Conditins for R:
Invetitu: $R_{12}(\lambda, \mu) R_{21}(\mu, \lambda)=\mathbb{1}$
Conaistercy of algabra:
look at procluct of 3 mavoheng mabicices

$$
\begin{gathered}
T_{1}(\lambda) T_{2}(\mu) T_{3}(v) \\
\underbrace{2 \text { paths }} \underset{T_{3}(v) T_{2}(\mu) T_{1}(\lambda)}{2}
\end{gathered}
$$

buls to requiremets

$$
\begin{aligned}
& R_{12}(\lambda, \mu) R_{13}(\lambda, v) R_{23}(\mu, v)= \\
& =R_{23}(\mu, v) R_{13}(\lambda, v) R_{12}(\lambda, \mu)
\end{aligned}
$$

Scarching for matrico
So- alled 'Furdanetak' wodels
mere $H=\otimes_{j} \partial_{j}$ site index $\quad \& H_{j} \sim d$
Sinplest case: $H_{j} \sim A \sim \mathbb{C}^{2}$ up: 2×2 nuthew Stenb mith 4×4-matries.
Say me try
$R_{12}(\lambda)$
$b c: V^{m} \Delta t_{0}$ be
deter $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & b(\lambda) & c(\lambda) & 0 \\ 0 & c(\lambda) & b(\lambda) & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ deterind.
C.). Noted, $e^{n} \rightarrow 26$-29 of ABA hapter

Simpleot se $e^{m}: \quad b(\lambda)=\frac{\lambda}{\lambda+i} \quad c(\lambda)=\frac{i}{\lambda+i}$
Morobhany matris: $T(\lambda) \subset A \otimes H$
Represent if as $T(\lambda)=\left(\begin{array}{ll}A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda)\end{array}\right)$

$$
A, B,<, D(\lambda) \subset H
$$

Had $R_{12} T_{1} T_{2}=T_{2} T_{1} R_{12}$

$$
\text { wotes } 32.45
$$

k
\rightarrow comutation ril ${ }^{\prime} \Delta$ brtinew $A, B, C, 1 O$

Tranefor motua: $\tilde{L}(\lambda)=T_{A} T(\lambda)=A(\lambda)+D(\lambda)$
Intrupert $B(\lambda)$ as a raising/creation sp.
Assame \exists state $|0\rangle$ (refereme state)
D_{0} t. $\quad A(\lambda)|0\rangle=\alpha(\lambda)|0\rangle$
$O(\lambda)|0\rangle=d(\lambda)|0\rangle$
o,d: fre $\mathrm{f}^{n} \mathrm{~s}_{1}$.
Casides state $\prod_{j} B\left(\lambda_{j}\right)|O\rangle$,
can chect thins is an eigenolate of $\tau(\lambda)$
proviled $\frac{a\left(\lambda_{j}\right)}{d\left(\lambda_{j}\right)} \pi d \frac{b\left(\lambda_{j}-\lambda_{l}\right)}{b_{0}\left(\lambda_{e} \lambda_{j}\right)}=1$

Motes: λ^{M} Finding an explicit model related to the simplest R-matrix

$$
\begin{aligned}
& F_{o u} R_{12}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & c b & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \rightarrow g \text { ot identify } \\
& \left.\frac{i}{d \lambda} \frac{d}{d n} \tilde{\tau}(\lambda)\right|_{\lambda=1 / 2}=\sum_{j=1}^{N} \frac{1}{2}\left[\sigma_{j} \cdot \sigma_{j+1}-1\right] \\
& \text { so } H_{x x x}=\sum_{j=1}^{N}{\underset{\sim}{j}}^{N}{\underset{\sim}{j}+1}^{-\frac{1}{4}=\left.\frac{i}{2} \frac{d}{d \lambda} \ln \tau(\lambda)\right|_{\lambda=i}}
\end{aligned}
$$

This is an espeuple of a trace identity

