
I. LIQUID MATTER:

INTRODUCTION AND EXAMPLES

A remarkable observation (initiating thermodynamics and statistical mechanics): macro-

scopic amounts of chemically well defined substances (macroscopic: number of particles

N ∼ NA ≈ 6 · 1023 (Avogadro’s number) )

• can exists in several states with very different physical properties

• can be transformed between these states by changing ambient parameters (thermody-

namic observables) like pressure and temperature

• may be classified as

– hard or solid: long–range ordered arrangement of particles (atoms) → small

perturbations: elastic response and return to original shape

– fluid: further subdivided in

∗ gas or vapor: almost no order and correlations between atoms → very

volatile and of small density which constitutes a small

parameter in which perturbation theory around an ideal state

is possible

∗ liquid: short–ranged order (of the order of atomic size) and of much

higher density (no perturbation theory possible) → flows away

upon perturbation and dissipates energy (viscous behavior)

! Correlations near critical points

! Correlations near interfaces or on substrates (→ wetting)

different types of “atoms” (molecules, polymers, amphiphiles,

colloids, . . . ) and mixtures → large variety of physical properties

(“dirty” subject)
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A. Fluid states in simple phase diagrams

We consider simple, pure substances (argon, methane, water . . . ):

FIG. 1: Schematic phase diagram for a simple liquid. (taken from Barrat&Hansen)

• sufficiently high T and not too high p (both on the scale of standard atmospheric

conditions): gas phase

– molecules are far apart, only occasionally binary colllisions

– static properties: ideal gas model (no interactions between molecules)

– dynamic properties: Boltzmann kinetic equation

– highly disordered → large entropy per molecule

– full rotational and translational symmetry

• T ↓: vapor condenses into droplets (two–phase region of phase diagram) and droplets

merge until all vapor is gone

– greatly reduced entropy per molecule
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– usually preserved rotational and translational symmetry

• T ↓: liquid freezes into solid

– qualitative explanation: ordered arrangement maximizes entropy or available

space for individual molecules

– discrete reflection, rotational and translational symmetry (embodied in 230 space

groups)

Typical pair distribution functions for gases, liquids and solids:

Pair distribution function g(r): Probability to find a second molecule at position r if a first

molecule (or test particle) is fixed at the origin. For gases/simple liquids – g(r) ≡ g(r), for

solids g(r) orientation dependent.

FIG. 2: Pair distribution functions for 2d gas, liquid and solid. (taken from Barrat&Hansen)

Metastable and instable states:
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if cooling is done carefully and quickly (smooth containers, no dirt), the gas remains gaseous

upon crossing the phase boundary (binodal) → supersaturated vapor

• condensation of droplets inhibited by energy barrier (competition of surface free energy

and condensation free energy release)

• all dirt particles act as condensation nuclei

• upon crossing spinodal line: spinodal decomposition - (initially) exponentially fast

transformation of gas into liquid, reason: tiny density fluctuations are not smoothed

out but become amplified

Likewise supercooled/–heated liquid and superheated solids exist. Glasses may be consid-

ered supercooled liquids obtained by a very rapid temperature quench.

Special points:

• Critical point: end point of two–phase region, correlations become long–ranged (crit-

ical opacity: clear liquids become milky)

• Triple point: gas, liquid and solid phases may coexist
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B. From simple to complex fluids

Simple liquids:

• ideally spherical molecules

• only two–body potentials between molecules

• the “fruit flies” of liquid state theory: hard spheres and Lennard–Jonesium

Hard sphere fluids:

• uHS(r) =







∞ r < σ

0 r > σ
→ f(r) = exp(−βuHS(r))− 1 =







−1 r < σ

0 r > σ

(Mayer f–bond)

• completely athermal; no internal energy → properties purely driven by entropy, i.e. free

volume available to spheres

• theoretical phase diagram: only a liquid and a solid phase → intermolecular attractions are

necessary for liquid–gas phase separation but not for freezing into a solid!

• experimental realizations: solid polymeric colloids (polystyrene – PS, poly–

methylmethacrylate – PMMA) covered with hairy polymers
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FIG. 3: HS phase diagram.

FIG. 4: HS realization.

Lennard–Jonesium:

• model interaction between electrically neutral, spherical atoms (purely two–body interaction)

• uLJ(r) = 4ǫ
[(σ

r
)12 −

(σ
r
)6
]

energy scale ǫ ∼ kB T ≈ 4 · 10−21 J or 0.025 eV (coexistence region, room temperature)

steeply rising repulsion for overlapping cores (r < σ), power–law chosen for pure convenience:

exact form arises from interaction of atomic orbitals with energies

∼ 10 eV ≫ kBT

quantum–mechanical interaction between dipole fluctuations in each atom→ universal power

law for attractions (van–der–Waals attraction)

• phase diagram:
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FIG. 5: Pusey’s hard–colloid phases.

Excursion: Origin of the van–der Waals attraction

Consider two H–atoms at distance R with Hamiltonian

Ĥ = Ĥ0 + V̂ (1)

unperturbed Hamiltonian (R→∞):

Ĥ0 = Ĥ1 + Ĥ2 (2)

with eigenstates |0n〉 = |n1〉|n2〉 corresponding to eigenenergies E0n = ǫn1
+ ǫn2

+
+

−

−

R

rr1 2

V̂ = e2

(
1

R
+

1

|R + r2 − r1|
− 1

|R + r2|
− 1

|R− r1|

)

(3)

≈ − e2

R3
[3(r1 · eR)(r2 · eR)− r1 · r2] + O(R−5) (4)

perturbation Hamiltonian: two interacting “fluctuating” dipoles (er1) and (er2)

Perturbation theory to second order for non–degenerate states:

En = E0n + 〈0n|V̂ |0n〉+
∑

j 6=n

∣
∣
∣〈0n|V̂ |0j〉

∣
∣
∣

2

E0n − E0j
+ . . . (5)

First order terms are zero since they contain only expectation values of the type,

〈n1|x̂i,1|n1〉〈n2|x̂i,2|n2〉 = 0 (6)
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(ground state of hydrogen is of even parity!). Therefore:

En(R) = ǫn1
+ ǫn2

− e2

a0

An

(R/a0)6
(7)

where the Bohr radius a0 (typical size of H atom) has been introduced to define the dimensionless

amplitude

An =
e2

a5
0

∑

(j1,j2)6=(n1,n2)

|〈n1|〈n2|(x̂1x̂2 + ŷ1ŷ2 − 2ẑ1ẑ2)|j1〉|j2〉|2
ǫj1 + ǫj2 − ǫn1

− ǫn2

(8)

Observations:

• if |0n〉 ground state, An > 0 and En − En0 < 0 → van–der–Waals attraction

• three–body potential appears in third–order perturbation theory:

u3−body ∼ 1

R3
12 R3

23 R3
31

〈0n|V̂12|0j〉〈0j|V̂23 |0l〉〈0l|V̂31|0n〉
(E0n − E0j)(E0n − E0l)

(9)

if |0n〉 = |s1〉|s2〉|s3〉 is the s–wave ground state, leading contributions (smallest energy

denominator) arise from |0j〉 = |p1〉|p2〉|s3〉 and |0l〉 = |p1〉|s2〉|p′3〉 →

u3−body ∼ 1

R3
12 R3

23 R3
31

(1 + 3 cos γ1 cos γ2 cos γ3) (10)

Axilrod and Teller, J. Chem. Phys. 11, 299 (1943)

+
+

−

−

+−

r1

r
2

r3

R

R
R31

12

23

γ
γ

3

1
2

γ

• relativistic effects: finite time photon exchange between atoms leads to retardation:

En − En0 ∼ R−7
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Anisotropic liquids:

1. Long–range anisotropy: multipole potentials

• electric dipole in weakly asymmetric atoms (NH3, CO, . . . ), magnetic dipoles in mag-

netically doped colloids or ferrofluids

u(p1,p2, r) =
A

r3
[(p1 · er)(p2 · er)− p1 · p2] (11)

tendency to form chains of aligned dipoles

2. Short–range anisotropy

2.1 H–bonds

• strongly polar molecules with H+ groups (HF, H2O, H3N, . . . ): size asymmetry be-

tween H+ and Y− (F−, O2−,N3−, . . . ) leads to strongly asymmetric electrostatic

interactions between neighbouring molecules (→ breakdown of dipole approximation)

• H2O: tetrahedral network structure present (due to H–bonds) present in solid and

liquid state → water anomalies

– highest liquid density not at melting point

– pressure ↑, viscosity ↓ (breaking of H–bonds)

Theoretical description: Details of intermolecular potential are important to capture the

subtleties of water behaviour → molecular simulations

2.2 Nematic substances (liquid crystals)

• characteristics: hard-core repulsion between molecules is highly anisotropic

• phase transition possible between isotropic phase (random orientation of the molecules)

and ordered phases (preferred orientation of molecules)
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FIG. 6: Nematic molecules. (taken from Kleman&Lavrentovich)

FIG. 7: Nematic colloids.

(upper left) schematic composition of a tobacco mosaic virus (TMV)

(lower left) electron micrograph of TMV’s

(upper right) electron micrograph of Haematit plates

(lower right) optical micropgraph of polystyrene ellipsoids (axes a ≈ 6 µm and b ≈ 1 µm)

• molecular realizations: rod–like or disklike colloidal realizations: tobacco mosaic virus

(rod–like), clay (disklike), stretched polymeric ellipsoids

• Ordered phases for rods:
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1. Nematic: one preferred direction for rods (director)

2. Smectic A: breaking of translational symmetry in one direction→ rods arranged

in layers, orientation normal to layer

3. Smectic C: ∼ , orientation inclined to layer normal

4. Cholesteric: director rotation along one axis

FIG. 8: Typical hard rod configurations seen in simulations. (taken from Barrat&Hansen)

Theoretical description: Most of the effects associated with the ordered phases are (at least

semi-quantitatively) succesfully explained by coarse grained, local field theories.

• field theory: e.g., director orientation is treated as a continuous vector function on R
3,

n = n(r) – a field

• local: free energy density at a point r depends only on ni(r) and ∂jni(r)

• coarse–grained: characteristic length of noticeable changes in n is much larger than

the size of molecules

Therefore, the appearance of ordered phases within the coarse–grained theories points to

collective behavior of the molecules.
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Mixtures

Many interesting effects appear when the size of the mixture components are grossly differ-

ent.

1. Charged solutes in solvent with counterions:

most interesting systems for chemistry and biology

• solvent: usually water, counterions of molecular size (Na+, K+, Ca2+ . . . )

solutes: proteins, colloids

• infinite range (1/r) of Coulomb potential→ collective behavior expected: indeed, most

successful are extensions of electrostatics (a field theory) to incorporate the effects of

counterions (e.g., Poisson–Boltzmann equation)

• two coarse–graining steps:



solvent

solute



→




Poisson–Boltzmann eq.

solutes fixed



→





effective potential for solutes





2. Polymers in solvent (macromolecular systems):

• linear polymers: sequence of monomers (units), length up to 1010 (chromosomes)

• chemical example: alkane hydrocarbons (not in solution)

Number of C atoms State at room temperatue Example

1–4 gas propane

5–15 low–viscosity liquid gasoline

16–25 high–viscosity liquid motor oil

20–50 soft solid paraffin wax

>1000 plastic solid polyethylene

• one polymer in solution: highly flexible on length scales ≫ momomer length → effec-

tive spherical coil
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few polymers in solution: effective gas of interacting coils, potential: soft repulsion

medium polymer concentration: Onset of collective effects, effective descriptions with

soft two–body potentials fail

high polymer concentration: crosslinking to gels, onset of viscoelastic behaviour (i.e.,

flows like a fluid on a long time–scale, is elastic like a solid on a short time–scale)

3. Colloidal mixtures:

• 3–component minimum: solvent – colloid 1 – colloid 2 or solvent – colloid – polymer

• interesting for their model character: effective two–component mixtures (if solvent is

“averaged out”) on larger length scales → rescaling of all macroscopic fluid properties

(viscosity, surface tension, Reynolds number . . . )

• display phase separation

FIG. 9: Phase separation in the Utrecht colloid–polymer mixture.
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II. PRINCIPLES OF THERMODYNAMICS AND

STATISTICAL MECHANICS

A. Thermodynamics

Thermodynamics deals quite generally with

• “large” systems in “equilibrium”

• quasistatic processes between equilibrium states

It describes these systems via generalized potentials that depend on system control param-

eters. These are extensive quantities (i.e. ∝ N – number of particles – and add up by

combining two subsystems). Control parameters can be both intensive quantities (i.e. stay

constant if a system is just enlarged) and extensive.

Thermodynamic potentials for a given system are specified uniquely in terms of their re-

spective independent control parameters:

1. U(V, S,N) – internal energy (average kinetic + potential energy)

2. H(S, P,N) – enthalpy

3. F (V, T,N) – Helmholtz free energy

4. G(T, P,N) – Gibbs free energy

————————————————

5. Ω(V, T, µ) – Grand free energy or grand potential
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They are linked by Legendre transformations (H = U + PV, F = U − TS, G = U − TS +

PV, Ω = U−TS−µN) and thus their differentials define the dependent control parameters,

e.g.

dU =

(
∂U

∂V

)

S,N

dV +

(
∂U

∂S

)

V,N

dS +

(
∂U

∂N

)

V,S

dN = −PdV + TdS + µdN (12)

For closed systems (N = const.), these definitions (Maxwell relations) can be summarized

by the following diagram:

V T

S

U G

PH

F

(potentials are flanked by their independent control parameters, derivative of potential w.r.t. one

control parameter leads to the dependent control parameter connected with the line, going against

the arrow yields a minus sign)

The 2nd law of thermodynamics yields minimization principles for the free energies F,G,Ω

(see below).

Observation: Ω(λV, T, µ) = λΩ(V, T, µ), thus according to Euler’s theorem on homogeneous

functions

Ω(V, T, µ) = V

(
∂Ω

∂V

)

T,µ

= −PV . (13)

One can formulate four laws or axioms upon which thermodynamics is built.

• 0th law - The temperature:

There exists an equivalence relation between thermodynamic systems A,B, . . . which

we associate with thermodynamic equilibrium. If one empirically tries to describe

the corresponding equivalence classes, one finds that they are describable by a system

dependent, real number. This is the temperature T (up to a scale factor and a possible

zero point).
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• 1st law - Conservation of energy:

The change in internal energy of a system is given by the work performed on the

system and the heat transferred to the system,

dU = δW + δQ (14)

mechanical :− pdV

chemical : µdN

electromagnetical . . . .

The infinitesimal change in internal energy is a total differential, as opposed to the

infinitesimal work and heat.

• 2nd law - The entropy postulates:

1. S = S(U, V,N) is an extensive state variable.

2. For the composition of closed systems that may be separated by external con-

straints:

Seq [no constraints] ≥ Seq [with constraints]

3. S = const. for quasistatic, adiabatic transitions (δQ = 0).

4. dS ≥ δQ/T for any process; equality defines an exact differential and holds for

quasistatic, adiabatic transitions

Corollaries: For the equilibrium state of a system

– under mechanical isolation (δW = 0) and with T = const., F is minimal

– with T, p,N = const., G is minimal

– with V, T, µ = const., Ω is minimal

Proof: Since δQ/T ≤ δS (2nd law) → −δW ≤ −δU + TδS (1st law)

– −δW ≤ −δF , mechanical isolation: δF ≥ 0

– pδV − µδN ≤ δ(−G + pV ), T, p,N = const.: δG ≥ 0

– −µδN ≤ δ(−Ω− µN), V, T, µ = const.: δΩ ≥ 0
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• 3rd law - On T=0:

It is impossible to attain T = 0 in a system with a finite number of reversible processes.

Thus, ∆S → 0 in any reversible isothermal process as T → 0.
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B. Classical statistical mechanics

Microstate

specified by 2Nf variables of the phase space

(N particles, f position and velocity dof’s

per particle)

←→

Macrostate

specified by thermodynamic poten-

tial and its control parameters

?

Gibbs ensembles:

For simplicity, we consider only one species of particles with mass m which interact with a

two–body potential u.

1. Microcanonical ensemble:

δU = 0 (no heat or work exchange); N, V = const.

Definition of internal energy:

U = H =
∑

i

p2
i

2m
+
∑

i<j

u(ri − rj) Hamiltonian (15)

Basic postulate: All microstates compatible with the above constraints are of equal

probability in phase space.

Definition of entropy – link with thermodynamics:

S(U, V,N) = kB lnω(U, V,N) (16)

with kB = 1.38·10−23 JK−1 is Boltzmann’s constant and ω(U, V,N) is the total number

of microstates compatible with the constraints.

2. Canonical ensemble:

δW = 0 (no work exchange), heat exchange with thermal reservoir; N, V, T = const.

Corollary of basic postulate: microstate at phase state point Γ = {ri,pi} has a prob-

ability p in phase space of

p(Γ) =
1

N !hfN

exp(−βH[Γ])

QN

. (17)
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QN is the canonical partition function for N particles:

QN =
1

N !hfN

∫

exp(−βH[Γ])dΓ (β = (kBT )−1) . (18)

The prefactor can be justified thoroughly only by quantum mechanics: h (Planck’s

constant) must be a constant of dimension Js/m to make QN dimensionless, and N !

stems from the indistinguishability of particles.

The integral over momenta can be performed immediately, using
∫∞

0
dx exp(−ax2/2) =

√

2π/a:

QN =
1

N !hfN
(2πm)fN/2

∫

dfr1 . . . d
frN exp

(

−β
∑

i<j

u(ri − rj)

)

(19)

=
1

N !λfN
ZN (20)

which defines the configuration integral ZN . (λ =
√

2πβ~2/m is the de–Broglie wave-

length.) The central problem of classical statistical physics and thus of liquid state

theory is the evaluation of ZN .

Definition of free energy – link with thermodynamics:

F (V, T,N) = −β−1 lnQN . (21)

3. Grand canonical ensemble:

δWmech = 0 (no mechanical work exchange), heat and particle exchange with thermal

reservoir; µ, V, T = const.

Corollary of basic postulate: microstate at phase state point ΓN = {r1,p1, . . . , rN ,pN}
has now a probability p in phase space of

p(ΓN ) =
1

Ξ
exp(Nβµ) exp(−βHN ) . (22)

Ξ is the grand canonical partition function for a system held at chemical potential µ:

Ξ =
∞∑

N=0

exp(Nβµ) QN . (23)

Definition of grand free energy – link with thermodynamics:

Ω(V, T, µ) = −β−1 ln Ξ (24)

Obviously one could define as many ensembles as there are combinations of independent

control parameters.
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Phase coexistence:

The possibility of (first–order) phase transitions:

Start with some observations in the grand canonical ensemble:

1. Particle number fluctuations:

expectation values in the g.c.e. of a function f(N) are defined as

〈f(N)〉 =
1

Ξ

∞∑

N=0

f(N) exp(Nβµ) QN (25)

Let N̄ = 〈N〉 (average number of particles in the system), ρ = N̄/V (particle number

density) and κ−1
T = ρ(∂P/∂ρ) (inverse isothermal compressibility). Then the fluctua-

tions of the particle number N in the g.c.e. (≡ mean square deviation) are

1

N̄

√

〈N2〉 − N̄2 =

√

β−1ρκT√
N̄

(26)

Exercise: Show this result.

These fluctuations

• are small if κT finite (i.e. ∂P/∂ρ > 0)

• may become large if κT infinite (i.e. ∂P/∂ρ = 0), as for the critical point or the

phase coexistence region

G.c.e. seems to support the possibility of liquid–gas conversion which corresponds to

a macroscopic shift in N .

2. Minimum principle for Ω:

let ω = Ω/V and f = F/V – volume densities of the grand free energy and the

Helmholtz free energy

for particles exhibiting hard cores and short–range attractions one can prove explicitly

(T = const.)

Ξ =

∞∑

N=0

e−V ω(ρ,µ) → lim
V →∞

Ξ = e−V ω0(µ) with ω0(µ) = min[ω(ρ, µ)] (27)

Ω = F − µN → ω(ρ, µ) = f(ρ) − µρ and ω0(µ) = min[f(ρ) − µρ], the minimum

property entails that f(ρ) is a convex function (f ′′(ρ) ≥ 0).
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Convexity of f(ρ) is not necessarily guaranteed by the canonical ensemble. Suppose that a

certain microscopic model yields a non–convex free energy in the canonical ensemble. Then

the minimum property leads to the the common tangent or Maxwell construction:

f

ρ

A

C’

C

B

ρg ρl

slope µ coex

ρ

ω

ρg ρl

A BC’

C

ω
0

Thus the coexisting gas and liquid states are characterized by equal chemical potential and

pressure.

• f ′(ρg) = f ′(ρl) = µcoex

• ω(ρg, µcoex) = ω(ρl, µcoex) = −pcoex

Conclusion: The grand canonical ensemble is indeed the ensemble of choice to study phase

transitions.
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III. PERTURBATION THEORY FOR GASES

Definition – virial expansion of equation of state:

βP

ρ
=

∞∑

l=1

al(β)(ρλ)l−1 (28)

al(β) : temperature-dependent lth virial coefficient

Idea: Grand-canonical partition function defines a power expansion in terms of z = exp(βµ)

(fugacity). Seek expansion of P (z) and ρ(z).

A. Classical cluster expansion

J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, NY, 1940)

Let f = 3 (monatomic gases in three dimensions). Recall definition of grand partition

function

Ξ =

∞∑

N=0

( z

λ3

)N ZN(V, T )

N !
(29)

ZN(V, T ) =

∫

d3r1 . . . d
3rN exp

(

−β
∑

i<j

u(ri − rj)

)

configuration integral (30)

In terms of Mayer f–bond, exp[−β(u(ri − rj)] = 1 + fij. Advantage: f–bond goes to zero

for large distances, qualitative behaviour is as follows:
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0 0.5 1 1.5 2 2.5 3
 r / σ

-1

0

1

2

3

4

β = ε = 1

f = e      -1
-u

LJ
u

LJ

Expand the product of exponentials:

ZN(V, T ) =

∫

d3r1 . . . d
3rN [1 + (f12 + f13 + . . . ) + (f12f13 + f12f14 + . . . ) + . . . ] (31)

Associate each term in the expansion with a graph.

Definition: An N–particle graph is a collection of N distinct circles numbered 1, 2, . . . , N ,

with lines possibly joining pairs of points (a distinct pair may be joined by only one line).

• Circle i ≡ particle at position ri

• Line joining the pair α = (ij) ≡ fij

• Graph with lines joining α, β, . . . , λ ≡
∫
d3r1 . . . d

3rN fαfβ . . . fλ

Note that

2

3

1

2 3 1

are distinct graphs but these are identical:

2

1

1

2 3 3

Thus

ZN = (sum of all distinct N−particle graphs) (32)
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An arbitray graph may be composed into factors of connected graphs.

Definition: In a connected graphs, every circle is joined to all other circles either directly or

indirectly. A connected graph with l circles is called an l–cluster.

Example:

4 5

3 9

7

6 8

10

][7

6 8

10

3 9[ ]21[ ]4[ ] 5 ][
2

1[ ]
. . . .

=

A

A cluster integral bl(V, T ) is defined as

bl(V, T ) =
1

l!λ3(l−1) V
(sum of all possible l−clusters) (33)

with the properties

• bl(V, T ) is dimensionless

• b̄l(T ) = limV →∞ bl(V, T ) is a finite number:

(perform variable change (r1, . . . , rl) → (rm, r2 − r1, . . . , rl − r1) with the center–of–

mass coordinate rm = (1/l)
∑

ri, integrand depends only on relative coordinates and

the finite range of fij makes the integral over relative coordinates finite, integral over

rm yields factor V which is cancelled by denominator)
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The first three cluster integrals are:

b1 =
1

V

[

1
]

=
1

V

∫

d3r1 = 1 (34)

b2 =
1

2!λ3V

[

1 2
]

=
1

2λ3V

∫

d3r1

∫

d3r2 f12 =
1

2λ3

∫

d3r12 f12 (35)

b3 =
1

3!λ3V














1

2 3

1

2 3

1

2 3

1

2 3

+ + +














(36)

Hint: Imagine the numbered circles fixed in space, then draw all possible connections to

obtain a connected graph.

Cluster decomposition of ZN :

Any N−particle graph is a product of ml l−clusters with

N∑

l=1

l ml = N (37)

A given set of integers {ml} does not uniquely specify a graph!

• there are different ways to form an l-cluster

1

2 3

1

2 3

• different particle assignment within cluster possible

1

2 3

1

2 4

Thus, {ml} specifies a collection of graphs ≡ S{ml}. Then

ZN(V, T ) =
∑

{ml}

S{ml}

∣
∣
∣
∣
∣
∣
P

N

l=1
l ml=N

(38)
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and pictorially S{ml} is given by

S{ml} =
∑

P

[ ]m1
[ ]m2

× (39)














+ + +














m3

[. . . ]m4 . . .

• in brackets: polynomials of unnumbered graphs (calculated as if graphs are non–

commuting to which numbering is assigned at the end, e.g.

1

2 3

1

2 3

4

5 6

4

5 6

1

2 3

4

5 6

1

2 3

4

5 6

+ + +

+[ ]
2

=
one specific
numberingP

• P is the set of all independent enumerations of blank circles with particle numbers

– factor N ! – permutations of N objects

– factor 1/(m1! . . .mN !) – permutations of the ml l−clusters are not independent,

e.g. (123)↔ (456) in example above

– factor 1/(1!m12!m2 . . . N !mN ) – permutations within each l−cluster are not

independent and is seen by examining the set of all l− clusters (terms within

square brackets), e.g.

+ ++
P =  2

1
3

= ++
P =  3

1
2

+

• [. . . ]ml =
(
l!λ3l−3 V bl

)ml
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Therefore

S{ml} = N !λ3N

N∏

l=1

1

ml!

(
V

λ3
bl

)ml

(40)

and

ZN(V, T ) =
∑

{ml}

N !λ3N
N∏

l=1

1

ml!

(
V

λ3
bl

)ml

∣
∣
∣
∣
∣
∣
P

N

l=1
l ml=N

(41)

Complicated in appearance due to the fixed N constraint!

In the grand canonical ensemble N is summed over → removal of constraint possible. Ex-

amine Ξ

Ξ(z, V, T ) =

∞∑

N=0

( z

λ3

)N ZN(V, T )

N !
(42)

=

∞∑

N=0

zN
∑

{ml}

N∏

l=1

1

ml!

(
V

λ3
bl

)ml

δN,
P

lml
(43)

∑

N drops out (
∑

{ml}
→
∑

ml
unconstrained); interchange

∑

ml
and

∏

l

=

∞∏

l=1

exp

(
V

λ3
zlbl

)

(44)

This is remarkably simple! And it is an example of a more general theorem, useful in

qunatum many–body physics and quantum field theory:

Linked Cluster Theorem: The sum of all graphs is the exponential of the sum of all connected

graphs.

Note that in ZN → Ξ: a factor of z = eβµ is attached to each circle.
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B. Virial equation of state

Thermodynamic limit V →∞:

b̄l(T ) = lim
V →∞

bl(V, T ) (45)

Then

βP = lnΞ(z, T ) =
1

λ3

∞∑

l=1

b̄lz
l (46)

ρ =
∂P

∂µ
= βz

∂P

∂z
=

1

λ3

∞∑

l=1

l b̄lz
l (47)

Recall definition of the virial coefficients al by βP/ρ =
∑
al(ρλ)l−1:

Exercise: Show (by eliminating z order by order in P ) that:

a1 = b̄1 = 1 (48)

a2 = −b̄2 (49)

a3 = 4b̄22 − 2b̄3 (50)

a4 = −20b̄32 + 18b̄2b̄3 − 3b̄4 (51)

. . .

Show explicitly to this order that the calculation of the virial coefficients al involves only

the evaluation of those diagrams in the l–cluster which are at least doubly connected. Here,

doubly connected means that even if you remove one circle together with its adjacent bonds

the diagram stays connected. Calculate second and third virial coefficent for the hard–sphere

model (analytically) and for the Lennard–Jones model (numerically for βǫ = 0.6 – above

coexistence – and βǫ = 1.0 – below coexistence). Compare to the “exact” equations of state.

More about diagrammatic methods in Chapter IV D.

28



C. Phase transitions and zeros in Ξ

Consider again particles with hard cores.

• finite V ↔ finite maximum number of particles M(V ).

• ZN(V, T ) = 0 for N > M(V ) (since e−βu = 0)

• Ξ(z, V ) = 1 + zQ1(V ) + · · ·+ zMQM (V )

polynomial with positive coefficients → no real positive roots

• ∂P (V )
∂ρ

=
∂P (V )
∂z

/
∂ρ
∂z
≥ 0, since both quotients are ≥ 0

All thermodynamic functions are free of singularities→ no signal of phase transitions! Thus

the thermodynamic limit V →∞ must somehow generate nonanalyticities in Ξ if there are

phase transitions. Consider now these theorems:

Theorem 1: P (z) = limV →∞
1
V

ln Ξ(z, V ) exists for all z > 0; it is continuous and non–

decreasing; it is also independent on the shape of V (for ∂V ∝ V 2/3).

Theorem 2: Suppose R is a region in the complex z–plane that includes a segment of the

positive real axis and contains no roots of Ξ (for arbitrary V ). In this region, lnΞ /V

converges uniformly to P (z) (which is analytic) as V →∞.

T. D. Lee and C. N. Yang, Phys. Rev. 87, 404 and 410 (1952)

Corollary: Suppose one complex root z∗ moves to the real and positive value z0. Then two

domains R1 and R2 exis in which Theorem 2 holds independently. At z0, P (z) is continuous

but its first derivative needs not → first order phase transition with z0 = exp(βµcoex).
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z
0

z
0

zO

R  : liquid2R  : gas1

P

z

If at z0, P
′(z) is continuous but not P ′′(z), then we have a second–order phase transition.

Conclusion: At the chemical potential µcoex of coexisting phases, the grand partition function

Ξ is zero. The pressure P = 1
V

limV →∞ ln Ξ(µcoex, V ) is finite and its (higher) derivative is

discontinuous at µcoex.

Mathematical example: Consider

Ξ(z, V ) = (1 + z)V (1 + zαV ) (52)

with V → V/σ3 is a dimensionless volume and α > 0.

1. The zeros of Ξ:

• z0 = −1 is a multiple zero outside the physical domain z > 0

• z0,n = exp[2πin/(αV )] are zeros on the unit circle in the complex z−plane. With

n fixed and V →∞, these zeros move to z = 1.

Thus we expect a phase transition at z = 1.

2. Equation of state (parametrically in z):

βP = lim
V →∞

ln Ξ/V = ln(1 + z) + lim
V →∞

ln(1 + zαV )/V =







ln(1 + z) + α ln z (z > 1)

ln(1 + z) (z < 1)

(53)

ρ = z
∂P

∂z
=







z
1+z

+ α (z > 1)

z
1+z

(z < 1)
= lim

V →∞

1

V
z
∂ ln Ξ

∂z
(in each phase domain separately)

(54)
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3. The power expansion P (z) for small z has radius of convergence z = 1! Naive analytic

continuation beyond z = 1 implies continuation of the “gas” equation of state,

βP = − ln(1− ρ) , (55)

to the “liquid” domain where actually

βP = −(1 + α) ln(1− ρ+ α) + α ln(ρ− α) (56)

holds. (The coexisting densities are ρg = 1/2 and ρl = 1/2 + α.)

0 0.5 1
ρ

0

0.5

1

1.5

2

β 
P

"gas" curve

"liquid" curve

continuation of

"gas" curve

Back to the virial expansion: One may expect that the series expansion P (z) or P (ρ) fails

near a phase transition point. However, contrary to the above example, there is no general

argument that links the radius of convergence of the virial series to the onset of a phase

transition.
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IV. THE EQUILIBRIUM THEORY OF FLUID STRUCTURE

Aim: Access physical content of statistical theory through correlation functions:

• n−particle correlations:

fix n− 1 particles at positions r1, . . . , rn−1, ask for probability to find another particle

at position rn

“measurable” quantities in experiment and simulation

“generated” by grand potential

• n−point direct correlation functions:

“functional inverse” of n−particle correlations

“unmeasurable” quantities! but theoretically much more handy

“generated” by free energy

• theoretical application: density functional theory

A. The n−particle correlation functions and reformulations of the equation of state

Notation: r1 → 1, r2 → 2, . . . , r′1 → 1′, . . .

1. n−particle density ρ(n)(1, . . . , n):

ρ(n)(1, . . . , n)d(1, . . . , n) – probability of finding n particles of the system with coordi-

nates in the volume element drn, irrespective of the positions of the remaining particles

(and of all momenta)

ρ(n)(1, . . . , n) = 〈ρ̂(1, . . . , n)〉 (57)

ρ̂(1, . . . , n) =

N∑

i=1

N∑

j 6=i

. . . δ(1, i′)δ(2, j′) . . . (58)
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Canonical ensemble: averaging about r′i:

ρ(n)(1, . . . , n) =
1

ZN

N !

(N − n)!

∫

d(n+ 1) . . . dN exp[−β
∑

i<j

u(i′ − j′)]
∣
∣
∣
∣
∣
1′=1,...,n′=n

(59)

Normalization:
∫

d1 . . . dn ρ(n) =
N !

(N − n)!
(60)

Grand canonical ensemble: averaging about r′i and N :

ρ(n)(1, . . . , n) =
1

Ξ

∞∑

N=n

zN

λ3N (N − n)!

∫

d(n+ 1) . . . dN exp[−β
∑

i<j

u(i′ − j′)]
∣
∣
∣
∣
∣
1′=1,...,n′=n

(61)

Normalization:
∫

d1 . . . dn ρ(n) = 〈 N !

(N − n)!
〉 (62)

in particular
∫

d1 ρ(1) = 〈N〉 and

∫

d1d2 ρ(2) = 〈N2〉 − 〈N〉 (63)

2. Normalized ρ(n)(1, . . . , n) – n−particle distribution function g(n)(1, . . . , n):

Definition:

g(n)(1, . . . , n) =
ρ(n)(1, . . . , n)

ρ(1)(1) . . . ρ(1)(n)
(64)

In particular

g(1) = 1 and g(2)(1, 2)
bulk
= g(1− 2) =

ρ(2)(1− 2)

ρ2
(65)

Since g(r1, r2)→ 1 for r1, r2 →∞, a useful definition is

h(r1, r2) = g(r1, r2)− 1 (66)

since it vanishes at infinite separation.

3. n–particle fluctuation function H(n)(1, ..., n):

Definition: Measures fluctuations in the local density about its average value at n

points.

H(n)(1, ..., n) = 〈 Πn
i=1[ρ̂(i)− ρ(1)(i)] 〉 . (67)
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Examples:

H(1)(1) = 0 , (68)

H(2)(1, 2) = 〈 [ρ̂(1)− ρ(1)(1)][ρ̂(2)− ρ(1)(2)] 〉

= ρ(2)(1, 2) + ρ(1)(1) δ(1− 2)− ρ(1)(1)ρ(1)(2)

= ρ(1)(1)ρ(1)(2) h(1, 2) + ρ(1)(1) δ(1− 2) . (69)

Note that ρ̂(1)ρ̂(2) =
∑

i′ δ(1−i′)
∑

j′ δ(2−j′) =
∑

i′ δ(1−i′)
∑

j′ 6=i′ δ(2−j′)+
∑

i′ δ(1−
i′)δ(2− j′) ≡ ρ̂(2)(1, 2) + ρ̂(1)δ(1− 2).
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Equation of state for the bulk fluid: (bulk: ρ(1) = ρ)

• (Internal) energy equation of state:

Remember the definition U = 〈H〉 where H – Hamiltonian. For two–body potentials

this is equivalent to

U = U id + U ex = U id +

∫

d1d2 〈 N(N − 1)

2
u(1− 2)δ(1, 1′)δ(2, 2′) 〉 (70)

(Pick two particles out of N and average about their potential energy at fixed distance.

Then integrate over the positions of these two particles.)

U id – internal energy of ideal gas.

U ex =
1

2

∫

d1d2 u(1− 2) ρ(2)(1− 2)= V
ρ2

2

∫

dr u(r)g(r) (71)

Once U(ρ, T ) is known, all other thermodynamic quantities can be deduced immedi-

ately.

• Virial or pressure equation of state:

Reminder – virial theorem:

Definition of virial function for an N−particle system:

V(r1, . . . , rN) =

N∑

i=1

ri · Fi (72)

where Fi – total force acting on particle i. Consider the time average

〈V〉t = lim
τ→∞

1

τ

∫ τ

0

N∑

i=1

ri(t) · Fi(t) dt = lim
τ→∞

1

τ

∫ τ

0

N∑

i=1

ri(t) ·mr̈i(t) dt

= − lim
τ→∞

1

τ

[
∫ τ

0

N∑

i=1

mṙ2
i (t) dt−m(ri(τ) · ṙi(τ)− ri(0) · ṙi(0))

]

(73)

1. system volume finite → virial theorem

〈V〉t = −2 〈
N∑

i=1

p2
i /(2m)〉t (74)

2. ergodic theorem: time average = ensemble average

〈V〉t = −3 〈N〉 kBT g.c.e. (75)
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Total force on particle i can be split into internal force (exerted by all the other

particles)

Fint
i = −

∑

only j 6=i

∇iu(ri − rj) → (76)

〈V int〉 = −〈
N∑

i6=j

ri∇iu(ri − rj) = −〈
N∑

i<j

(ri − rj) · ∇u(ri − rj)〉

and external force (exerted by the confining walls of the system). “Actio = reactio”

demands that on average

〈
N∑

i=1

Fext
i 〉 = −P

∫

∂V

dAn → (77)

〈Vext〉 = −P
∫

∂V

dAr · n = −P
∫

V

dV divr = −3PV

Putting together, we obtain

PV = 〈N〉 kBT −
1

3
〈V int〉 (78)

Rewrite the statistical average (as for U):

PV = 〈N〉 kBT −
1

3

∫

d1d2 〈 N(N − 1)

2
(1− 2)∇u(1− 2)δ(1, 1′)δ(2, 2′) 〉 (79)

= 〈N〉 kBT −
1

6
V ρ2

∫

dr r · ∇u(r) g(r) (80)

Dividing by 〈N〉, we obtain the pressure or virial equation:

βP

ρ
= 1− ρ

6

∫

dr r · ∇u(r) g(r) (81)

• Compressibility equation of state:

Remember the integrated one– and two–particle densities
∫
d1 ρ(1) =

〈N〉 and
∫
d1d2 ρ(2) = 〈N2〉 − 〈N〉. Thus the squared particle number fluctuations

are

〈N2〉 − 〈N〉2 =

∫

d1d2 ρ(2) +

∫

d1 ρ(1) −
(∫

d1 ρ(1)

)2

=
〈N〉
β∂P
∂ρ

(see (??)) (82)

and the compressibility equation is:

β
∂P

∂ρ
=

1

1 + ρ
∫
dr h(r)

(83)
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B. Fluids in external fields

Liquids:

• homogeneous in the bulk

• inhomogeneous near walls or other boundaries; where different phases meet

• modelling of walls or other obstacles: external potential V ext acting on single particles,

description of wetting and adsorption phenomena possible

• theoretical advantages:

– functional formulation of the theory

– exploitation of test particle ideas, e.g.:

pair distribution function in the bulk ≡ density distribution around fixed particle

acting as an external potential

1. Definitions

internal potential energy of fluid particles

UN =

N∑

i<j

u(ri − rj) (84)

external potential energy

VN =
N∑

i

V ext(ri) =

∫

d3r ρ̂(r)V ext(r) , (85)

(remember density operator definition (??): ρ̂(r) =
∑N

i δ(r− ri))

Generalizations from bulk:

Grand partition function depends on a position–dependent intrinsic chemical potential,
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ψ(r) = µ− V ext(r):

Ξ =

∞∑

N=0

1

N !

∫

d1 . . . dN exp(−βUN)
( z

λ3

)N

→ (86)

∞∑

N=0

1

N !

∫

d1 . . . dN exp(−βUN)
( z

λ3

)N

exp(−βVN) = (87)

∞∑

N=0

1

N !

∫

d1 . . . dN exp(−βUN)

N∏

i

exp(βψ(ri))

λ3
(88)

In the bulk, the grand potential was βΩ(V, T, µ) = − ln Ξ the conjugate variable to µ was

−N̄ , or, after division by V , minus the density ρ:

∂Ω

∂µ
= − 1

Ξ

∂Ξ

∂(βµ)
= − z

Ξ

∂Ξ

∂z
= − 1

Ξ

∞∑

N=0

1

N !

∫

d1 . . . dN exp(−βUN )N
( z

λ3

)N

= −〈N〉 .(89)

Now, in the general inhomogeneous situation, we define the grand potential functional via

βΩ[ψ(r)] = − ln Ξ[ψ(r)], and the conjugate to ψ(r) is found by functional differentiation:

δΩ

δψ(r)
= − 1

Ξ

δΞ

δ(βψ(r))

= − 1

Ξ

∞∑

N=0

1

N !

∫

d1 . . . dN exp(−βUN)
∑

i

δψ(ri)

δψ(r)

N∏

i

exp(βψ(ri))

λ3

= −〈ρ̂(r)〉 = −ρ(1)(r) . (90)

What about higher functional derivatives? First note that repeated application of δ/δz∗ on

Ξ (with z∗(r) = exp[βψ(r)]) gives

1

Ξ

δnΞ

δz∗(R1) . . . δz∗(Rn)
= (91)

1

Ξ

∞∑

N=0

1

N !

∫

d1 . . . dN exp(−βUN )
∑

i1

δ(R1 − ri1)

λ3

∑

i2 6=i1

δ(R2 − ri2)

λ3
. . .

N∏

i=n+1

exp(βψ(ri))

λ3

=

n∏

i

exp(−βψ(Ri)) 〈ρ̂(R1, . . . ,Rn)〉

=
1

∏n
i z

∗(Ri)
ρ(n)(R1, . . . ,Rn) .

Thus, one calls the grand partition function Ξ the generating functional for the n–particle

densities.
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Use this for the second derivative of Ω:

δ2Ω

δψ(R1)δψ(R2)
= −βz∗(R2)

δ

δz∗(R2)

(
1

Ξ
z∗(R1)

δΞ

δz∗(R1)

)

= −β
Ξ
z∗(R1)z

∗(R2)
δ2Ξ

δz∗(R1)δz∗(R2)
− β

Ξ
δ(R1 −R2)z

∗(R1)
δΞ

δz∗(R1)
+

β

(
1

Ξ
z∗(R1)

δΞ

δz∗(R1)

)(
1

Ξ
z∗(R1)

δΞ

δz∗(R1)

)

= −βρ(2)(R1,R2)− βδ(R1 −R2)ρ
(1)(R1) + βρ(1)(R1)ρ

(1)(R2)

= −βH(2)(R1,R2) . (92)

More generally:

δn(βΩ)

δ(βψ(R1)) . . . δ(βψ(Rn))
= −H(n)(R1, . . . ,Rn) (n ≥ 2) . (93)

Exercise: Show this by induction.

Thus, the grand potential Ω is the generating functional for the 1–particle density and the

n–particle fluctuations.

Since V ext(r) is supposed to contain the information about spatial confinement of the fluid,

replace V as thermodynamic quantity: V → V ext(r), and the (grand canonical) first law of

thermodynamics becomes:

δU = TδS +

∫

d3rρ(r) δV ext(r) + µδN (94)

The free energy and the internal energy

In the bulk, the conjugate variabel pair (µ,−N) lead to the Legendre transform

F (T, V,N) = Ω(T, V, µ) +Nµ . (95)

Since now (µ,−N)→ (ψ(r),−ρ(r)), we can define

F [ρ(r)] = Ω[ψ(r)] +

∫

d3rρ(r)[µ− V ext(r)]. (96)

Here, ρ(r) = ρ(1)(r).

F and Ω are functions of the temperature T but not of the volume V anymore. Since V ext(r)
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is supposed to contain the information about spatial confinement of the fluid, replace V as

thermodynamic quantity: V → V ext(r). The first law transforms as

δU = TδS−PδV + µδN →

δU = TδS +

∫
δΩ

δV ext
δV ext + µδN

= TδS +

∫

d3rρ(r) δV ext(r) + µδN . (97)

The ideal gas

For an ideal gas, the one–particle density in an external field is given by the barometric law

ρ(r) = ρ0 exp[−βV ext(r)] = λ−3 exp[β(µ− V ext(r))] = λ−3 exp[βψ(r)]. (98)

Since δΩ/δψ = −ρ, we find

βΩid[ψ] = −λ−3

∫

d3r exp[βψ(r)]. (99)

Legendre–transforming gives

βF id[ρ] = βΩ +

∫

d3rρ(r)[βψ(r)]

=

∫

d3rρ(r)[lnλ3ρ(r)− 1] . (100)

The ideal gas shows no correlations, i.e.

g(n)(1, . . . , n) = 1 . (101)

(The n–particle densities factorize into 1–particle densities.)

Direct correlation functions

We saw that Ω[ψ] generates the one–particle density and the n–point fluctuations by (mul-

tiple) functional differentiation δ/δψ. The (multiple) functional differentiation δ/δρ on F
generates a new class of correlation functions:

C(n)(R1, . . . ,Rn) = − δ βF [ρ]

δρ(R1) . . . δρ(Rn)
. (102)
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The minus sign is convention. The ideal part is local (i.e. depends only on one position

coordinate)

C
(n)
id (R1, . . . ,Rn) = − δ βF id[ρ]

δρ(R1) . . . δρ(Rn)
. (103)

=







− lnλ3ρ(R1) (n = 1)

(−1)n−1

ρn−1(R1)
δ(R2 −R1) . . . δ(Rn −R1) (n > 1)

. (104)

The excess part only is usually associated with the terminus direct correlation function:

C(n)
ex (R1, . . . ,Rn) = − δ βF ex[ρ]

δρ(R1) . . . δρ(Rn)
≡ c(n)(R1, . . . ,Rn) . (105)

1. n = 1: −C(1) is the intrinsic chemical potential

C(1) immediately follows from the definition of F by Legendre transforming Ω:

F [ρ(r)] = Ω[ψ(r)] +

∫

d3rρ(r)ψ(r). (106)

Thus

−δ βF [ρ]

δρ(r)
= −βψ(r) (107)

= C(1)(r) = − lnλ3ρ(r) + c(1)(r) (108)

Thus we have a direct connection of c(1) to ρ:

ρ(r) = λ−3 exp
[
βψ(r) + c(1)

]
(109)

This appears to be a neat generalization from the ideal gas where

ρid = λ−3 exp βµid (110)

holds.

2. n = 2 and the Ornstein–Zernike relation

First we show that −C(2) (generated from F) and H(2) (generated from Ω) are the inverse

of each other. Note: The inverse of a two–point function is defined by
∫

dr′′f(r, r′′)f−1(r′′, r′) = δ(r− r′) (111)
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Now consider the following

δ(r− r′) =
δψ(r)

δψ(r′)

=

∫

dr′′
δψ(r)

δρ(r′′)

δρ(r′′)

δψ(r′)
(functional chain rule)

=

∫

dr′′
[
−β−1C(2)(r, r′′)

] [
βH(2)(r′′, r′)

]
(112)

Here we used ρ = −δΩ/δψ and ψ = −β−1δF/δρ (which follow from the Legendre transfor-

mation). Thus the inversion property is purely a consequence from the relation of Ω to F
via the Legendre transformation.

One of the central relations of liquid state theory, the Ornstein–Zernike relation links c(2)

with h and directly follows from this inversion relation:

δ(r− r′) = −
∫

dr′′C(2)(r, r′′) H(2)(r′′, r′)

= −
∫

dr′′
[

−δ(r − r′′)

ρ(r)
+ c(2)(r, r′′)

] [

ρ(r′) δ(r′ − r′′) + ρ(r′)ρ(r′′) h(r′′, r′)

]

= δ(r− r′) + ρ(r′) h(r′, r)− ρ(r′) c(2)(r, r′)− ρ(r′)
∫

dr′′ρ(r′′) c(2)(r, r′′) h(r′′, r′) .

Using the symmetry of c(2) and h in their arguments, we find

h(r, r′)− c(2)(r, r′) =

∫

dr′′ρ(r′′) c(2)(r, r′′) h(r′′, r′) (113)

(Ornstein-Zernike relation)

Solve for h recursively:

h(1, 2) = c(2)(1, 2) +

∫

d3 c(2)(1, 3) ρ(3) c(2)(3, 2) +
∫

d3d4 c(2)(1, 3) ρ(3) c(2)(3, 4) ρ(4) c(2)(4, 2) + . . . (114)

= + + + ...             
ch a

r2r1 ρ  ρ  ρ  

c c c c c
�
�
�
�

�
�
�
�

�
�
�
�

Physical interpretation:

• total correlation h between 1 and 2 contains a “direct” piece c(2)(1, 2) and an “indirect”

piece propagated via intermediate particles: (3), (3,4) . . .
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• plausible assumption (for the bulk at least): range of c(1, 2) = c(1 − 2) ∼ range of

u(1− 2) (interparticle potential)

• layer or peak structure in h(1− 2) follows from “indirect” correlations

Example: bulk Lennard–Jones fluid with cutoff rc = 4σ in the interparticle potential:

0 1 2 3 4 5
r / σ

-40

-30

-20

-10

0

c(2
)

ρ∗  = 0.55 (coex)

ρ∗  = 0.7
ρ∗  = 0.9
u(r)

Lennard-Jones fluid, T
*
 = 1.2

0 1 2 3 4 5
r / σ

-2

-1

0

1

c(2
)

ρ∗  = 0.55 (coex)

ρ∗  = 0.7
ρ∗  = 0.9
u(r)

Lennard-Jones fluid, T
*
 = 1.2

0 1 2 3 4 5
r / σ

-1

-0.5

0

0.5

1

1.5

2

h

ρ∗  = 0.55 (coex)

ρ∗  = 0.7
ρ∗  = 0.9

Lennard-Jones fluid, T
*
 = 1.2

FIG. 10: h and c(2) for a LJ fluid
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2. Ornstein–Zernike theory of the critical point

Critical point:

• correlations between particles become universal power–laws (i.e. long–ranged), inde-

pendent of atomic details

• measurable by scattered intensity of X-rays, neutrons and light → structure factor

Structure factor

We assume quasi–elastic scattering: energy of radiation quanta is much larger than typical

excitation energies of the system. Then:

k

k
q

0

s

θ

k ≡ |~k0| ≃ |~ks| (115)

q ≡ |~q| ≃
√

2k2 − 2k2 cos θ = 2k sin
θ

2
(116)

When illuminated by a plane wave, each particle j would scatter it with a direction–

dependent amplitude aj(q) (scattering amplitude). Asymptotically the scattered waves are

approximately planar, such that the total intensity is given by a coherent superposition of

the aj(q):

I(q) = 〈
∣
∣
∣
∣
∣

∑

j

aj(q)

∣
∣
∣
∣
∣

2

〉 (117)

Relation between the scattering amplitudes of any two particles in the system:

aj(q) = a1(q) exp(−iq · (rj − r1)) (118)
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(this is the phase difference of the asymptotic planar waves which have been emitted by the

two particles). Hence

I(q) = |a1(q)|2 〈
∣
∣
∣
∣
∣

∑

j

exp(−iq · rj)

∣
∣
∣
∣
∣

2

〉 (119)

If there are no correlations (ideal gas), then I id(q) = 〈N〉|a1(q)|2. The structure factor is

now defined by the normalized scattered intensity

S ′(q) = ρ
I(q)

I id(q)
(120)

=
1

V
〈
∑

i,j

exp(−iq · (ri − rj))〉

=
1

V

∫

dR1dR2 exp(−iq · (R1 −R2)) 〈
∑

i

δ(ri −R1)
∑

j

δ(ri −R2) 〉

=
1

V

∫

dR1dR2 exp(−iq · (R1 −R2)) 〈 ρ̂(R1)ρ̂(R2) 〉

=
1

V

∫

dR1dR2 exp(−iq · (R1 −R2)) 〈 ρ̂(R1,R2) + δ(R1 −R2)ρ̂(R1) 〉

= ρ2

∫

dR exp(−iq ·R) g(R) + ρ

= ρ (1 + ρh̃(q)) + ρ2 2πδ(q) .

The second term only contributes for q = 0, i.e. for forward scattering. Forward scattering

is dominated by the beam anyway, so one usually discards this term.

S(q) = ρ (1 + ρh̃(q)) = H̃(q). (121)

Using the Ornstein–Zernike equation in the bulk,

h(r) = c(2)(r) + ρ

∫

dr′c(2)(r′) h(r− r′) →

h̃(q) = c̃(2)(q) + ρ c̃(2)(q) h̃(q) →

1 + ρ h̃(q) =
1

1− ρ c̃(2)(q)
(122)

and thus

S(q) =
ρ

1− ρ c̃(2)(q)
(123)

The Ornstein–Zernike assumption
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The direct correlation function c(2)(r) stays short–ranged near the critical point. I.e., its

Fourier transform may be Taylor expanded in q. For isotropic systems

c̃(2)(q) ≡ c̃(2)(q) = c0 + c2 q
2 + . . . (124)

and therefore

ρ

S(q)
= [1− ρc0]− ρc2 q2 + . . . (125)

Note that from OZ and the compressibility equation we know

1− ρc0 =
1

1 + ρh̃(0)
=

1

1 + ρ
∫
drh(r)

(126)

= β
∂P

∂ρ

T→Tc−→ 0

At the critical point, the structure factor should be divergent: S(q) ∝ q−2.

  

352°

354°

353°

356°

360°

Al-ZN alloy : T(crit) = 351.5°C

  

q2

S(q)-1

FIG. 11: S(q) for an Al–Zn alloy: q → 0 divergence as T → Tc

S(q)−1 for Argon: apparent confirmation of the OZ assumption
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The behavior of h(r) is obtained by back–inversion of the Ornstein–Zernike relation:

h̃(q) =
c̃(2)(q)

1− ρ c̃(2)(q)
≈ c0

[1− ρc0]− ρc2 q2
(127)

Introduce a squared length ξ2 = −ρc2/(1− ρc0):

h̃(r) =
1

(2π)3

c0
1− ρc0

∫

dq exp(iq · r) 1

1 + ξ2q2
(128)

This is a typical Fourier integral:

∫

dq exp(iq · r) 1

1 + ξ2q2
= 2π

∫ ∞

0

dq
q2

1 + ξ2q2

∫ 1

−1

dx exp(iqrx)

=
2π

ir

∫ ∞

0

dq
q

1 + ξ2q2
[exp(iqr)− exp(−iqr)]

The integral is symmetric in q → −q. Therefore we can extend it to q ∈ (−∞, 0] and close

the contour in the upper half plane (for terms ∝ exp(iqr)) and in the lower half plane (for

terms ∝ exp(−iqr)). Such a contribution is then only finite if the integrand has a simple

pole in the enclosed area. Thus:

∫

dq exp(iq · r) 1

1 + ξ2q2
=

π

ir

1

ξ2





∮ ∞

−∞,up

dq
q exp(iqr)

(

q + i
ξ

)(

q − i
ξ

) −
∮ ∞

−∞,low

dq
q exp(−iqr)

(

q + i
ξ

)(

q − i
ξ

)





=
π

ir

1

ξ2
(2πi) exp(−r/ξ) =

2π2

ξ2

exp(−r/ξ)
r

(129)

and thus

h(r) =
1

4π

c0
(−ρc2)

exp(−r/ξ)
r

(130)

At T 6= Tc, h(r) decays exponentially with a characteristic length ξ, the correlation length.

As T → Tc, ξ diverges since 1 − ρc0 → 0, and therefore at the critical point, the pair

correlation function decays independent of c as h(r) ∝ 1/r (T = Tc).

Renormalization group predicts at T = Tc:

h(r) ∝ 1

rd−2−η(d)
(131)

with η(3) ≈ 0.06. Thus, the OZ assumption of a finite c(2) does not so bad! However, for

d = 2 the renormalization group predicts η(2) = 1/4 and thus h(r) ∝ r−1/4. Compare this
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to the OZ prediciton:

Exercise: Show for arbitrary dimension d that

h(r) ∝
∫ ∞

0

S(q)
Jd/2−1(r/ξ)

(r/ξ)d/2−1
qd−1 dq (132)

which implies for T → Tc:

h(r) ∝







ln r exp(−r/ξ)
[

1 +O
(

1
ln r/ξ

)]

(d = 2)

exp(−r/ξ)
r

(d = 3)

exp(−r/ξ)
rd−2 [1 +O(r/ξ)] (d > 3)

(133)

Note that the RG results are recovered if the divergence of the structure factor at T = Tc

is modified: S(q) ∝ q−2 → q−2+η.
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3. Density Functional Theory

Remember the equilibrium phase space probability of a microstate in the grand canonical

ensemble:

peq(Γ) =
1

Ξ
exp(−βHN +Nβµ) . (134)

Summation over N and integration over position–momentum ofN particles is usually termed

classical trace:

Trcl (. . . ) :=

∞∑

N=0

1

h3NN !

∫

(. . . ) dr1dp1 . . . drNdpN (135)

With this new notation

Ξ = Trcl exp(−βHN +Nβµ), Trcl peq = 1 . (136)

We may regard a generalized (non–equilibrium) grand potential Ω[p] as a functional of a

general phase space probability p. From thermodynamics we expect that Ω[peq] ≡ Ω is a

minimum, i.e. Ω[p] ≥ Ω[peq].

• Explicit form of Ω[p]:

Ω[p] = Trcl p(β
−1 ln p+HN −Nµ) = Trcl p(β

−1 ln p− β−1 ln Ξpeq) (137)

Check

Ω[peq] = Trcl peq(β
−1 ln peq − β−1 ln Ξpeq) = −β−1 lnΞ = Ω , (138)

as it should be. For the minimum property, consider

Ω[p]− Ω[peq] = β−1 [Trcl p ln p− Trcl p ln peq] (139)

= β−1Trcl peq

[
p

peq
ln

p

peq
− p

peq
+ 1

]

(140)

This holds since Trcl peq = Trcl p = 1. Since x lnx ≥ x − 1 (x > 0), we immediately

find

Ω[p]− Ω[peq] ≥ 0 . (141)
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• Theorem 1:

For some specific fluid (fixed T ), F [ρ] is a unique functional of the equilibrium density

profile.

Note that the free energy does not depend explicitly on V ext(r) but only through ρ(r).

To see that, remember VN =
∫
drρ̂ V ext and HN = KN + UN + VN with KN , UN –

kinetic and potential energy. Then

F = Ω[ψ(r)] +

∫

d3rρ(r)[µ− V ext(r)] (142)

= Trcl

[
peq(β

−1 ln peq +HN −Nµ) + peq(Nµ − VN)
]

(143)

= Trcl peq(β
−1 ln peq +KN + UN ) (144)

Since

peq(Γ) =
1

Ξ
exp(−β(KN + UN + VN) +Nβµ) , (145)

we have peq ≡ peq[V
ext]. Since

ρ(r) = Trcl ρ̂ peq , (146)

we have ρ ≡ ρ[peq[V
ext]].

If we can show a one–to–one correspondence ρ(r)↔ V ext(r), then also peq ≡
peq[ρ] and thus also F ≡ F [ρ].

Define the Hamiltonians, equilibrium phase space densities and grand potentials

H1 = KN + UN + VN,1, H2 = KN + UN + VN,2

peq,1 = peq[V
ext
1 ], peq,2 = peq[V

ext
2 ]

Ω1 = ΩH1
[peq,1] Ω2 = ΩH2

[peq,2]

Assume now ρ[V ext
1 ] = ρ[V ext

2 ]. The minimum property of Ω entails

Ω2 < ΩH2
[peq,1] = Trcl peq,1(H2 −Nµ+ β−1 ln peq,1) (147)

= Ω1 + Trcl [peq,1(VN,2 − VN,1)] (148)

= Ω1 +

∫

dr ρ(r)[V ext
2 (r)− V ext

1 (r)] (149)

We may exchange subscripts 1↔2:

Ω1 < Ω2 +

∫

dr ρ(r)[V ext
1 (r)− V ext

2 (r)] (150)
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and add the two inequalities:

Ω2 + Ω1 < Ω1 + Ω2 , (151)

which contradicts the assumption ρ[V ext
1 ] = ρ[V ext

2 ]. Thus, different V ext lead to dif-

ferent ρ.

• Theorem 2:

Let n(r) be some average of the microscopic density associated with a nonequilibrium

phase space probability pn. Then the generalized grand potential functional is

Ω[n] = F [n] +

∫

drn(r)V ext(r)− µ
∫

drn(r) (152)

and acquires its minimum at equilibrium, n = ρ, with Ω[ρ] = Ω.

Given the above points, the proof is trivial:

Ω[pn] = Trcl pn(β−1 ln pn +KN + UN + VN −Nµ) (153)

= F [n] +

∫

drn(r)V ext(r)− µ
∫

drn(r) ≡ Ω[n] (154)

We have shown already that Ω[peq] ≤ Ω[pn], thus also Ω[ρ] ≤ Ω[n].

These theorems are called the Hohenberg–Kohn–Mermin theorems. The practical importance

lies in the following:

• There exists a unique free energy functional F [n] due to (n =)ρ(r) ↔ V ext(r). The

minimization of the associated Ω[n] determines the equilibrium density profile ρ:

0 =
δF
δn(r)

∣
∣
∣
∣
n(r)=ρ(r)

+ V ext(r)− µ (155)

or

ρ(r) = ρ0 exp
(
β[µex − V ext(r)] + c(1)(r)

)
, (156)

which we have seen before.

• Although the precise form of F [n] is unknown for most systems (except the ideal

gas and one–dimensional systems), one may construct trial functionals F ′[n] whose
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equilibrium density profiles are given by δΩ′[n]/δn|n=ρ′ = 0. That the grand potential

is bounded from below, i.e.

Ω[ρ′] ≥ Ω[ρ] . (157)

is not of help since one does not know the correct functional form of Ω[n].

Rather it gives the straightforward possibility to define a model system by F ′[n] and

exploit its implications through the functional formulation of liquid state physics.

Unfortunately, it is difficult to constrain F ′[n] such that it gives an internally consistent

model of a fluid with two–body potentials.
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C. DFT and integral equations

This section reflects personal taste in setting up a theory of integral equations. See also

J. Phys.: Condens. Matter 17, 429 (2005).

Integral equations: Many properties of fluids are contained in three unknown functions,

the density profile ρ(r), the pair correlation function h(r1, r2) and the direct correlation

function c(2)(r1, r2). Only one exact relation between them, the Ornstein–Zernike relation,

is available. The theory of integral equations aims at establishing a second and third relation

(the closure relations) which are partially only approximative.

Link with density functional theory:

• The test particle trick: Let ρV (r) be the density profile pertaining to the external

potential V (r). A perturbed external potential V ′(r, r0) = V (r)+u(r−r0) corresponds

of fixing an addtional test particle at r0 which exerts the potential u(r− r0) onto the

remaining fluid particles. Then the density profile ρV ′ which minimizes Ω,

δΩ[ρ]

δρ

∣
∣
∣
∣
ρ(r)=ρ

V ′(r)

= 0 (158)

is equivalent to

ρV ′(r) = ρV (r) g(r, r0) . (159)

• Particle insertion and potential distribution theorem: A simplified version of the po-

tential distribution theorem is:

∆Ω = Ω|V ext(r)=V (r)+u(r−r0) − Ω|V ext(r)=V (r) = −β−1 c(1)(r0) . (160)

The first–order direct correlation function evaluated at r0 describes minus the grand

potential difference between a fluid with a test particle inserted at r0 and a fluid

without the test particle. −β−1c(1) gives the free energy profile of a test particle

dragged through a liquid subjected to the external potential V .

Proof:
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1. We show

exp(β∆Ω) = − 〈 exp

(

−β
∑

i

u(ri − r0)

)

〉
∣
∣
∣
∣
∣
V ext=V

(161)

This is easy:

β∆Ω = − ln

∑∞
N=0

1
N !

∫
d1 . . . dN exp(−βUN )

∏N
i λ

−3exp(β[µ− V (ri)− u(ri − r0)])
∑∞

N=0
1

N !

∫
d1 . . . dN exp(−βUN )

∏N
i λ

−3exp(β[µ− V (ri))])
→

exp(β∆Ω) = −Trcl exp (−β∑i u(ri − r0))

Ξ|V ext=V

= − 〈 exp

(

−β
∑

i

u(ri − r0)

)

〉
∣
∣
∣
∣
∣
V ext=V

(162)

2. We show

〈 exp

(

−β
∑

i

u(ri − r0)

)

〉
∣
∣
∣
∣
∣
V ext=V

= λ3ρ(r0) exp(−β[µ− V (r0)]) . (163)

Try to write this expectation value as if the test particle belongs to the fluid from

the outset:

〈 exp

(

−β
∑

i

u(ri − r0)

)

〉
∣
∣
∣
∣
∣
V ext=V

=

1

Ξ|V ext=V

∞∑

N=0

N + 1

(N + 1)!

∫

d1 . . . d(N + 1) exp(−βUN+1) ×

N+1∏

i

λ−3exp(β[µ− V (ri))])
λ3

N + 1
exp(−β[µ− V (r0)])

N+1∑

i=1

δ(ri − r0)

= λ3 exp(−β[µ− V (r0)])
Trcl ρ̂(r0)

Ξ|V ext=V

= λ3ρ(r0) exp(−β[µ− V (r0)] (164)

Through the identity derived earlier, −βψ(r) = − lnλ3ρ(r)+ c(1)(r), we have our final

result:

β∆Ω = − ln 〈 exp

(

−β
∑

i

u(ri − r0)

)

〉
∣
∣
∣
∣
∣
V ext=V

= c(1)(r0) (165)

Note that for V = 0 (bulk fluid) the result is quite natural

∆Ω
N→∞

=
∂Ω

∂N
= −µ . (166)
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The connection between µ and 〈exp(−βu)〉 can be used profitably in simulations (this

is called Widom’s trick). E.g., for hard spheres exp(−βu) = θ(σ−r) and thus, in order

to determine µ, one needs to compute the probability of finding a spherical cavity of

radius σ for the equilibrium configuration.

• Functional Taylor expansion of F ex: In general, the excess free energy functional is

unknown. However, through a Taylor expansion with respect to ρ(r), one may gain

access to its Taylor coefficients, the c(n)’s.

In order to use the test particle trick, we will expand around the “background” density

profile ρV (r) and then minimize Ω in the presence of the external potential V ′ = V +u.

We define

F ex[ρ(r)] = F (2)[ρ(r)] + FB[ρ(r)] (167)

where F (2) contains the Taylor expansion to second order and FB contains the re-

mainder. Let ∆ρ(r) = ρ(r)− ρV (r):

F (2)[ρ(r)] = F (ρV (r)) +

∫

dr1
δF ex

δρ(r1)

∣
∣
∣
∣
ρ=ρV

︸ ︷︷ ︸

∆ρ(r1) + (168)

−β−1c(1)(r1; ρV )

1

2

∫

dr1dr2
δ2F ex

δρ(r1)δρ(r2)

∣
∣
∣
∣
ρ=ρV

︸ ︷︷ ︸

∆ρ(r1)∆ρ(r2)

−β−1c(2)(r1, r2; ρV )

We minimize Ω = F −
∫

(µ− V ′)ρ to determine the equilibrium profile ρV ′:

ln
ρV ′(r)

ρV (r)
+ βu(r− r0) =

∫

dr′ c(2)(r, r′; ρV )∆ρ(r′)− β δFB

δρ(r)

∣
∣
∣
∣
ρ=ρ

V ′

. (169)

Exercise: Show this result.

Using the test particle trick, we have

ρV ′(r)

ρV (r)
= g(r, r0; ρV ) and ∆ρ(r) = ρV (r) h(r, r0; ρV ) (170)

Thus

ln g(r, r0; ρV ) + βu(r− r0) =

∫

dr′ c(2)(r, r′; ρV ) ρV (r′) h(r′, r0; ρV )− β δFB

δρ(r)

∣
∣
∣
∣
ρ=ρV g

(OZ)
= h(r, r0; ρV )− c(r, r0; ρV )− β δFB

δρ(r)

∣
∣
∣
∣
ρ=ρV g

. (171)
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This is a general form of the first closure. If one stops at second order, i.e. FB = 0

then it is called hypernetted chain (HNC) equation. Thus we will call

F (2) ≡ FHNC .

The second closure is obtained through the c(1)–definition

lnλ3ρV (r) = c(1)(r) + µ− V (r) (172)

(A) We may use this relation directly with c(1) obtained from the potential distribu-

tion theorem:

−c(1)(r0) = βΩ|V ext(r)=V (r)+u(r−r0) − βΩ|V ext(r)=V (r) (173)

= −c(1)HNC(r0)−
∫

dr ρV (r) g(r, r0; ρV )
δFB

δρ(r)

∣
∣
∣
∣
ρ=ρV g

+ βFB[ρ]
∣
∣
ρ=ρV g

with the HNC result (dropping the label ρV on the correlation functions)

−c(1)HNC(r0) =

∫

dr ρV (r)

(
1

2
h(r, r0) [h(r, r0)− c(r, r0)]− c(r, r0)

)

(174)

Exercise: Show these results.

(B) Take the gradient of the c(1)–definition:

∇ ln ρV (r) = ∇c(1)(r)−∇V (r)

=

∫

dr′
δc(1)(r)

δρ(r′)
∇′ρ(r′)−∇V (r)

=

∫

dr′ c(2)(r, r′)∇′ρ(r′)−∇V (r) (175)

or by using OZ yet again

∇ ln ρV (r) = β∇V (r) + β

∫

dr′ ρV (r′) h(r, r′)∇′V (r′) (176)

This is called the Yvon–Born–Green (YBG) equation of first order. (It relates

ρ(1) to ρ(2) and higher order YBG equations relate ρ(n) to ρ(n+1).)
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D. Diagrammatic methods and integral equations

Generalization of the graphical methods introduced for the classical cluster expansion:

• Labelled diagrams:

circle i ≡ particle at position ri → black γ–circle i ≡ function γ(ri)

white γ–circle i ∼
[e.g., γ(ri) = z∗(ri), ρ(ri), . . . ]

line joining (ij) ≡ Mayer f–bond f(ri − rj) → η–bond (ij) ≡ function η(ri, rj)

[e.g., η(ri, rj) = f(ri − rj), c
(2)(ri, rj), . . . ]

value of graph: integral over all “circles” → integral over all “black circles”

• Unlabelled diagrams:

– any labelling of balck circles produces the same graph value → labels may be

omitted

– however, different labellings may produce topologically distinct diagrams, see

previous example:

distinct:

2

3

1

2 3 1 equivalent:

2

1

1

2 3 3

– Definition of unlabelled graph value:

Simple diagram (value Γ), n white circles, labelled 1, . . . , n and m black unla-

belled circles

Γ =
1

m!

∑

Ptd

Γlabelled (177)

[Ptd − topologically distinct numbering (labelling) of black circles]

=
1

S
Γlabelled [any numbering (labelling)]

This defines the symmetry number S.

Example: S(∆) = 6, S(Λ) = 2.
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– Unlabelled diagrams are topologically distinct: impossible to find a permutation

which converts a labelling of diagram 1 into a labellling of diagram 2 → distinct

integrals

Some definitions:

Immediately clear: adjacent circles, (independent) paths between circles, intersecting

bond

1. multiply or n–tuple connectivity:

at least n independent paths between any pair of circles

(a) simply connected, (b) triply connected, (c) unconnected

2. multiply or n–tuple connecting circle:

removal of circle plus intersecting bonds causes diagram to fall apart into n sub-

diagrams

3. (a) articulation circle:

is a connecting circle, upon removal at least one subdiagram has no white circle

(b) articulation pair:

is a connecting pair of circles, upon removal the same effect

4. nodal circle:

is a connecting circle through which all paths between two selected white circles

pass

Examples:

effect of removal of (a) articulation circle, (b) articulation pair, (c) nodal circle
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5. star product ∗:
linking together two diagrams at white circles with same label.

Example:

6. star–irreducible diagram:

is impossible to star–decompose into two subdiagrams (except for the trivial case

single white circle)

Examples for star–reducible diagrams: with white connecting circles or with ad-

jacent white circles

Useful lemmas for manipulating diagrams:

T. Morita and K. Hiroike, Prog. Theor. Phys. 25, 537 (1961).

1. A general exponentiation theorem:

G – set of topologically distinct and star–irreducible diagrams

H – G plus all possible star products within G (

∑

α∈H

Γα = exp

(
∑

α∈G

Γα

)

− 1

G = {Γ} (single diagram):

Examples:
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• No white circles:

Γ = {all connected graphs} → exp(Γ) = 1 + Γ+ {all disconnected graphs}

• One white circle:

Γ = {all connected graphs, white circle is no articulation circle} → exp(Γ) =

1 + Γ+ {all connected graphs, white circle is articulation circle}

• Two white circles:

Γ = {all connected graphs, white circles are no articulation pair} → exp(Γ) =

1 + Γ+ {all connected graphs, white circles are articulation pair}

We have seen this already for the special case of diagrams having only black circles:
∑

disconnected = exp(
∑

connected). (In that case the star product of two connected dia-

grams is simply the disconnected diagram composed of these two connected diagrams.

2. Functional derivative:

Let Γ contain no white circle.

(a)

δΓ

δγ(r1)
=
∑

[all distinct diagrams obtained by whitening one circle (label r1)]

(b)

δΓ

δη(r1, r2)
=

1

2

∑
[
all distinct diagrams obtained by whitening two circles (label r1, r2)

and erasing the connecting bond

]
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3. Decorating a diagram Γ:

Let Γ be a connected diagram.

(a) Let G be a set of distinct, connected diagrams which contain one white circle (label

r1). The value of the set is G(r1). The decoration of Γ with the set G leads to a set

H :

diagrams where every black circle of Γ

is replaced by a diagram of G in all possible ways
∈ H

The actual lemma states that if one knows the value G(r1) one can insert it right

away into each black circle of Γ to obtain the value of all decorated diagrams:

∑
[
diagrams where every black circle of Γ

is replaced by G(r)

]

=
∑

i∈H

Γi

(b) Let G′ be a set of distinct, connected diagrams which contain two white circles

(label r1 and r2). The value of the set is G(r1, r2). The decoration of Γ with the set

G′ leads to a set H ′:

diagrams where every bond of Γ

is replaced by a diagram of G′ in all possible ways
∈ H ′

The actual lemma states again that we can use G(r1, r2) right away:

∑
[
diagrams where every bond of Γ

is replaced by G(r1, r2)

]

=
∑

i∈H′

Γi
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These lemmas are useful for topological reduction, i.e. the reduction of a certain set

of diagrams (H or H ′) to a single diagram Γ with new G–circles or G–bonds.

Diagrammatic expansions

• Grand partition function Ξ and grand potential Ω:

We showed already explicitly:

Ξ = exp
(∑

[all connected graphs with z–circles and f–bonds]
)

For the general inhomogenous case, replace z = exp(βµ) by z∗(r) =

exp(β[µ− V ext(r)] = exp(βψ(r)). Since −βΩ = ln Ξ,

−βΩ =
∑

[all connected graphs with z∗–circles and f–bonds]
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• Density profile ρ(r1) and direct correlation function c(1)(r1):

We have

ρ(r1) = − δΩ

δψ(r1)
= −z∗(r1)

δΩ

δz∗(r1)
(178)

and

ρ(r1) = z∗(r1) exp(c(1)(r1)) (179)

We apply lemma 2 to obtain δΩ/δz∗:

ρ(r1) =
∑

[
all connected graphs with one white circle (labelled z∗(r1)),

black z∗–circles and f–bonds

]

z r(  )1
* z r(  )1

*

z r(  )1
*z r(  )1

* z r(  )1
*

+ + + + + ...=

These diagrams contain articulation circles (upon whose removal the diagrams fall

apart). These articulation circles may be black or white. The white ones can be

removed by considering the diagrammatic expansion of c(1).

c(1)(r1) =
1

z∗(r1)

∑
[

all connected graphs with f–bonds, black z∗–circles

and a white circle (labelled z∗(r1)) which is not an articulation circle)

]

z r(  )1
* z r(  )1

*

z r(  )1
* z r(  )1

*

+ ...+ + +=

By the exponentiation lemma, exp(
∑
. . . ) contains all the diagrams of

∑
. . . (also

contained in ρ(r1)) plus all possible star products. These star products just give all

diagrams which have a white articulation circle (the remainder of ρ(r1)).

The black articulation circles are removed as follows:

c(1)(r1) =
1

ρ(r1)

∑
[
all connected graphs (no connecting circles) with f–bonds,

black ρ–circles and a white circle (labelled ρ(r1))

]
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We have neither articulation (removal: at least one subdiagram with no white circle)

nor nodal (removal: two selected white circles in different subdiagrams) circles. The

equality means that all the diagrams with black articulation circles are generated by

decorating all irredicuble diagrams with diagrams of ρ(r1) (which have no restrictions

on the appearance of articulation circles). See lemma 3. Thus we have switched from

a z∗–expansion to the conjugate ρ–expansion.

In the bulk, c(1) = −βµex. Thus

µex = −
∞∑

i=1

biri+1ρ
i (180)

βpex =

∫ ρ

0

dρ′ ρ′
∂µex

∂ρ′
= −

∞∑

i=2

i− 1

i
biri ρ

i (181)

and we recover the virial coefficient al = −l/(l − 1) birl as essentially the irreducible

l–cluster integral birl . We had shown this before only up to a4.

• The direct correlation function c(2)(r1, r2):

Since c(2) = δc(1)/δρ, we may apply lemma 2 and whiten one black circle:

c(2)(r1, r2) =
1

ρ(r1)ρ(r2)

∑
[

all nodal–free connected graphs with f–bonds,

black ρ–circles and two white circles (labelled ρ(r1) and ρ(r2))

]

Except for the diagram with only two white circles, all diagrams are at least doubly–

connected. The absence of nodal points (the absence of chain–like structures) in the

expansion of c(2) confirms the previously gained intuition that the direct correlation
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function essentially has the range of the interparticle potential, i.e. the range of the

f−bond.

Diagrammatic expansions of pair functions and the closure relation

• The pair correlation function h

From OZ we have:

h(r1, r2) =
1

ρ(r1)ρ(r2)

∑
[

all chain graphs with two terminal white circles

(labelled ρ(r1) and ρ(r2)), black ρ–circles and c(2) bonds

]

To express this as expansion with f–bonds, insert the previously obtained expansion

for c(2) into the bonds. The diagrammatic series for h is then similar to that for c(2),

but now black nodal circles are allowed:

h(r1, r2) =
1

ρ(r1)ρ(r2)

∑
[

all connected graphs with f–bonds, black ρ–circles

and two white, non–connecting circles (labelled ρ(r1) and ρ(r2))

]

We have no articulation circle (removal: at least one subdiagram with no white circle)

since the black connecting circles are nodal (removal: here two subdiagrams, each with

a white circle).

• The cavity distribution function y

Consider the following graphical expansion:

y(r1, r2) =
1

ρ(r1)ρ(r2)

∑
[

all connected graphs with f–bonds, black ρ–circles and

two non–adjacent, non–connecting white circles (ρ(r1) and ρ(r2))

]

Compare to h:

– lowest order: 1 instead of f(r1 − r2)
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– higher order: h–expansion encompasses any y–graph plus the same graph with

an f–bond between the white circles

Thus

h(r1, r2) = f(r1 − r2) + (y(r1, r2)− 1) (1 + f(r1 − r2))↔ (182)

g(r1, r2) = e(r1 − r2) y(r1, r2) (183)

with definition of an e–bond:

e(r1 − r2) = f(r1 − r2) + 1 = exp[−βu(r1 − r2)] (184)

Properties:

– no f–bond between white circles→ y continuous even for discontinuous potentials

like hard–spheres

– interpretation: pair distribution function for particles 1 und 2 (associated with

the white circles) with no interaction among themselves and full interaction with

all other particles

( hard spheres: 1 and 2 are cavities)

• The general closure

Note that the expansion of y contains graphs in which the two white circles form an

articulation pair. These graphs are star–reducible:

1 2 1 2 1 2

= *

Thus we can eliminate them with the exponentiation theorem and find:

ln y(r1, r2) =
1

ρ(r1)ρ(r2)

∑








all connected graphs with f–bonds, black ρ–circles and

two non–adjacent, non–connecting white circles (ρ(r1) and ρ(r2))

which form no articulation pair








We want to reconstruct ln y in a different way. A subset of ln y is given by h− c(2):
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– h contains all diagrams of ln y plus diagrams with an f–bond between the white

circles plus diagrams without an f–bond between the white circles where these

are an articulation pair

– c(2) contains all the diagrams with an f–bond between the white circles: see

Ornstein–Zernike

– c(2) contains all the articulation pair diagrams: these are star–composed of two

diagrams which may contain a nodal circle → the star–composition has at least

two independent paths between the white circles. That fits into the definition of

c(2).

– c(2) contains some of the diagrams of ln y, namely the ones which do not have a

nodal circle (i.e. which have more than one path between the white circles)

Thus:

[h− c(2)](r1, r2) =
1

ρ(r1)ρ(r2)

∑








all connected graphs with f–bonds, black ρ–circles and two

non–adjacent, non–connecting white circles (ρ(r1) and ρ(r2))

and with at least one nodal circle








We define the remainder in ln y as the bridge function b:

−b(r1, r2) = [ln y − (h− c(2))](r1, r2) (185)

=
1

ρ(r1)ρ(r2)

∑










all connected graphs with f–bonds,

black ρ–circles which are no nodal circles and

two non–adjacent, non–connecting white circles (ρ(r1) and ρ(r2))

which form no articulation pair










The lowest–order (in density) bridge diagram is ∝ ρ2, i.e. it has two black circles:

1 2

Putting everything together, we find the exact closure

ln g(r1, r2) + βu(r1 − r2) = [h− c(2) − b](r1, r2) (186)
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