Thuneety granis binito

$$
N \rightarrow \infty
$$

Ver analgtico:
Intritire picturs:

$$
\{\overline{\{ }\} \quad \cdots \cdots o \cdots
$$

$$
\bigsqcup^{B_{0} E_{1}}
$$

$$
\{\lambda\} .
$$

Remite $B E:$ as $N \rightarrow \infty$, treat $\frac{I_{\alpha}}{N} \rightarrow \chi$ $x \in \mathbb{R}$

Defive α density $p(x) \equiv \frac{1}{N} \sum_{a=1}^{M} \delta\left(x-\frac{I_{a}}{N}\right)$
Reminte BE wsing p :

$$
\begin{aligned}
& {\left[\left.\begin{array}{c}
\left.\theta_{1}(\lambda(x))-\int_{-x_{-}}^{\lambda_{+}} \lambda_{y} \Theta_{2}(\lambda(\lambda)-\lambda(y)) \rho(y)-2 \pi \lambda\right] \\
4
\end{array} \right\rvert\,=0\right.} \\
& \lambda\left(\lambda=\frac{I_{\omega}}{N}\right) \equiv \lambda_{a}
\end{aligned} \quad \lambda=\frac{I_{a}}{N} \quad l
$$

It $\lambda(x)$ ve difined on mhole x areis:

$$
\begin{aligned}
\theta_{1}(\lambda(x))-\int_{-\lambda}^{x_{x}} d_{y} \theta_{2}(\lambda(\lambda)-\lambda(y)) \rho(y) & =2 \pi x \\
\sigma \theta_{1}(\lambda)- & =2 \pi x(-1)
\end{aligned}
$$

To of furthew: Afine hole \& total denaities:
gever a set $\left\{I_{a}\right\}$,

$$
\begin{gathered}
p(x)=\frac{1}{N} \sum_{n \in\{I\}} \delta\left(x-\frac{n}{N}\right) \quad P_{h}(x)=\frac{1}{N} \sum_{n \neq\{I\}} \delta\left(x-\frac{n}{N}\right) \\
P_{T}(x)=P(x)+\rho_{h}(x) \rightarrow 1
\end{gathered}
$$

Remivite everufleing in rapidity apace:

$$
\begin{aligned}
& p(\lambda)=p(x(\lambda)) \frac{d x(\lambda)}{d \lambda} \& \rho_{l}(\lambda) \rho_{T}(\lambda)=\frac{d x(\lambda)}{d l} \\
& \stackrel{B E}{\rightarrow} \theta_{1}(\lambda)-\int_{-\lambda_{-}}^{\lambda_{2}} d \lambda^{\prime} \rho_{2}\left(\lambda-\lambda^{\prime}\right) p\left(\lambda^{\prime}\right)=2 \pi x(\lambda)
\end{aligned}
$$

Take of of this:

$$
\begin{aligned}
& a_{1}(\lambda)-\int_{-\lambda_{-}}^{a_{1}} d \lambda^{\prime} a_{2}\left(\lambda-\lambda^{\prime}\right) p\left(\lambda^{\prime}\right)=p(\lambda)+\rho_{h}(\lambda) \\
& a_{m}(\lambda) \equiv \frac{1}{2 \pi} \frac{d}{d \lambda} \theta_{m}(\lambda)=\frac{1}{2 \pi} \frac{m}{\lambda^{2}+m^{2} / 4} \quad n=12, \ldots
\end{aligned}
$$

Energy of a state: $\frac{E}{N}=-J_{\pi} \int_{-\lambda}^{\lambda_{+}} d i a_{1}(\lambda)(y)$
See notes for farther cumulation. - GSP

- simple essitatias

Naive def $\frac{\mu}{\prime}$ of $X I$: \exists set $\left\{\frac{\wedge}{I}\right\}$ of cerssenved charges

$$
\left[H, \frac{\tilde{I}}{\sim}\right]=O \ell\left[\hat{I}_{m,} \tilde{I}_{m}\right]=0 \forall n, m
$$

Define a funthaw $\tilde{c}(\lambda)$ tubing operates values
for $\lambda \in \mathbb{C}, \begin{aligned} & \text { i.e. } \\ & \infty\end{aligned}$ transfer matrix

$$
\tilde{c}(\lambda)=\exp \sum_{n=0}^{\infty} \frac{i_{n}}{n!} \tilde{I}_{n}(\lambda-\xi)^{n}
$$

is: pormitles conjure charges

$$
I_{m}=\left.i_{n}^{-1} \frac{d^{m}}{d \lambda^{n}} \ln \tilde{L}(\lambda)\right|_{\lambda=\xi}
$$

Sinse $[I, I]=0$, mo have

$$
[\tilde{L}(\lambda), \tau(\mu)]=0 \quad \forall \lambda, \mu_{0}
$$

monodromy matrix
Introduce ansiliary apace ds s.t. $\tau^{\tau}(\lambda)=\pi_{\lambda} T(\lambda)$

$$
\left[\left(T_{A} T(\lambda)\right),\left(T_{A} T(\mu)\right)\right]=0
$$

Hellest space
Viem this as a relation in A® A>X A_{2}
Dlive $T_{1}(\lambda)=T(\lambda) \otimes \mathbb{1}_{2}$

$$
\begin{gathered}
T_{2}(\mu)=1, \otimes T(\mu) \\
\rightarrow T_{A_{1} \otimes A_{2}}\left[T_{1}(\lambda), T_{2}(\mu)\right]=0
\end{gathered}
$$

o $T_{\lambda_{A_{1} \otimes A_{2}}} T_{1}(\lambda) T_{2}(\mu)=T_{A_{, \Delta A_{2}}} T_{2}(\mu) T_{1}(\lambda)$
Senend sor - : \exists similainty tron $R_{12}(\lambda, \mu)$ in $A \otimes \partial A_{2}$
p.t. $R_{12}(\lambda, \mu) T_{1}(\lambda) T_{2}(\mu) R_{12}^{-1}(\lambda, \mu)=T_{2}(\mu) T_{1}(\lambda)$
of $R_{12}(\lambda, \mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda, \mu)$
Intertiving relatian on $1 / u n g$-Basster rel ${ }^{m}$

