,a)

(a
/2

,-a
/2

,0
)

(a)

(b)

(Å3)

∂Ω
∂k

Width (Å)
10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Envelope approx.
0.5 eV triangular
0.25 eV Gaussian
0.5 eV square
0.25 eV square

F = λ
�
kx(k2

y − k2
z), ky(k2

z − k2
x), kz(k2

x − k2
y)

�
, λ ≈ 410Å3



Electrodynamics in insulators

We know that the constants ε and μ in Maxwell’s equations can be modified 
inside an ordinary insulator.

Particle physicists in the 1980s considered what happens if a 3D insulator 
creates a new term (“axion electrodynamics”, Wilczek 1987)

This term is a total derivative, unlike other magnetoelectric couplings.
It is also “topological” by power-counting.

The angle θ is periodic and odd under T.

A T-invariant insulator can have two possible values: 0 or π.

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.



Axion E&M, then and now

A T-invariant insulator can have two possible values: 0 or π.

These two values correspond to ordinary and topological 3D insulators.
(Qi, Hughes, and Zhang, 2008)

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.

1987 2007



Axion E&M, then and now

This explains a number of properties of the 3D topological insulator when its 
surfaces become gapped by breaking T-invariance:

Magnetoelectric effect:
applying B generates polarization P, applying E generates magnetization M)

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.

Topological insulator slab

E j

E j

B

σxy = (n +
θ

2π
)
e2

h

σxy = (m− θ

2π
)
e2

h



Topological response
Idea of “axion electrodynamics in insulators”

there is a “topological” part of the magnetoelectric term

that is measured by the orbital magnetoelectric polarizability

and computed by integrating the “Chern-Simons form” of the Berry phase

(Qi, Hughes, Zhang, 2008; Essin, JEM, Vanderbilt 2009)
This integral is quantized only in T-invariant insulators, but contributes in all insulators.

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.

θ
e
2

2πh
=

∂M

∂E
=

∂

∂E

∂

∂B
H =

∂P

∂B

(2)θ = − 1
4π

�

BZ
d3k �ijk Tr[Ai∂jAk − i

2
3
AiAjAk]



Topological response
Many-body definition: the Chern-Simons or second Chern formula does not directly 
generalize.  However, the quantity dP/dB does generalize:
a clue is that the “polarization quantum” combines nicely with the flux quantum.

So dP/dB gives a bulk, many-body test for a topological insulator.

(Essin, JEM, Vanderbilt 2009)

∆P

B0
=

e/Ω
h/eΩ

= e2/h.

e2

h

= contact resistance in 0D or 1D
= Hall conductance quantum in 2D
= magnetoelectric polarizability in 3D



Orbital magnetoelectric polarizability
One mysterious fact about the previous result:

We indeed found the “Chern-Simons term” from the semiclassical approach.

But in that approach, it is not at all clear why this should be the only magnetoelectric term 
from orbital motion of electrons.

More precisely: on general symmetry grounds, it is natural to decompose the tensor
into trace and traceless parts

The traceless part can be further decomposed into symmetric and antisymmetric parts.  
(The antisymmetric part is related to the “toroidal moment” in multiferroics;
cf. M. Fiebig and N. Spaldin)

But consideration of simple “molecular” models shows that even the trace part is not always 
equal to the Chern-Simons formula...

∂P i

∂Bj
=

∂Mj

∂Ei
= αi

j = α̃i
j + αθδ

i
j .



Orbital magnetoelectric polarizability
Computing orbital dP/dB in a fully quantum treatment reveals that there are additional terms 
in general.  (Essin et al., 1002.0290)
For dM/dE approach and numerical tests, see Malashevich, Souza, Coh, Vanderbilt, 1002.0300. 

The “ordinary part” indeed looks like a Kubo formula of electric and magnetic dipoles.

Not inconsistent with previous results:
in topological insulators, time-reversal means that only the Berry phase term survives.

There is an “ordinary part” and a “topological part”, which is scalar but is the only nonzero 
part in TIs.  But the two are not physically separable in general.
Both parts are nonzero in multiferroic materials.

α
i
j = (αI)i

j + αCSδ
i
j

(αI)i
j =

�

n occ
m unocc

�

BZ

d
3
k

(2π)3
Re

�
�unk|e �ri

k|umk��umk|e(vk×�rk)j − e(�rk × vk)j − 2i∂H
�
k/∂B

j |unk�
Enk − Emk

�

αCS = − e
2

2� �abc

�

BZ

d
3
k

(2π)3
tr

�
Aa

∂
bAc − 2i

3
AaAbAc

�
.



Magnetoelectric theory: a spinoff of TIs

This leads to a general theory for the orbital magnetoelectric response tensor in a crystal,
including contributions of all symmetries (Essin, Turner, Vanderbilt, JEM, 2010).

It is not a pure Berry phase in general, but it is in topological insulators.

Such magnetoelectric responses have been measured, e.g., in Cr2O3 
(Obukhov, Hehl, et al.).

Example of the ionic “competition”: BiFeO3

Can make a 2x2 table of “magnetoelectric mechanisms”:
(ignore nuclear magnetism)

θ ≈ π/24 P

electronic P, 
orbital M

ionic P
orbital M

electronic P, 
spin M

ionic P
spin M

electronic P effects (left column) should be 
faster and less fatiguing than magnetoelectric 
effects requiring ionic motion.
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The competition:
BiFeO3 , a high-T multiferroic

Coupled polar (P), antiferromagnetic 
(L), and ferromagnetic (M) orders 

BiFeO3 BULK
 

• Rhombohedral R3c: a=3.96Å, α=89.46º
• No inversion symmetry, but “close”
•TN~ 650K; TC ~ 1120K
• Spiral, canted AFM order 
• P ~ 6  µC/cm2

BiFeO3 FILM on (100) SrTiO3

 
• Tetragonal distortion  a=3.91Å, c=4.06Å
• Homogeneous, canted AFM order
• Giant ME effect: P ~ 90  µC/cm2

P

M=M1+M2

L=M1-M2

Figs. courtesy R. Ramesh

Electrical coupling to fast (AF) spin waves
(R. de Sousa and JEM, PRB 08, PRL 09)



Picturing a topological insulator
A question: why don’t you just draw a topological band structure?

The “simplest” topological insulator where this Chern-Simons type of integral is nonzero 
breaks time-reversal and has only one occupied band.

It comes from making a band structure based on the “Hopf map” from the unit sphere in 4d 
to the unit sphere in 3d. (JEM, Ran, Wen 08)

S3 → S2

z†σiz = ni

|z|2 = 1→ n2 = 1

The “real” T-invariant topological insulator has ≥2 occupied bands; harder to draw.

θ = − 1
4π

�

BZ
d3k �ijk Tr[Ai∂jAk − i

2
3
AiAjAk]



Outline of lecture III
Interactions and new particles

Topological mechanism for emergence of new particles

Alternative to standard mechanisms, e.g., establish an order parameter and 
“Goldstone bosons” (e.g., phonon)

1. Anyonic (fractional statistics) quasiparticles in the FQHE

2. Majorana fermions in non-Abelian FQHE and p+ip superconductor

INTERLUDE

3. New states/materials with interactions



Application I:
“Advanced” topological order and quantum computing

A history of theoretical efforts to understand quantum Hall physics:

1. Integer plateaus are seen experimentally (1980).

Theorists find profound explanation why integers will always be seen.
Their picture involves nearly free electrons with ordinary fermionic statistics.

2. Fractional plateaus are seen experimentally (1983).
Eventually many fractions are seen, all with odd denominators.

Theorists find profound explanation why odd denominators will always be seen.
The picture (Laughlin) involves an interacting electron liquid that hosts 
“quasiparticles” with fractional charge and fractional “anyonic” statistics.

3. A plateau is seen when 5/2 Landau levels are filled (1989).
Theorists find profound explanation: an interacting electron liquid that hosts 
“quasiparticles” with non-Abelian statistics.

What does fractional or non-Abelian statistics mean?  Why is 2D special?

(Essin, JEM, Vanderbilt 2009)





Statistics in 2D

What makes 2D special for statistics? (Leinaas and 
Myrheim, 1976)

Imagine looping one particle around another to detect 
their statistics.  In 3D, all loops are equivalent.

In 2D, but not in 3D, the result can depend on the “sense” 
of the looping (clockwise or counterclockwise).
Exchanges are not described by the permutation group, 
but by the “braid group”.

The effect of the exchange on the ground state need not 
square to 1.  “Anyon” statistics: the effect of an exchange 
is neither +1 (bosons) or -1 (fermions), but a phase.

eiθ

Most fractional quantum Hall states, such as the Laughlin state,
host “quasiparticles” with anyonic statistics.



Degenerate ground states
A beautiful wavefunction is likely to describe the ground state at filling 5/2.
(Greg) Moore and Read, 1990. 

The 5/2 state becomes degenerate when quasiparticles are added.  Braiding 
quasiparticles can act as a matrix on the space of ground states.

Mathematically, the braid group with more than 3 particles is “non-Abelian”: different 
exchanges can be described by non-commuting matrices.

The non-Abelian statistics at 5/2 may have been seen experimentally earlier this year.
(Willett et al., 2009)



Topological quantum computing

A classical computer carries out logical 
operations on classical “bits”.

A quantum computer carries out unitary 
transformations on “qubits” (quantum bits).

A remarkable degree of protection from errors 
can be obtained by implementing these via 
braiding of non-Abelian quasiparticles.

One type of quasiparticle in the Moore-Read 
state is a “Majorana fermion”:
it is its own antiparticle
and is “half” of a normal fermion.



Quantum computing and memory

Majoranas for memory: 1 spinless Dirac fermion = one “qubit”:
there are two states, occupied and empty

Majoranas alone might not be quite good enough for a universal “quantum 
computer”--not enough operations in the braid group?

Can either try to fix this or try to find more complex states with a 
“universal” representation of the braid group (12/5, 4/7)

γ1 = (c† + c), γ2 = i(c† − c)



New particles from interactions
using topological insulators

I. Correlation and new particles:
There are two ways to make “Majorana fermions” from topological 
insulators:

Method I: start from a different “universality class”, a topological 
superconductor driven by interactions (3He is an example)

Method II: build the Majorana fermions using “ordinary” topological 
insulators and “normal” superconductors

2. Can make a new type of vortex just by biasing a thin film of 
topological insulator.



Proximity effect and quantum computing

A natural question is whether the surface of a Z2 topological insulator is 
stable beyond single-particle models.

Time-reversal-breaking perturbations (coupling to a magnetic material or 
magnetic field) certainly can gap the surface modes.

What about coupling to a superconductor?

Idea: an s-wave proximity effect term

couples within the low-energy chiral fermion, and hence gives a “spinless” 
p-wave superconductor (Fu and Kane, PRL 2007).

E=μ

H =
�

k

(∆ck↑c−k↓ + h.c.)

kx

ky



Majorana states

SC

TI

Topological quantum computing

It turns out that the core of a magnetic vortex in a two-dimensional “p+ip” 
superconductor can have a Majorana fermion.  (But we haven’t found one yet.)

However, a superconducting layer with this property exists at the boundary between a 3D 
topological insulator and an ordinary 3D superconductor (Fu and Kane, 2007).

(Recent theoretical work by Sau et al. (Das Sarma) suggests that one doesn’t even need a 
topological insulator.  Another piece of breaking news: FQHE observed in graphene.)



“Interacting” topological 
insulators

There may be many topological insulators in correlated materials classes:

Topological superconductor? (Cu-doped Bi2Se3)

“Topological antiferromagnets”: GdPtBi? (Mong, Essin, JEM)

Topological Kondo insulators (Coleman et al.)

Topological Mott insulator (TI of spinons) (Pesin and Balents in 3D; Raghu et 
al. in 2D)

What about interactions in existing materials?



The future

1. “Topological insulators” exist in two and three dimensions in zero magnetic field.

In the 2D case, they have surface Dirac fermions with an unusual spin structure.

Are there correlated topological insulators and superconductors?
Are there “fractional” topological insulators?

Can we use these materials to create new particles?



Topological spin liquids: quantum Dimer model

An example of such a quantum critical point:
the “Rokhsar-Kivelson” point of the square lattice quantum dimer 
model

|ψ0〉 =
1√
Zc

∫
(dφ) e−S({φ})/2|{φ}〉.

Hilbert space basis =
dimer coverings

H = −t(flip plaquettes with parallel dimers) + V (count flippable plaquettes)

H = −t
∑

(

| 〉〈
∣

∣

∣

∣| + |
∣

∣

∣

∣〉〈 |
)

+ V
∑

(

| 〉〈 | + |
∣

∣

∣

∣〉〈
∣

∣

∣

∣|
)

Some uses of RK points and quantum dimer models:
1. Solvable z=2 quantum critical points in 2D
2. Quantum spin liquid on triangular lattice (Moessner & Sondhi), from 
quantum Monte Carlo numerics.  Four-fold topological ground state 
degeneracy.



Conformal quantum critical points

An example of such a quantum critical point:
the “Rokhsar-Kivelson” point of the square lattice quantum dimer 
model

|ψ0〉 =
1√
Zc

∫
(dφ) e−S({φ})/2|{φ}〉.

Hilbert space basis =
dimer coverings

H = −t(flip plaquettes with parallel dimers) + V (count flippable plaquettes)

H = −t
∑

(

| 〉〈
∣

∣

∣

∣| + |
∣

∣

∣

∣〉〈 |
)

+ V
∑

(

| 〉〈 | + |
∣

∣

∣

∣〉〈
∣

∣

∣

∣|
)

Some uses of RK points and quantum dimer models:
1. Solvable z=2 quantum critical points in 2D
2. Quantum spin liquid on triangular lattice (Moessner & Sondhi)



2D conformal quantum critical points

Example: critical point of quantum dimer model
Hilbert space basis: classical dimer coverings of square lattice

H = −t(flip plaquettes with parallel dimers) + V (count flippable plaquettes)

H = −t
∑

(

| 〉〈
∣

∣

∣

∣| + |
∣

∣

∣

∣〉〈 |
)

+ V
∑

(

| 〉〈 | + |
∣

∣

∣

∣〉〈
∣

∣

∣

∣|
)

H =









n1V −t 0 0 −t . . .

−t n2V −t 0 0 . . .

0 −t n3V 0 0 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .











Resulting form of Hamiltonian matrix:

Here the diagonal terms counts the number of flippable 
plaquettes, which is also the number of nonzero off-diagonal 
elements

At t=V, equal-weight superposition is an exact E=0 eigenstate:
quantum critical wavefunction with correlations given by 
classical critical model (dimer packings).

Continuum wavefunction: one free boson (c=1 CFT)

2D conformal quantum critical points

H =









n1V −t 0 0 −t . . .

−t n2V −t 0 0 . . .

0 −t n3V 0 0 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .









|ψ〉 = e−SE({φ})/2|{φ}〉



0. What is entanglement entropy?  Why compute it?

1. What does it reveal about topological phases?

2. What about d=2 critical points?  Is the “area law” the 
whole story?  Is there anything topological?

Outline of entanglement topics

|ΨAB〉 =
1√
2

(| ↑A〉 ⊗ | ↓B〉 − | ↓A〉 ⊗ | ↑B〉)an “entangled” state

Is there any universal behavior in entanglement?  
Are interacting theories different from free ones?



Quantum entanglement
Sometimes a pure quantum state of a bipartite system AB is also a 
pure state of each subsystem separately:

Example: Sz=1 state of two s=1/2 spins, A and B

Sometimes a pure quantum state of a bipartite system AB is not a 
pure state of each subsystem separately:

Example: singlet state of two s=1/2 spins

|ΨAB〉 = | ↑A〉 ⊗ | ↑B〉

a “product” state

|ΨAB〉 =
1√
2

(| ↑A〉 ⊗ | ↓B〉 − | ↓A〉 ⊗ | ↑B〉)

an “entangled” state



Entanglement entropy

|ΨAB〉 =
1√
2

(| ↑A〉 ⊗ | ↓B〉 − | ↓A〉 ⊗ | ↑B〉)

an “entangled” state

In an entangled state, the state of subsystem A or B is not a pure 
quantum state, but rather a density matrix

For the singlet

ρA =

(

1

2
0

0
1

2

)

= ρB

A classical uncertainty or entropy has been created by the 
operation of looking at only part of the system.



Entanglement entropy
Definition: the entanglement entropy of a pure state,

with respect to a given partition into A and B,
is the von Neumann entropy of the partial density matrices

The singlet generates one bit of classical entropy when the two 
spins are separated

Note that the partial density matrix for subsystem A
gives the results of all experiments limited to A

�φ1|ρA|φ2� =
�

j

(�φ1| × �ψj |)|ψ��ψ|(|φ2� × |ψj�)

S(ρ) = −TrρA log2 ρA = −TrρB log2 ρB



To get some intuition for how entanglement behaves in statistical 
physics, consider “valence bond states” of s=1/2 systems:

Rule: every spin forms a singlet with some other spin

In these states, entanglement entropy S just counts singlets:
S = 1 bit for each singlet crossing the AB boundary.

How much entanglement entropy occurs in 
ground states of local Hamiltonians?

Short-ranged VBS
(= “dimer covering”)

Long-ranged VBS



Consider partitions of a d-dimensional infinite system AB into a 
subregion A of linear size L and an infinite subregion B.

How should entanglement entropy scale with L?

If we can ignore entanglement between points farther apart than 
some length scale ξ, then entanglement entropy should be 
determined by a shell of thickness ~ ξ around the AB boundary:

If there is no notion of locality, any site in A is as likely to be 
entangled with a site in B as with another site in A, and 

How much entanglement entropy occurs in 
ground states of local Hamiltonians?

S ∼ Ld−1ξ ⇒ S ∼ Ld−1as L → ∞ with system parameters fixed

S ∼ L
d

the “area law”



Critical points in two dimensions

We will show that for a class of quantum critical points in two 
dimensions, there are universal divergent corrections to the area law 
that depend on the critical point and on the topology of the partition.

Outline: at “conformal quantum critical points” where the 
wavefunction of a 2D quantum critical point is determined by a 2D 
conformal field theory,

the entanglement behaves as

Here c is the central charge of the CFT and α is a function of the 
partition topology.  β gives the expected nonuniversal area law.

|ψ0〉 =
1√
Zc

∫
(dφ) e−S({φ})/2|{φ}〉.

S = β(L/a) + αc log(L/a) + O(log log(L/a))



Step I: the universal part of von Neumann entropy of such a 
wavefunction under a partition into A and B is determined by 
free energy in the CFT:

Here the first two terms are with Dirichlet boundary 
conditions at the AB boundary.

Start from “replica trick” for entanglement:

Since the trace of a density matrix is 1, we can write this as

2D conformal quantum critical points

S = FA + FB − FA∪B

S = −Tr ρ log ρ = − lim
n→1

∂

∂n
Tr ρn.

S = − lim
n→1

∂

∂n

Tr ρn

(Tr ρ)n
.



Write the density matrix in terms of A and B parts, with a 
coupling on the boundary:

At a critical point, the boundary coupling enforces continuity. 

In the numerator, each A field replica is stitched to two B field 
replicas at the boundary, and vice versa.

In the denominator, A and B fields are paired one-to-one.

2D conformal quantum critical points

S = − lim
n→1

∂

∂n

Tr ρn

(Tr ρ)n
.

〈{φA
1 }|ρA|{φ

A
2 }〉 = TrφB (〈{φA

1 }|⊗ 〈{φB}|ψ0〉〈ψ0(|{φ
A
2 }〉 ⊗ |{φB}〉

=
1

Zc

∫
(dφB)e−(SA(φA

1
)/2+SA(φA

2
)/2+S∂(φA

1
,φB)/2+S∂(φA

2
,φB)/2+SB(φB))

1A

2A

3A

1B

2B

3B



The trace becomes a ratio of CFT partition functions:

Example: for any free field, n configurations agreeing at the 
boundary are equivalent to 1 free field and n-1 Dirichlet BC’s.

Then replica limit gives 

The universal part of the entanglement entropy is related to the 
free energy change from inducing the boundary in the CFT!

Now use spectral theory on “hearing the shape of a drum”:
for a 2D connected region with smooth boundary, generalized 
by Cardy and Peschel to a general CFT.

2D conformal quantum critical points

Tr ρn
A =

Z(n configurations agreeing on the boundary)

Z(n independent configurations)
.

S = FA + FB − FA∪B



Example of a free field: the free energy is determined by the 
eigenvalues of the Laplacian with specified boundary condition.
For a 2D connected region with smooth boundary,

(cf. Mark Kac lecture on “hearing the shape of a drum”)

g=genus (# of holes), b=# of boundaries, c=central charge

(general statement for all CFT’s by Cardy and Peschel)
Additional log contributions if boundary has sharp corners

2D conformal quantum critical points

FA ∼ f0(L/a)2 + fs(L/a) −
cχ

6
log(L/a)

χ = 2 − 2g − bEuler 
characteristic



Area part cancels, leaving boundary and log terms.

(There are nonuniversal short-distance contributions to the boundary part as well, 
in general, but the logarithmic part is universal.)

Conservation of the Euler characteristic implies no log if A is 
surrounded by B or vice versa.

However, there are logarithmic corrections if the partition 
“separates” A and B or if there are sharp corners...

2D conformal quantum critical points

FA ∼ f0(L/a)2 + fs(L/a) −
cχ

6
log(L/a)

S = 2fs(L/a) −
c(χA + χB − χA∪B)

6
log(L/a)
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