
DENSITY FUNCTIONAL THEORY FOR

INHOMOGENEOUS FLUIDS I:

Simple Fluids in Equilibrium

Lectures at 3rd Warsaw School of Statistical Physics

Kazimierz Dolny, 27 June-3 July 2009

R. Evans
H. H. Wills Physics Laboratory,

University of Bristol, Bristol, BS8 1TL, UK



Contents

1 Preamble 2

2 Basic Statistical Mechanics of Classical Fluids 4
2.1 Classical fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Effective Hamiltonians and Model Fluids . . . . . . . . . . . . . . . . . . . 6
2.3 Partition functions and Thermodynamics . . . . . . . . . . . . . . . . . . 6
2.4 Structure and Thermodynamic Properties of Bulk Liquids . . . . . . . . . 8

3 Introducing Equilibrium Classical DFT 10

4 Summary of DFT Formalism for a Simple Fluid 12
4.1 Generating Functionals and Hierarchies of Correlation Functions . . . . . 12
4.2 The Free-Energy via Integration . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Hard Rods in One Dimension: An Exactly Solvable Model . . . . . . . . . 17

5 Approximate Free Energy Functionals 20
5.1 The Strategy and its Shortcomings . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Two Generic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Square-Gradient Approximation . . . . . . . . . . . . . . . . . . . 21
5.2.2 Density Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Approximations for Specific Model Fluids . . . . . . . . . . . . . . . . . . 27
5.3.1 Hard-Sphere Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 The Lennard-Jones (LJ) Type Fluid . . . . . . . . . . . . . . . . . 38
5.3.3 Soft Core Model Fluids: the RPA Functional . . . . . . . . . . . . 40

6 Concluding Remarks 45

References 47

1



Chapter 1

Preamble

These lecture notes are intended as an introduction to the equilibrium classical density
functional theory (DFT) of simple fluids. The subject has gown enormously since its
development and first applications more than thirty years ago and DFT is now regarded
as a standard tool or technique in the statistical physics of liquids. The 3rd edition
of a classic textbook on the theory of liquids [1] devotes whole sections to DFT and
there are treatments in more general textbooks on statistical physics, e.g. [2]. In these
lectures the aim is not to present a comprehensive review of the field, which is very
large, rather it is to give an overview of the DFT formalism and to describe some recent
developments in constructing approximate free energy functionals that have been used
to determine the thermodynamic properties, phase behaviour and microscopic structure
of inhomogeneous fluids.

An inhomogeneous fluid is one for which ρ(r), the average one-body particle (or
atomic) density, is spatially varying. This is in contrast with the case of a uniform or
bulk fluid where the average number density ρ is constant. Inhomogeneous situations
arise

i) at interfaces between liquid-gas, liquid-liquid (in fluid mixtures), crystal-liquid
and crystal-gas phases at bulk coexistence. Translational invariance of the fluid is
broken spontaneously and the average density varies through the interfacial region
that separates the two phases. This density variation at the microscopic level gives
rise to the surface tension of the macroscopic interface.

ii) in the adsorption of liquids or gases at solid substrates or walls. The latter exert
an (external) potential V (r) on the particles or atoms of the fluid adsorbate that
can produce highly structured density distributions close to the walls and may also
lead to macroscopically thick (wetting) films in the limit where the adsorbate is
at bulk coexistence. A plethora of surface phase transitions can occur including
critical and complete wetting, pre-wetting and layering. These correspond to non-
analyticities of the surface excess free energy which is defined by subtracting the
bulk free energy from the total at the given thermodynamic state point. Recall
that bulk phase boundaries are determined by non-analyticities of the bulk free
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energy density.

iii) for fluids in confining geometries, e.g. fluids confined in microchannels, in porous
solids or in wedges. The finite size of the pore and the wall-fluid interactions give
rise to profound effects on the structure of the fluid and on the phase behaviour.
Capillary condensation and capillary filling are examples of phase transitions aris-
ing from confinement. In experiments that exploit the surface force apparatus
(SFA) a fluid is confined (effectively) between two plates whereas in the atomic
force microscope (AFM) the confinement is between the tip and a substrate.

iv) sedimentation of colloidal fluids in a gravitational field.

There are, of course, many other physical situations and phenomena that require an
understanding of the properties of inhomogeneous fluids from a microscopic basis, i.e.
a description that starts with atoms or molecules (or ‘particles’) and the interactions
between these basic building blocks of matter. Equilibrium DFT is a technique that pro-
vides a general framework for calculating density profiles, correlation functions, excess
free energies and phase behaviour for model fluids defined by a given effective Hamil-
tonian and treated by classical statistical mechanics. Although the DFT formalism
(Chapter 4) is quite general, and some generic approximations are quite versatile, appli-
cations often require the construction of an approximate intrinsic free-energy functional
specifically designed for the model fluid under consideration. Much recent research has
focused on finding functionals that can treat accurately and reliably: a) hard-sphere flu-
ids and their mixtures, both additive and non-additive. These are important as reference
systems for atomic fluids and as models for colloidal suspensions. b) Lennard-Jones type
models, appropriate for rare gas fluids. c) Repulsive soft core models, used to describe
the effective interactions between the centres of mass of polymer coils. These are so-
called ‘blob’ models that have integrated out monomer degrees of freedom. We describe
this work in Chapter 5. Chapter 2 is aimed at those readers who require a brief reminder
of the basic equilibrium statistical mechanics of classical fluids, i.e. partition functions
and correlation functions in bulk liquids. Chapter 3 introduces the basic idea of classical
DFT.

We focus on simple fluids and their mixtures where the interparticle or interatomic
potential function is pairwise additive and the pair potential depends only on the distance
between the centres of the particles. It is for these model systems that DFT approxi-
mations are well-developed. In the second DFT course at this school Hartmut Löwen
will describe DFT treatments of bulk freezing. A crystal can be regarded as a particular
class of density inhomogeneity where ρ(r) is periodic and thus, in principle, DFT should
account for the freezing transition. Löwen’s lectures will also describe DFT treatments
of rod-like particles that exhibit orientational degrees of freedom and liquid crystalline
ordering. He will describe developments in dynamical density functional theory (DDFT)
now widely used in treating nonequilibrium problems for colloidal suspensions where the
underlying dynamics is Brownian.
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Chapter 2

Basic Statistical Mechanics of
Classical Fluids

In this chapter we provide a brief reminder of the basic equilibrium statistical mechanics
of classical fluids. The emphasis is on the properties of uniform (bulk) fluids for which
the average number density ρ is a constant and a thermodynamic state point is specified
by ρ and temperature T . For simplicity we consider one component fluids.

We include this chapter as introductory material for those readers who have not
taken a course on simple fluids. Details of derivations are omitted; a thorough account
is given in the textbook by Hansen and McDonald [1].

The general strategy for understanding the equilibrium properties of the liquid state
of matter follows that of other parts of statistical physics. Namely one defines ‘particles’
and the interactions between these to construct an effective Hamiltonian, i.e. the theorist
constructs a model fluid. Liquids are usually tackled within the framework of classical
statistical mechanics since the mass of the particle is large and T is high. Thermodynamic
quantities such as the internal energy, pressure, compressibility and heat capacity are
obtained as derivatives of the classical partition function. Phase transitions between
liquids and gases and between liquids and solids correspond to non-analyticities in the
appropriate thermodynamic potentials calculated in the thermodynamic limit where the
number of particles N →∞ , and the volume of the system V →∞ in such a way that
the average number density ρ = N/V is constant. The equilibrium structure of a fluid
is described in terms of hierarchies of distribution or correlation functions. Formally
these correspond to functional derivatives of the partition function w.r.t. an external
potential and will be described in Chapter 4. The two-body correlation function of
a uniform fluid can be obtained from experiment-see Section 2.4. Many theorists opt
to study very simple models and focus on comparing the results of their approximate
theory with those from computer simulation of the same model. Other researchers prefer
to introduce more realistic models that capture more features of the real, experimental
systems.

Since one normally adopts a classical approach from the outset computer simulations
are quite straightforward, once the model fluid is specified. The two main techniques
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are Monte Carlo and Molecular Dynamics and the books by Allen and Tildesley [3], and
Frenkel and Smit [4] provide excellent introductions to this subject. Figure 2.1 outlines
the overall strategy.

Figure 2.1: The connection between experiment, theory, and computer simulation, adapted
from Allen and Tildesley [3].

The experiments might correspond to the determination of thermodynamic proper-
ties including phase behavior or to determining the structure of the liquid via scattering
techniques. It is, of course, a matter of taste as to whether one implements the last step,
i.e. improving the model to make the description of the real liquid more accurate.

2.1 Classical fluids

First we define what we mean by classical fluids. These are fluids for which the thermal

de Broglie wavelength Λ =
(
βh2

2πm

)1/2
<< a, where β = (kBT )−1, m is the mass of an

atom or particle, and a is the mean atomic spacing. Quantum interference effects are
disregarded and the kinetic energy takes its classical value. For example, Λ/a ≈ 0.08 for
Argon near its triple point.
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2.2 Effective Hamiltonians and Model Fluids

In classical statistical physics the building blocks (particles) are often atoms, ions or
molecules. Higher energy (electronic) degrees of freedom have been integrated out.

For the noble (or rare) gases He, Ne, Ar, Kr, and Xe the effective potential φ(r)
between two atoms exhibits repulsion at short distances (from Pauli exclusion of the
electrons) and attraction at large distances (from London dispersion forces, i.e. induced
dipole-induced dipole forces) so that

φ(r) ≈ −A6

r6
, r →∞ (2.1)

ignoring retardation effects.
The total potential energy of N atoms is then written as

Φ (r1, r2, . . . , rN ) =
∑
i<j

φ(|ri − rj |) + 3 body + . . . , (2.2)

where ri is the coordinate of the i-th atom. The sum over pair potentials φ is written
explicitly. For the noble gases it is a good (reasonable!) approximation to neglect 3
body and higher contributions. One then has a pairwise additive description of the total
inter-particle potential which leads one to define a model or effective Hamiltonian as

HN =
N∑
i=1

p2
i

2m
+
∑
i<j

φ (|ri − rj |) + any external potential contribution, (2.3)

where pi is the momentum of particle i. For the rare gases φ often takes a particular
simple form e.g. the Lennard-Jones (LJ) model

φLJ(r) = 4ε
[(σ
r

)12
−
(σ
r

)6
]
, (2.4)

where the minimum occurs at rmin = 21/6σ and φ(rmin) = −ε. Cruder models are
frequently employed, such as the square-well or hard-sphere model. In plasma physics
the one-component classical plasma (OCP), which is simply a system of point (+ve) ions
in a uniform compensating background of (-ve) charge, is much used.

The Lennard-Jones and square-well models exhibit solid, liquid and gas phases
whereas the hard-sphere model exhibits only a freezing transition to a fcc crystal and
the OCP freezes to a bcc crystal (see Lectures by H. Löwen).

2.3 Partition functions and Thermodynamics

The classical canonical partition function for a one component fluid is given by,

ZN (β, V ) =
h−dN

N !

∫
dp1

∫
V
dr1 . . .

∫
dpN

∫
V
drNe−βHN , (2.5)
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with Hamiltonian HN as above. d is the dimensionality and V is the volume of the
system. We can integrate over the momenta to obtain

ZN (β, V ) = Λ−dNQN , (2.6)

where
QN =

1
N !

∫
V
dr1 . . .

∫
V
drNe−βΦ(r1,...,rN ), (2.7)

is the configurational partition function. Note that the potential energy Φ(r1, . . . , rN )
may still include an external field contribution.

The Helmholtz free energy is simply

FN (β, V ) = −β−1 lnZN . (2.8)

Other thermodynamic quantities follows from (2.8). The entropy is

S = −
(
∂FN
∂T

)
V

, (2.9)

and the pressure is

p = −
(
∂FN
∂V

)
T

, (2.10)

for a uniform (bulk) fluid. For an ideal (non-interacting) gas, where Φ→ 0, in d = 3

βFN = ln
(
N !Λ3NV −N

)
= N ln

(
Λ3ρ

)
−N, (2.11)

and the pressure pid = ρβ−1 with mean number density ρ = N/V . These are the
standard results for a uniform ideal classical gas.

The grand canonical ensemble is the most convenient for problems involving inho-
mogeneous fluids [1]. We consider open systems with fixed temperature T and chemical
potential µ. The partition function for the grand canonical ensemble is

Ξ(β, µ, T ) =
∞∑
N=0

eβµNZN (β, µ) =
∞∑
N=0

zN

N !

∫
V
dr1 . . .

∫
V
drNe−βΦ(r1,...,rN ), (2.12)

with z = Λ−deβµ the fugacity or activity.
The grand potential is given by,

Ω = −β−1 ln Ξ (β, µ, T ) , (2.13)

which for the case of a uniform fluid, reduces to Ω = −pV . The entropy is

S = −
(
∂Ω
∂T

)
µ,V

, (2.14)

and the mean number of particles is

〈N〉 = −
(
∂Ω
∂µ

)
T,V

. (2.15)
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2.4 Structure and Thermodynamic Properties of Bulk Liq-
uids

In order to understand the structure and thermodynamic properties of liquids it is neces-
sary to introduce the hierarchy of correlation (or distribution) functions. These provide
statistical information about the average distribution of particles in the liquid at a given
state point. The key quantity for a bulk liquid is the radial distribution function g(r),
defined so that ρ4πr2drg(r) is the number of particles in volume 4πr2dr at a distance
r from a particle fixed at an origin. Note that since liquids have no long range order
g(r)→ 1 as r →∞. Also for an ideal gas g(r) = 1, ∀r.

The liquid structure factor S(k) is defined in d = 3 by

S(k)− 1 = ρ

∫
dre−ik.r (g(r)− 1) = ρ4π

∫ ∞
0

drr2 sinkr

kr
(g(r)− 1) . (2.16)

S(k) is extracted from X-ray, neutron or light scattering measurements on bulk liquids[1].
Some properties of the liquid structure factor are: i) S(k) → 1 as k → ∞, ii) at k = 0,
S(0) = ρκT /β, where κT is the isothermal compressibility, and iii) for the ideal gas
S(k) = 1, ∀k.

If the potential energy is pairwise additive as in (2.3) then for a bulk system the
internal energy (per particle) is

U

N
=

3
2
kBT +

ρ

2

∫
drg(r)φ(r), (2.17)

and the pressure is

p = ρkBT −
ρ2

2

∫
drg(r)

r

3
dφ(r)
dr

, (2.18)

where φ(r) is the pair potential and ρ is the mean density. Equation (2.17) is referred
to as the energy equation and (2.18) as the virial pressure equation. Together with the
compressibility sum rule

S(0) = 1 + ρ

∫
dr (g(r)− 1) = ρκT /β, (2.19)

these exact equations provide three routes to thermodynamics. Note than unlike the
energy and virial routes, (2.19) is valid for any one-component fluid; this equation is not
restricted to the assumption of pairwise additivity.

The liquid structure factor is intimately related to c(2)(k), the Fourier transform of
the pair direct correlation function in a bulk fluid:

S(k) =
(

1− ρc(2)(k)
)−1

. (2.20)

The hierarchy of direct correlation functions will be defined in Chapter 4.
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Note that for a hard-sphere fluid with diameter σ, ghs(r) = 0 for r < σ and the
internal energy reduces to U/N = 3kBT/2, the classical average kinetic energy. The
virial pressure takes a simple form:

βphs = ρ+ 2πρ2σ3ghs(σ+)/3, (2.21)

which follows from (2.18) and the fact that g(r)eβφ(r) is continuous for all pair potentials
including hard-spheres [1].

It should be evident that one of the main goals of liquid state theory/simulation is to
determine g(r), or its Fourier transform S(k), for a model fluid at a thermodynamic state
point or at a sequence of state points. g(r) provides basic information about the (average)
structure and, if the model is pairwise additive, determines the thermodynamics. Ref
[1] provides several examples of g(r) and S(k) for model fluids, comparing results of
theory and simulations, and describes experimental results for these quantities.
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Chapter 3

Introducing Equilibrium Classical
DFT

Classical density functional theory provides a framework for determining thermodynamic
properties and correlation functions of a wide variety of inhomogeneous (model) fluids
starting from a microscopic basis, i.e. the Hamiltonian describing interactions between
particles.

DFT is based on the result that the grand potential of a specified inhomogeneous
fluid is a functional of the average one-body density,

ρ(r) = 〈ρ̂(r)〉 =

〈
N∑
i=1

δ (r− ri)

〉
, (3.1)

where ri is the position coordinate of particle i.
Minimizing the grand potential functional w.r.t. ρ(r) determines the equilibrium

density profile and free energy and further derivatives provide correlation functions.
The structure and the thermodynamic properties of inhomogeneous fluids, where the

average density ρ(r) is spatially varying, are generally much more difficult to determine
than is the case for homogeneous fluids where ρ is constant. Theories developed for the
latter do not necessarily lend themselves easily to inhomogeneous fluids where the spatial
variation of ρ(r) is usually set by that of the external potential V (r). Of course, the
overall strategy and motivation is much the same as in Figure 2.1-one is still considering
the properties of liquids but now new phenomena, including new phase transitions,
occur because translational invariance is broken either by the presence of an external
field or spontaneously when a fluid-crystal (freezing) transition can take place. Classical
DFT focuses on finding approximations, directly or indirectly, for the grand potential
functional. In this sense classical DFT mimics electronic (fermionic) DFT where the
strategy is to find suitable approximations for the grand potential functional of the
average electron density n(r). Indeed classical DFT has its origins in electronic DFT,
e.g. Ref [5]

There are several advantages of using DFT rather than other techniques of liquid
state physics. Methods of functional differentiation yield formally exact results more
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readily and elegantly than methods focussing on the partition function Ξ, e.g. important
sum rules that link thermodynamic functions to structure. For a (model) fluid with a
given effective interatomic potential Φ(r1, . . . , rN ) one can devise approximations for
the intrinsic Helmholtz functional F [ρ] that should be applicable to all inhomogeneities.
The key idea is that F [ρ] is a unique functional of ρ(r); its form does not depend on the
external potential V (r). The same functional F [ρ] should be valid for fluids adsorbed
at walls, confined in pores or in ‘strong’ gravitational fields or indeed for a crystal
where ρ(r) is periodic. Moreover, from a practical perspective, it is straightforward to
incorporate dispersion forces, important at mesoscopic length scales, into DFT. Long-
ranged potentials are not easily incorporated into simulations

DFT also has disadvantages and pitfalls. Different types of fluid require different ap-
proximate functionals. Skill and intuition are required to construct F [ρ] for a particlular
model fluid; systematic approaches are few and are often not well-suited to certain types
of inhomogeneity-especially when determining phase behavior. Approximate functionals
will very often omit fluctuation effects. It can be tempting to regard a specified F [ρ] as
defining some model fluid. Of course this is dangerous unless the functional is known
exactly, which is the case only for hard-rods in d = 1. One can easily lose sight of the
underlying model Hamiltonian. We return to these issues in Section 5.1 after we have
summarized the formal structure of classical DFT.
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Chapter 4

Summary of DFT Formalism for a
Simple Fluid

In this section we summarize the formal structure of classical DFT, specializing to a
single component fluid. We work in the grand canonical ensemble as this is usually
the most convenient for treating inhomogeneous fluids. Generalization to mixtures, ı.e.
multicomponent fluids, is straightforward.

This section draws heavily on the presentation of DFT given in the review article by
the present author [5]. We omit formal proofs. Some of these, can be found in an early
articles [6, 7] or in the text book [1]. Rigorous treatments of classical DFT are given
in [8, 9].

4.1 Generating Functionals and Hierarchies of Correlation
Functions

The Hamiltonian for the fluid of N atoms or particles, each of mass m, is

HN =
N∑
i=1

p2
i

2m
+ Φ(r1, . . . , rN ) +

N∑
i=1

V (ri)

≡ K.E. + Φ + V, (4.1)

where pi is the momentum of atom i and Φ now denotes the total interatomic potential
energy. The latter is not necessarily pairwise additive. The one-body external potential
V (r) is, as yet, arbitrary. The grand potential Ω = −β−1 ln Ξ, where Ξ is the partition
function, is a function of chemical potential µ, inverse temperature β = (kBT )−1, and
the available volume; it is also a functional of V (r) and therefore of the combination

u(r) ≡ µ− V (r). (4.2)
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A hierarchy of correlation functions is obtained by functional differentiation of Ω with
respect to u(r). The first derivative is the average one-body density,

ρ(r) ≡ ρ(1)(r) ≡ 〈ρ̂(r)〉 = − δΩ
δu(r)

, (4.3)

where ρ̂(r) =
∑N

i=1 δ(r−ri) is the density ‘operator’ and 〈〉 denotes the ensemble average.
The latter is defined for an arbitrary ‘operator’ Ô by

〈Ô〉 ≡ TrclfN Ô, (4.4)

where fN is the probability density

fN = Ξ−1 exp[−β(HN − µN)]. (4.5)

As usual the classical trace is defined by

Trcl ≡
∞∑
N=0

1
h3NN !

∫
dr1 . . .

∫
drN

∫
dp1 . . .

∫
dpN . (4.6)

For a fluid ρ(r) must have the symmetry of the external potential V (r). A second
derivative yields the (two-body) density-density correlation function

G(r1, r2) ≡ 〈(ρ̂(r1)− 〈ρ̂(r1)〉)(ρ̂(r2)− 〈ρ̂(r2)〉)〉

= β−1 δρ(r1)
δu(r2)

= −β−1 δ2Ω
δu(r2)δu(r1)

, (4.7)

which is related to the two-body distribution function ρ(2) of liquid state theory [1] via

G(r1, r2) = ρ(2)(r1, r2)− ρ(r1)ρ(r2) + ρ(r1)δ(r1 − r2). (4.8)

Further differentiation yields three-body, four-body, and so on, density-density corre-
lation functions. This procedure of generating correlation functions by differentiation
w.r.t. external potentials is the standard one in equilibrium statistical mechanics. Note
that for a bulk fluid of uniform density ρ, ρ(r)→ ρ and translational invariance demands
that G(r1, r2) = ρ2(g(r12) − 1) + ρδ(r12), where r12 ≡ |r1 − r2| and g(r) is the usual
radial distribution function. It follows that the Fourier transform G(k) = ρS(k), where
S(k) is the static structure factor of the bulk liquid mentioned in Section 2.4.

The density functional approach focuses on functionals of ρ(r) rather than of u(r).
Whilst it is clear that ρ(r) is a functional of u(r), one can prove [6, 7, 8, 9] the less obvious
result that for given Φ, µ, and T the probability density is uniquely determined by ρ(r)-
the latter fixes V (r), which then determines fN . The proof proceeds by considering
first the grand potential as a functional of a probability density f , normalized so that
Trclf = 1, and then showing by means of a Gibbs inequality that Ω[f ] > Ω[fN ] ≡ Ω.
The next step is to use this inequality to show that two different external potentials
cannot give rise to the same equilibrium one-body density profile ρ(r), ı.e. there is only
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one external potential that gives rise to a specified density profile. If follows that since
fN is a unique functional of ρ(r), so is the quantity

F [ρ] ≡ 〈K.E.+ Φ + β−1 ln fN 〉
= Trcl[fN (K.E.+ Φ + β−1 ln fN )]. (4.9)

The same form of F [ρ] will be valid for any external potential. A second functional is
constructed from a Legendre transform of F :

ΩV [ρ̃] = F [ρ̃]−
∫
dru(r)ρ̃(r), (4.10)

where the external potential is fixed and ρ̃(r) is an average one-body density. When
ρ̃ = ρ, the equilibrium density, ΩV [ρ̃], reduces to the grand potential Ω. Moreover Ω is
the minimum value of ΩV [ρ̃], so that we have a variational principle

δΩV [ρ̃]
δρ̃(r)

∣∣∣∣
ρ̃=ρ

= 0, ΩV [ρ] = Ω, (4.11)

for determining the equilibrium density of a fluid in an external potential. F [ρ] is
the intrinsic Helmholtz free-energy functional, since the total Helmholtz free energy
F = Ω + µ

∫
drρ(r) = F [ρ] +

∫
drρ(r)V (r). Combining (4.10) and (4.11) we have

µ = V (r) +
δF [ρ]
δρ(r)

, (4.12)

which expresses the constancy of the chemical potential µ through the inhomogeneous
fluid. Clearly δF [ρ]/δρ(r) can be regarded as the intrinsic chemical potential; in general
this will not be a local function of ρ(r). It will include an ideal-gas term β−1 ln Λ3ρ(r)
and a term arising from interactions between the particles.

By virtue of (4.11), use of ΩV [ρ] as a generating functional by differentiating w.r.t.
u(r) is identical to the standard procedure. A second hierarchy of correlation functions
is generated by differentiating F [ρ] = Fid[ρ] + Fex[ρ]. The ideal gas (non-interacting)
contribution is

Fid[ρ] =
∫
drfid(ρ(r)), (4.13)

with fid(ρ) = β−1ρ(ln Λ3ρ− 1), the free-energy density of a uniform ideal gas-see (2.11).
Thus we generate the direct correlation function hierarchy:

c(1)(r) = −δ(βFex[ρ])
δρ(r)

≡ −δ(βF [ρ]− βFid[ρ])
δρ(r)

, (4.14)

c(2)(r1, r2) =
δc(1)(r1)
δρ(r2)

= − δ2(βFex[ρ])
δρ(r2)δρ(r1)

= c(2)(r2, r1), (4.15)

that is

c(n)(r1, . . . , r2) =
δc(n−1)(r1 . . . , rn−1)

δρ(rn)
,
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where the tilde in the density variable is omitted. Fex[ρ] is the excess (over ideal)
Helmholtz free energy functional arising from the interactions. Using (4.13) and (4.14),
equation (4.12) may be re-expressed as

Λ3ρ(r) = exp[βu(r) + c(1)(r)], (4.16)

where c(1) is itself a functional of ρ(r). For an ideal gas c(1) ≡ 0 and (4.16) reduces to
the familiar barometric law for the density distribution in the presence of an external
field. Thus (4.16) implies that −β−1c(1)(r) acts as an additional effective one-body
potential in determining self-consistently the equilibrium density. This quantity is the
classical analog of the effective one-body potential

∫
dr′n(r′)/|r − r′| + δExc[n]/δn(r)

entering the Kohn and Sham theory [10] for the electron density n(r), where Exc[n]
is the exchange-correlation functional. That potential enters a one-electron Schrödinger
equation appropriate to a noninteracting electron liquid. The presence of the exponential
in (4.16) reflects the corresponding classical behavior, ı.e. the form of the barometric
law is retained.

In a uniform fluid with V (r) ≡ 0, (4.16) reduces to

µ(ρ) = µid(ρ)− β−1c(1)(ρ), (4.17)

with µid(ρ) = dfid/dρ = β−1 ln Λ3ρ, so that c(1)(ρ) is proportional to the excess (over
ideal) chemical potential. Equation (4.16) is also equivalent to Widom’s potential dis-
tribution formula, as pointed out by Henderson [11]. From (4.14), (4.15) and (4.12) we
find that

c(2)(r1, r2) =
δ(r1 − r2)
ρ(r1)

− β δu(r1)
δρ(r2)

, (4.18)

where the second term is [via (4.7)] −G−1(r1, r2), the functional inverse being defined
as ∫

dr3G
−1(r1, r3)G(r3, r2) = δ(r1 − r2). (4.19)

thus c(2) is (essentially) the inverse of the density-density correlation function G. With
(4.8), (4.18) and (4.19) together imply the integral equation

h(r1, r2) = c(2)(r1, r2) +
∫
dr3h(r1, r3)ρ(r3)c(2)(r3, r2), (4.20)

relating the two-body direct correlation function c(2) of the inhomogeneous fluid to the
total correlation function h defined by

ρ(r1)ρ(r2)h(r1, r2) ≡ ρ(2)(r1, r2)− ρ(r1)ρ(r2). (4.21)

Equation (4.20) is the familiar Ornstein-Zernike equation for an inhomogeneous fluid [1,
5]. Often this is used to define c(2). However, we see that this equation follows as
a natural consequence of having two generating functionals ΩV and F linked by the
Legendre transform (4.10); that is, (4.19) is equivalent to∫

dr3
δ2F

δρ(r1)δρ(r3)
δ2ΩV

δu(r3)δu(r2)
= −δ(r1 − r2). (4.22)
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Thus the direct correlation function hierarchy has equal status with the standard dis-
tribution function hierarchy of liquid state theory [1, 5]. Indeed, the existence of two
hierarchies, generated by two generating functionals, is a common procedure in many-
body theory. In field theoretical treatments [12] of statistical mechanics, the analog of
F [ρ] is Γ[Φ̄], the generating functional for the vertex functions Γ(N), with Φ̄, the averaged
order parameter, being the analog of the average density ρ(r).

An excellent review by Henderson [11] describes how this DFT formalism can be
used to derive several exact sum rules linking correlation functions to thermodynamic
quantities in inhomogeneous fluids.

4.2 The Free-Energy via Integration

There are several routes to the calculation of the free energy of an inhomogeneous
fluid [7]. Here we describe one of these. Consider an initial fluid state with density
ρi(r) and a final state with density ρ(r) at the same temperature T and suppose that
these can be linked by a linear path in the space of density functions characterized by a
single coupling parameter α:

ρα ≡ ρ(r;α) = ρi(r) + α(ρ(r)− ρi(r))
≡ ρi(r) + α∆ρ(r), (4.23)

with 0 ≤ α ≤ 1. Integration of (4.14) yields

βFex[ρ] = βFex[ρi]−
∫ 1

0
dα

∫
dr∆ρ(r)c(1)([ρα; r]), (4.24)

where the functional dependence of c(1) is made explicit. A second integration [see (4.15)]
gives

c(1)([ρα]; r1) = c(1)([ρi]; r1) +
∫ α

0
dα′

∫
dr2∆ρ(r2)c(2)([ρα′ ]; r1, r2). (4.25)

For a uniform fluid (4.25) simplifies,with ρi ≡ 0, to

c(1)(ρ) =
∫ ρ

0
dρ′
∫
dr2c

(2)(ρ′; r1, r2), (4.26)

so that
∂c(1)(ρ)
∂ρ

=
∫
drc(2)(ρ; r), (4.27)

which, by virtue of (4.17), is equivalent to

βρ

(
∂µ

∂ρ

)
T

= 1− ρ
∫
drc(2)(ρ; r). (4.28)
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This equation is simply a statement of the compressibility sum rule as c(2)(ρ; r1, r2) ≡
c(2)(ρ; |r1 − r2|) is the (two-body) direct correlation function of the bulk fluid-see (2.19)
and (2.20). Equations (4.24) and (4.25) can be combined to give

βFex[ρ] = βFex[ρi]−
∫
dr∆ρ(r)c(1)([ρi]; r)

−
∫ 1

0
dα

∫
dr1∆ρ(r1)

∫ α

0
dα′

∫
dr2∆ρ(r2)c(2)([ρα′ ]; r1, r2). (4.29)

As emphasized by Saam and Ebner [13] this result should be independent of the choice
(4.23) of integration path; recall that Fex[ρ] is a unique functional of ρ(r). A more
familiar version of (4.29) emerges when ρi ≡ 0 and the final state is a uniform fluid of
density ρ. The total Helmholtz free energy density is

f(ρ) = fid(ρ) + β−1ρ2

∫ 1

0
dα(α− 1)

∫
drc(2)(αρ; r), (4.30)

where an identity has been used to reduce the double integration over α and α′ to a
single integration [5]. Use of (4.30) requires integration paths in a single phase region.

Note that (4.29) is the starting point for the modern theory of freezing. The initial
reference state is a bulk liquid and the final state is a bulk crystal-viewed as an inhomo-
geneous fluid. This approach requires the two-body direct correlation function, c(2), as
a functional of ρ(r) and approximations must be made. Some of these are described in
the lectures of Löwen at this School.

4.3 Hard Rods in One Dimension: An Exactly Solvable
Model

There is no continuum model for which the statistical mechanics can be solved exactly in
three dimensions. Thus there is no model for which the functional F [ρ] is known exactly
in three dimensions. In one dimension, however, exact results do exist for particles with
nearest-neighbor interactions. Percus [14] derived an integral equation for the density
profile ρ(z) of a one-dimensional fluid of hard rods (length σ) in an arbitrary external
potential V (z) via functional differentiation of the grand partition function with respect
to u(z) ≡ µ−V (z). Robledo [15] obtained the same equation from potential distribution
theory, while Robledo and Varea [16] and Percus [17] constructed the functional ΩV [ρ].
This is

ΩV [ρ] = Fid[ρ] + Fex[ρ]−
∫
dzu(z)ρ(z), (4.31)

with the excess free-energy functional for hard rods in one dimension given by

Fex[ρ] ≡ Fhr
ex = β−1

∫
dzρ(z) ln[1− t(z)], (4.32)
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where t(z) =
∫ z
z−σ dyρ(y). Requiring ΩV [ρ] to be minimum yields Percus’s equation for

the profile:

βu(z) = ln
Λρ(z)

1− t(z)
+
∫ z+σ

z
dy

ρ(y)
1− t(y)

. (4.33)

c(2), (c(3)), and so on, can be obtained by further functional differentiation and can
be shown [14] to be of finite range in all pairs of variables [e.g., c(2)(z, z′) = 0 unless
|z−z′| ≤ σ]. Percus [17] also considered the case of sticky hard rods, deriving ΩV [ρ] and
showing that c(2) vanishes beyond the range of the core. For the special case of hard
rods confined by two hard walls, Robledo and Rowlinson [18] have obtained a complete
set of results, including the n-body distribution functions and the solvation force (the
excess pressure brought about by confinement). Vanderlick et. al. [19] have extended the
work of Percus to mixtures of hard rods in an arbitrary external field, and these authors
provide many results for density profiles, selective adsorption, and solvation force of a
binary mixture confined between two walls.

Do these exact solutions guide us toward an effective approximation for fluids in
higher dimensions? This question was posed by Percus [17] and Robledo and Varea [16],
who suggested possible approximation schemes for higher dimensions based on (4.32).
The excess free energy functional for hard-rod mixtures can be written as

βFhr
ex [{ρi}] =

∫
dzΦhr({nα(z)}), (4.34)

where ρi is the average density profile of species i, with i = 1, 2 . . . , ν. The ‘radius’ of
species i is Ri so that the length of a rod of species i is 2Ri. β−1Φhr is the excess free
energy density which is a function, not a functional, of a set of weighted densities nα.
The latter are defined by

nα(z) =
ν∑
i=1

∫
dz′ρi(z′)w

(α)
i (z − z′), (4.35)

ı.e. sums over all species of convolutions of the actual density with weight functions w(α)
i

that are specific to the geometry of species i. In this one dimensional case there are two
different weight functions for each species, namely

w
(0)
i (z) =

1
2

(δ(z −Ri) + δ(z +Ri)), (4.36)

that is associated with the ends (the ‘surface’) of the rod, and

w
(1)
i (z) = Θ(Ri − |z|), (4.37)

that can be associated with the ‘volume’ of the rod.
The free energy density is given by

Φhr(nα) = −n0 ln(1− n1), (4.38)
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and one should note that the excess free energy per particle of a uniform hard-rod fluid
of density ρ is

ψhr
ex(ρ) = −β−1 ln(1− ρσ). (4.39)

It is straightforward to show that (4.34) reduces to (4.32) for the one-component case
with σ = 2R.

That the exact one-dimensional hard-rod free energy functional should possess such
a simple structure is remarkable and was an important ingredient in motivating Rosen-
feld’s Fundamental Measures Theory (FMT) of hard-sphere mixtures [20]. The FMT
functional has the same form as (4.34) but now with weighted densities that are con-
volutions of the density profiles with weight functions depending on the geometrical
properties of the spheres. We return to Rosenfeld’s FMT in Section 5.3.1.
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Chapter 5

Approximate Free Energy
Functionals

5.1 The Strategy and its Shortcomings

As emphasized in earlier Sections, most applications of DFT are based upon an explicit
approximation for the functional F [ρ]. Once this is given, the equilibrium density profile
ρ(r) and grand potential Ω are determined by minimization of the corresponding ΩV [ρ],
ı.e. by (4.10) and (4.11), for specified T , µ and external potential V (r).

A second functional differentiation yields the (approximate) two-body direct correla-
tion function c(2) and the density-density correlation function G(r1, r2) follows from the
Ornstein-Zernike equation (4.19) or (4.20). From a pragmatic viewpoint this strategy
is appealing. The reliability and accuracy of the results should reflect the skill with
which F [ρ] is constructed for the particular model Hamiltonian. For certain problems
one might be able to extract understanding of the essential phenomena using very crude
approximations. For others, which demand detailed information about the microscopic
structure, sophisticated approximations will be required. From a more fundamental
statistical mechanics viewpoint the strategy is less satisfactory. There is always great
danger of losing sight of the Hamiltonian. Once F [ρ] is specified, all equilibrium proper-
ties are determined, so there is a temptation to regard F [ρ] as defining some model fluid.
If F [ρ] corresponds to some exactly solved model, as in the case of hard rods, there is a
one-to-one relationship between the functional and the Hamiltonian. If, however, F [ρ] is
merely some (intelligently chosen) functional, there is no reason to expect the resulting
properties to be those which would correspond to exact solution of any Hamiltonian, let
alone the original [5].

Phase transitions warrant particular attention. We cannot expect any approximate
density functional treatment to provide a full description of phase transitions. Most
approximate functionals are mean field in character, so that certain (but not all) effects
of fluctuations will necessarily be omitted. An important case is that of a fluid-fluid
interface in a weak gravitational field where thermal capillary-wave-like fluctuations
play a role. DFT treatments omit the fluctuation-induced broadening of the interfacial
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density profile; these shortcomings of DFT are discussed in Ref. [5]-see Section 5. Since
most DFT approaches treat attractive interactions in mean-field fashion they do not
account properly for bulk critical fluctuations, ı.e. these associated with a diverging
bulk correlation length, and the critical exponents take their mean-field values.

It is worth pointing out the difference between the density functional strategy and the
more conventional field-theoretical approach. There one does not normally make direct
approximations to the generating functional Γ[Φ̄]; rather, one uses the machinery of loop
expansions, etc., to generate systematic approximations for thermodynamic functions
and correlation functions [12]. This usually allows one to keep track of fluctuation effects.
However, field-theoretical treatments of realistic models of inhomogeneous fluids are not
easy! By approximating Γ[Φ̄] (or F [ρ]) directly it is sometimes difficult to ascertain
what, if any, fluctuation effects are being incorporated into the theory. The well-known
Fisk-Widom [21] theory of the liquid-gas interface near the bulk critical point is in this
spirit. Although their functional omits interfacial (capillary-wave induced) broadening
of the density profile, it is constructed so as to incorporate the effects of bulk critical
fluctuations, ı.e. the correct bulk critical exponents.

The classical density functional strategy is very much in keeping with that used for
electronic properties. In the Hohenberg-Kohn-Sham scheme the analog of Fex[ρ] is the
energy functional

1
2

∫ ∫
drdr′

n(r)n(r′)
|r− r′|

+ Exc[n],

and approximations are sought for Exc[n]. Simple Hartree theory sets Exc[n] = 0, and
includes only the explicit electrostatic energy. For classical atomic fluids where the
pairwise potential φ(r) has both repulsive and attractive contributions the division of
Fex[ρ] is not so obvious. For ionic liquids, however, it is natural to separate out the
total electrostatic energy and seek approximations for the remaining part of Fex, which
is then the classical analog of the exchange and correlation functional Exc[n]. Note
that the Poisson-Boltzmann theory of charged fluids is equivalent to including only the
electrostatic contribution to Fex, see e.g. [22].

In the remainder of this section we describe various approximations for F [ρ], some
generic and others specific to particular model fluids.

5.2 Two Generic Examples

5.2.1 Square-Gradient Approximation

The best known approximation is probably that arising from truncating the gradient
expansion of Fex[ρ]. This is derived by supposing that the density ρ(r) ≡ Ψ(r/r0),
where the scale parameter r0 → ∞. Then the density may vary by large amounts but
over a long distance scale. One finds [7]:

Fex[ρ] =
∫
dr[fex(ρ(r)) + f2(ρ(r))(∇ρ(r))2 +O(∇ρ)4]. (5.1)
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Successive terms correspond to successive powers of r−1
0 and symmetry arguments, equiv-

alent to those used in Landau theory, eliminate certain terms. fex(ρ) is the excess
Helmholtz free-energy density of a uniform fluid of density ρ, so that truncating the
expansion after the first term constitutes the local density approximation. Note that
the exact ideal gas contribution (4.13) does have local density form. The other coeffi-
cients, f2(ρ), and so on, can only be determined by imposing additional requirements on
Fex[ρ] . A natural choice is that (5.1) should be consistent with linear response theory,
ı.e. with the change of free energy obtained by creating an infinitesimal perturbation of
the density δρ(r) away from that of a uniform fluid. That change can be obtained by
functional Taylor expansion and involves the direct correlation functions of the uniform
fluid [7]. It is found that

f2(ρ) = (12β)−1

∫
drr2c(2)(ρ; r). (5.2)

Higher-order coefficients depend on integrals of c(n) with n > 2 and are much less
amenable to calculation. For this reason and for overall simplicity (5.1) is usually trun-
cated after the second term. With some means (e.g., via integral equation or pertur-
bation theory) of calculating c(2)(ρ; r), and hence fex(ρ) and f2(ρ), for bulk fluids (5.1)
constitutes a very simple but fully microscopic theory for an inhomogeneous fluid.

Formally, the square-gradient approximation should be valid only for the case of very
slowly varying density profiles, such as would pertain for the fluid-fluid interface near
the bulk critical point or for a (single phase) fluid in a gravitational field.

The neglect of higher-order terms in the expansion has severe repercussions when
the theory is employed for fluids with power-law decaying pairwise potentials φ(r). A
formal gradient expansion does not exist for such potentials. Since c(2)(ρ; r) ∼ −βφ(r) as
r →∞, higher moments of c(2) will diverge if φ(r) ∼ −r−n as r →∞. The most relevant
case is the Lennard-Jones 12-6 potential, which has n = 6. f2(ρ) exists but not higher-
order coefficients. This is reflected in the small k behaviour of the Fourier transform
c(2)(ρ; k), where the presence of a k3 term reflects the −r−6 decay of φ(r) [23, 24].
The square-gradient approximation fails to describe the z−3 algebraic decay of the tails
of ρ(z) at the liquid-gas interface of the Lennard-Jones fluid [25]; rather, it predicts
exponential decay. More important, it cannot account for the proper divergence of the
wetting film thickness in systems that exhibit dispersion (van der Waals) forces. Such
difficulties are best surmounted by treating attractive forces in a nonlocal fashion that
avoids the gradient expansion. In the extreme case of an ionic liquid (n = 1) a gradient
expansion is meaningful only for the residual, non-Coulombic, part of Fex[ρ] [26].

There is another difficulty associated with the implementation of (5.1) with (5.2).
If the fluid exhibits attractive, as well as repulsive interatomic forces, bulk liquid-gas
coexistence may occur. The density of the inhomogeneous fluid may take values locally
that lie within the bulk two-phase region. This is certainly the case for many interfacial
problems. One must decide what values should be used for the free energy density f(ρ),
and how to calculate c(2)(ρ; r). In practice, f(ρ) always has some (generalized) van
der Waals form, so that µ(ρ) = ∂f/∂ρ has a loop for subcritical temperatures. Some
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extrapolation of c(2)(ρ; r) [or f2(ρ)] into the two-phase region is usually made. For the
Lennard-Jones fluid, f2(ρ) is calculated to be weakly density and temperature dependent.
The integral in (5.2) is dominated by the larger r portion, where c(2)(ρ; r) ∼ −βφ(r) and
f2 can be regarded as a positive constant determined primarily by the attractive part of
φ(r). The resulting square-gradient theory is then essentially the same as that used by
van der Waals in his classic theory of the liquid-gas interface [27, 7].

Despite the shortcomings described above, the square-gradient approximation has
proved extremely valuable for a wide variety of interfacial problems, including Cahn’s [28]
seminal paper on wetting transitions. These applications are reviewed briefly in Refs.
[5, 29].

5.2.2 Density Expansions

Consider the exact expression (4.29) for the excess free-energy functional Fex[ρ]. We are
free to choose the initial density ρi(r) to be ρb, that of a uniform (bulk) reference fluid
at the same chemical potential and temperature. Then ∆ρ(r) = ρ(r)−ρb and the grand
potential functional becomes

ΩV [ρ] = Ω[ρb] +
∫
drV (r)ρ(r) + β−1

∫
dr
[
ρ(r) ln

ρ(r)
ρb
− ρ(r) + ρb

]
+ β−1

∫ 1

0
dα(α− 1)

∫
dr1

∫
dr2c

(2)([ρα]; r1, r2)∆ρ(r1)∆ρ(r2), (5.3)

having used (4.17). Suppose now that we neglect the dependence of c(2)([ρα]; r1, r2) on
the coupling parameter α and, for simplicity, set this function equal to the two-body
direct correlation function of the uniform reference fluid, so that:

c(2)([ρα]; r1, r2) ≈ c(2)(ρb; |r1 − r2|). (5.4)

Then (5.3) simplifies to:

ΩV [ρ] = Ω[ρb] +
∫
drV (r)ρ(r) + β−1

∫
dr
[
ρ(r) ln

ρ(r)
ρb
− ρ(r) + ρb

]
− (2β)−1

∫
dr1

∫
dr2c

(2)(ρb; r12)(ρ(r1)− ρb)(ρ(r2)− ρb). (5.5)

This functional can now be minimized, according to (4.11), and yields the following
integral equation for the density profile:

ρ(r1) = ρb exp[−βV (r1) +
∫
dr2c

(2)(ρb; r12)(ρ(r2)− ρb)], (5.6)

which is the same as that obtained by making the HNC closure of the wall-particle
Ornstein-Zernike equation. The wall-particle procedure treats the fluid as a homogeneous
binary mixture of the particles or atoms, constituting the fluid of interest, and large
spheres. One then takes the limit in which the density of the large spheres approaches
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zero so the sphere acts as a structureless wall exerting an external potential V (r). The
Percus-Yevick (PY) version is a simple linearization of part of the exponent in (5.6),
that is,

ρ(r1) = ρb exp[−βV (r1)]
[
1 +

∫
dr2c

(2)(ρb; r12)(ρ(r2)− ρb)
]
. (5.7)

Both equations, along with closely related approximations based on alternative clo-
sures of the wall-particle Ornstein-Zernike equation, have been used in many studies
of the density profile of liquids and gases near planar walls, where the sphere radius
becomes infinite. While these theories are quite successful at describing the oscillatory
profiles of hard spheres near planar hard walls, they are less successful when the fluid
possesses an attractive, as well as a repulsive, component in the interatomic potential.
One severe drawback of this type of theory is their inability to account for the presence
of macroscopically thick wetting (or drying) films at a wall-fluid interface [30] or for the
phenomenon of critical adsorption, which arises from the slow, algebraic decay of the
density profile associated with the diverging bulk correlation length [31]. Such theories
are not capable of describing phase transitions at fluid interfaces.

Their deficiencies can be best understood by reconsidering their generating functional
(5.5). Clearly, this approximation retains only terms quadratic in the perturbation
ρ(r)− ρb; the logarithm merely reflects the ideal gas contribution. Note that c(2)(ρb; r)
is fixed once µ and T are specified. If one considers (5.5) for bulk densities ρ, other than
the initial ρb, one finds that the grand potential density

ω(ρ) = ω(ρb) + β−1

(
ρ ln

ρ

ρb
− ρ+ ρb

)
− β−1

2

∫
drc(2)(ρb; r)(ρ− ρb)2, (5.8)

cannot account for liquid-gas coexistence [30]. A quadratic approximation is insufficient
to describe two minima, which is a necessary requirement for coexistence in the uniform
fluid. If the functional does not exhibit two minima (corresponding to bulk liquid and
bulk gas), it cannot describe the development of a macroscopic wetting film, nor is it
able to describe correctly the interface near the critical point, whose properties reflect
(within the mean field approach) the coalescence of two minima [31].

It is straightforward to show that (5.5) is equivalent to retaining only the quadratic
term in the functional Taylor expansion of Fex[ρ] about the uniform reference value ρb.
The next term in the expansion is

1
3!

∫
dr1

∫
dr2

∫
dr3

δ3Fex[ρ]
δρ(r1)δρ(r2)δρ(r3)

∣∣∣∣
ρb

(ρ(r1)− ρb)(ρ(r2)− ρb)(ρ(r3)− ρb),

where the functional derivative can be identified with −β−1c(3)(ρb; r1, r2, r3), the three-
body direct correlation function of the uniform fluid. Including such a term is sufficient to
ensure that ω(ρ) does have two minima, so that coexistence and wetting are possible [32].
Applications and limitations of theories that include (approximately) the third-order
term are reviewed briefly in Ref.[5].

Perhaps the best known application of the quadratic approximation (5.5) is in DFT
treatments of the freezing transition in bulk liquids. In this context ρb in (5.5) refers to
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the density of a uniform liquid and ρ(r) to the average one-body density of the crystal;
V (r) ≡ 0. This approach to freezing was pioneered by Ramakrishnan and Yussouf [33, 34]
and placed in the context of DFT by Haymet and Oxtoby [35]. We do not describe this
work here as it will be covered in the lectures of Löwen. Rather we simply remark that,
when considered as an approximate generating functional, (5.5) asserts,

c(2)(r1, r2) = −β δ2Fex[ρ]
δρ(r1)δρ(r2)

= c(2)(ρb; r12), (5.9)

i.e. the pair direct correlation function of any inhomogeneous fluid, including the crystal,
is equal to that of the bulk reference liquid. Clearly this constitutes a drastic assumption!
That freezing does occur in this approximation (the free energy of the crystal with an
imposed periodic density can be lower than that of the uniform liquid) for certain model
systems might strike the reader as surprising, especially in the light of our remarks
about the failure of this approximation to account for liquid-gas coexistence and wetting
phenomena.

We conclude this subsection with a brief discussion of the structure of bulk fluids
based on considerations that are similar to those above.

Consider a fluid with uniform density ρb, single out one atom, or test particle, and
measure the positions of the remaining with respect to the center of that atom. Each
of these atoms will experience an external potential that is identical to the interatomic
pair potential φ(r) ≡ φ(r) exerted by the atom fixed at the origin. Percus [36] observed
that the fluid then has a nonuniform density profile

ρ(r) ≡ ρ(r) ≡ ρbg(r), (5.10)

where g(r) is the radial distribution function. It is clear that an approximate density
functional theory, when applied to this particular type of inhomogeneity, will yield an
approximation for g(r); minimization of the approximate ΩV [ρ], with V (r) = φ(r), and
solution of the resulting Euler-Lagrange equation is all that is required. Such a procedure
yields standard integral equation theories of liquids and suggests new approximations.

The density profile can be expressed [see (4.16) and (4.17)] in the form

ρ(r) = ρb exp[−βφ(r) + c(1)([ρ]; r)− c(1)(ρb)], (5.11)

which leads, via (5.10), to a self-consistency equation for the radial distribution function,

g(r) = exp[−βφ(r) + c(1)([ρbg]; r)− c(1)(ρb)]. (5.12)

The exponent can be re-expressed, using (4.25) with ρi = ρb, as,

c(1)([ρ]; r1)− c(1)(ρb) =
∫ 1

0
dα

∫
dr2(ρ(r2)− ρb)c(2)([ρα]; r1, r2),

so that (5.12) becomes

ln g(r1) = −βφ(r1) +
∫ 1

0
dα

∫
dr2ρbh(r2)c(2)([ρα]; r1, r2), (5.13)
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where h(r) ≡ g(r)−1 = ρ(r)/ρb−1 is the total correlation function of the uniform fluid.
Equation (5.13) is still exact but of no practical use until some approximation is made
for c(2)([ρα]; r1, r2), the quantity that refers to the nonuniform fluid of density ρα(r).
The HNC approximation simply replaces this quantity by c(2)(ρb; r12), its value in the
initial (bulk) state with α = 0 [see (5.4)]. Thus the bulk HNC closure is

ln g(r1) = −βφ(r1) + ρb

∫
dr2h(r2)c(2)(ρb; r12). (5.14)

Using the uniform fluid OZ equation, which follows from (4.20) with ρ(r) = ρb,

h(r1) = c(2)(ρb; r1) + ρb

∫
dr2h(r2)c(2)(ρb; r12), (5.15)

(5.14) reduces to the familiar bulk HNC form

g(r) = exp[−βφ(r) + h(r)− c(2)(ρb; r)]. HNC (5.16)

The bridge or elemental diagrams that are missing in the HNC can be reinstated formally
via the inclusion of the bridge function B(r):

g(r) = exp[−βφ(r) + h(r)− c(2)(ρb; r) +B(r)]. (5.17)

Approximate integral equation theories correspond to different prescriptions for B(r)
and some of the more sophisticated, modern versions yield results for both structure
and thermodynamic functions that are in excellent agreement with simulation (e.g. [1]
and [37]).

Comparison of (5.12) and (5.17) shows that B(r) may be expressed as

B(r) = c(1)([ρbg]; r)− c(1)(ρb)− h(r) + c(2)(ρb; r). (5.18)

By expanding the first term about the density of the bulk fluid, we obtain

c(1)([ρbg]; r1) = c(1)(ρb) + ρb

∫
dr2h(r2)c(2)(ρb; r12)

+
∞∑
n=2

ρnb
n!

∫
dr2 . . .

∫
drn+1h(r2) . . . h(rn+1)c(n+1)(ρb; r1, . . . , rn+1). (5.19)

Use of the OZ equation (5.15) then leads to the exact expansion for the bridge function

B(r1) =
∞∑
n=2

ρnb
n!

∫
dr2 . . .

∫
drn+1h(r2) . . . h(rn+1)c(n+1)(ρb; r1, . . . , rn+1), (5.20)

in terms of the high-order direct correlation functions c(n) of the uniform fluid.
Truncation of (5.19) after the first order term, proportional to ρb, yields using (5.18)

and (5.15), B(r) = 0, ı.e. the HNC approximation (5.16). It is well-known [1] that the
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HNC constitutes a reliable closure approximation for determining the structure of bulk
fluids where the interatomic potential is long-ranged, e.g. in ionic fluids.

Approximations that go beyond HNC can be obtained by making assumptions about
c(3) etc. entering (5.20). For example Barrat et. al. [38] used a real-space factorization
ansatz for c(3) and neglected terms with n > 2 to construct an approximation for B(r)
and the resulting theory proved successful for soft spheres, the Lennard-Jones liquid and
the OCP.

5.3 Approximations for Specific Model Fluids

In this subsection we describe approximate DFT’s that have been developed for specific
types of model fluid. In contrast to the interacting electron liquid where one seeks
the universal exchange correlation function Exc[n], valid for all electronic materials, in
classical DFT one often constructs an approximate functional Fex[ρ] that is designed to
treat a fluid of a particular type. The efficacy of a given DFT approximation can often
be tested by making comparisons with computer simulation results.

We consider three different types of model fluid; these illustrate three very different
approximate DFT’s.

5.3.1 Hard-Sphere Fluids

Hard-sphere models play a vital role in the theory and simulation of liquids. At first site
one might think that the properties of such systems would be rather dull. However, as
mentioned in Section 2.2 even the single component hard-sphere model does something
interesting. It is well-established from simulations that the model undergoes a first-
order freezing transition to a fcc crystal at a reduced density ρlσ

3 = 0.943 and the
crystal melts at ρsσ

3 = 1.041, where σ is the hard-sphere diameter. This purely entropy
driven transition is described in the lectures by H. Löwen.

The binary hard-sphere mixture is defined by the pair potentials,

φhs
ij (r) =

{
∞; r > σij ,
0; otherwise,

(5.21)

where i, j = 1, 2 label the species with diameter σij . Additive mixtures are defined by
σ12 = (σ11 + σ22)/2. These exhibit a plethora of different crystal structures; the phase
diagram depends sensitively on the size ratio q = σ22/σ11. There is much discussion in
the literature as to whether additive hard-sphere mixtures can exhibit fluid-fluid phase
separation driven by so-called depletion attraction, i.e. whether the effective interaction
between two large spheres (species 1) is sufficiently attractive at short separations, as
a result of excluding the smaller species 2, to lead to two coexisting fluid phases. The
present consensus from Monte Carlo simulations of the actual binary mixture and of
studies of effective one-component models, is that fluid-fluid phase separation can occur
for small size ratios q . 0.1 but this is always metastable with respect to the fluid-
solid transition [39]. Strikingly for q . 0.05 there is a stable, isostructural solid-solid
transition occurring at high densities of the large spheres.
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One can also consider non-additive hard-sphere mixtures. These are defined by (5.21)
but now σ12 = (σ11+σ22)(1+∆)/2 with the non-additivity parameter ∆ 6= 0. For positive
non-additivity, ∆ > 0, the mixed state is disfavoured since the cross 12 interaction
sets in at larger separations than the mean of the 11 and 22 interactions and stable
fluid-fluid phase separation can occur in asymmetric mixtures with q = 0.1 [40]. An
extreme non-additive mixture is the Asakura-Oosawa-Vrij (AO) model [41, 42, 43] of
colloid-polymer mixtures in which the colloid-colloid interaction is hard-sphere like, with
diameter σcc, and the colloid-polymer interaction is also hard-sphere like with diameter
σcp, whereas the polymer-polymer interaction is zero, i.e. σpp = 0, corresponding to
ideal interpenetrating coils. The cross-diameter σcp = (σcc + 2Rg)/2, where Rg is the
radius of gyration of the polymer, so that ∆ = 2Rg/σcc. Approximate theories and
simulation studies have shown that when the ratio 2Rg/σcc is & 0.35 fluid-fluid phase
separation is stable with respect to the fluid-solid transition, e.g. Refs. [44, 45].

DFT’s have been developed for additive and non-additive hard-sphere mixtures.
Most effort has focused on pure fluids and on the additive case. We do not attempt
to review early work in any detail here. Since about 1980 there have many attempts
to develop weighted (or smoothed) density approximations. The general idea was to
introduce a coarse-graining procedure whereby a smoothed density ρ̄(r) (or the set ρ̄i(r)
for the mixture) is constructed as an average of the true density profile ρ(r) over a local
volume. The pronounced peaks that occur in the oscillatory profile arising from the
packing of the spheres, and where the local density may exceed that of close packing,
are smoothed out in the coarse-grained ρ̄(r) so the excess free energy functional for a
pure fluid should be well-represented by a local function of ρ̄(r):

F hs
ex [ρ] =

∫
drρ(r)ψhs

ex(ρ̄(r)), (5.22)

where ψhs
ex(ρ) is the excess, over ideal, free energy per hard-sphere. Different weighted

density approximations (WDA) correspond to different recipies for constructing ρ̄(r) [5].
Note that (5.22) is similar in form to the exact result (4.34) for hard-rods. Some of these
recipes are remarkably successfully in accounting for the density profiles of hard-spheres
adsorbed at walls or confined in slit pores; a summary is given in Ref. [5].

However, it is probably fair to argue that the FMT approach of Rosenfeld [20];
developed in 1989, has superseded the earlier approaches and is certainly the most
widely-used theory (550 citations in ISI web of science as of August 2009). In these
lectures we present a brief overview of FMT and some of its modifications and extensions.

Additive Mixtures: Rosenfeld Fundamental Measure Theory (FMT)

The original Rosenfeld theory was developed specifically for a ν component additive
hard-sphere mixture in three dimensions D = 3 (Note that in this Section we use capital
D for dimensionality rather than lower case d). It was motivated in part by the form
of the exact excess free energy functional (4.34) for a hard-rod mixture in D = 1. The
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other key ingredient is the exact low density limit:

βFex[{ρi}] = −1
2

∑
ij

∫
dr
∫
dr′ρi(r)ρj(r′)fij(|r− r′|), (5.23)

valid for any fluid in the limit where all average one-body densities {ρi(r)} → 0. The
Mayer f function between particles of species i and j is

fij(r) = exp(−βφij(r))− 1, (5.24)

where, as usual, φij(r) is the pair potential between particles i and j. Equation (5.23)
retains only the lowest-order term in a virial expansion of the functional. Taking the
second functional derivative yields c(2)

ij (r, r′) = fij(|r− r′|). The next term in the virial
expansion contains the product of three Mayer bonds. For the particular case of hard
spheres,

fij(r) =
{
−1; r < Ri +Rj ,
0; otherwise,

= −θ(Ri +Rj − r), (5.25)

where Ri is the radius of species i, i = 1, . . . , ν, and θ is the Heaviside (step) function.
Rosenfeld [20] showed that these Mayer f functions can be decomposed as follows:

−fij(r) = ω
(3)
i ⊗ω

(0)
j +ω(0)

i ⊗ω
(3)
j +ω(2)

i ⊗ω
(1)
j +ω(1)

i ⊗ω
(2)
j −ω

(2)
i ⊗ω

(1)
j −ω

(1)
i ⊗ω

(2)
j , (5.26)

where the six weight functions are given by

ω
(3)
i (r) = θ(Ri − r),

ω
(2)
i (r) = δ(Ri − r); ω

(2)
i (r) =

r
r
δ(Ri − r),

ω
(1)
i (r) =

ω
(2)
i (r)
4πRi

; ω
(1)
i (r) =

ω
(2)
i (r)

4πRi
(5.27)

ω
(0)
i (r) =

ω
(2)
i (r)

4πR2
i

,

and the symbol ⊗ denotes the 3 dimensional convolution of the weight functions:

ω
(α)
i ⊗ ω(β)

j (r = ri − rj) =
∫
dr′ω(α)

i (r′ − ri)ω
(β)
j (r′ − rj). (5.28)

For vector weights a scalar product is also implied.
The deconvolution (5.26) is of the same form as that of the Mayer f function for

hard-rods in D = 1 where

−fhr
ij (z) = ω

(1)
i ⊗ ω

(0)
j + ω

(0)
i ⊗ ω

(1)
j , (5.29)
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with the weight functions given by (4.36) and (4.37) and the convolution is the one-
dimensional version of (5.28).

The weight functions (5.27) yield six weighted densities {nα(r)} defined analogously
to the one-dimensional case:

nα(r) =
ν∑
i=1

∫
dr′ρi(r′)ω

(α)
i (r− r′). (5.30)

Now α labels four scalar and two vector weights. Note that for a uniform fluid of
constant species density ρi both vector weighted densities n1 and n2 vanish and the
scalar weighted densities reduce to the four scaled particle variables [46], i.e. nα →
ξ(α), α = 0, 1, 2, 3 where ξ(3) = 4π

3

∑
i ρiR

3
i , ξ

(2) = 4π
∑

i ρiR
2
i , ξ

(1) =
∑

i ρiRi and
ξ(0) =

∑
i ρi and the summation is over all species. Clearly ξ(3) is the total packing

fraction of the mixture. The {ω(α)
i } are characteristic functions of the sphere of radius

Ri. This becomes clear on integrating each weight w(α)
i . For α = 3 one obtains the

volume Vi = 4πR3
i /3; for α = 2 the surface area Si = 4πR2

i ; for α = 1 the mean radius
of curvature Ri; and for α = 0 the Euler characteristic which is simply 1. These are the
fundamental geometric measures of the sphere of species i in three dimensions.

Following (4.34) for the exact one-dimensional case, Rosenfeld made the following
ansatz for the excess free energy functional of the hard-sphere mixture:

βFex[{ρi}] =
∫
drΦ({nα(r)}), (5.31)

where β−1Φ, the excess free energy density is a function of the weighted densities. Fur-
ther he assumed that

Φ({nα}) = f1(n3)n0 + f2(n3)n1n2 + f3(n3)n1 · n2 + f4(n3)n3
2 + f5(n3)n2n2 · n2, (5.32)

where the coefficients fα depend only on n3. Each term in (5.32) has dimension [length]−3;
this form is motivated by dimensional analysis.

Eqns. (5.31) and (5.32) must recover the exact low density limit (5.23) and this
demands that to lowest order in n3 the fα must have expansions f1 = n3 + O(n2

3),
f2 = 1 +O(n3), f3 = −1 +O(n3), f4 = 1/24π +O(n3), and f5 = −3/24π +O(n3).

For intermediate and high densities it is necessary to impose additional physical re-
quirements in order to determine the coefficients fα. Rosenfeld invoked the requirement:

lim
Ri→∞

(
µiex

Vi

)
= p, (5.33)

where Vi ≡ 4πR3
i /3 is the volume of sphere i. This result simply states that the excess

chemical potential for inserting a hard-sphere of species i into a uniform fluid at pressure
p is pVi plus a contribution proportional to the surface area. µiex is given by

βµiex =
∂Φ
∂ρi

=
∑
α

∂Φ
∂nα

∂nα
∂ρi

, (5.34)
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and from the definition of the scaled particle variables (recall nα = ξ(α) for the uniform
fluid) ∂n3/∂ρi = 4πR3

i /3, ∂n2/∂ρi = 4πR2
i , ∂n1/∂ρi = Ri and ∂n0/∂ρi = 1. Thus

lim
Ri→∞

(
βµiex

Vi

)
=

∂Φ
∂n3

. (5.35)

The pressure is obtained from the thermodynamic relation Ωb = −pV , valid for a bulk
fluid, with the grand potential density given by Ωb/V = β−1Φ+fid−

∑
i ρiµi. Combining

these results and using (5.33) one obtains the scaled particle differential equation,

∂Φ
∂n3

= −Φ +
∑
α

∂Φ
∂nα

nα + n0. (5.36)

Rosenfeld solved this equation for the five coefficients fα; integration constants are chosen
so that the correct low density limits are recovered. The solution is

f1(n3) = − ln(1− n3); f2(n3) = (1− n3)−1; f3(n3) = −f2(n3);
f4(n3) = [24π(1− n3)3]−1; f5(n3) = −3f4(n3). (5.37)

Note that the conditions f3 = −f2 and f5 = −3f4, that determine the contributions of
vector weighted densities to the functional, follow by assuming that the differential equa-
tion constructed for a uniform fluid remains valid in slightly inhomogeneous situations.
Recall that the vector weighted densities vanish in the limit of a uniform fluid.

The resulting functional is usually written as

Φ = Φ1 + Φ2 + Φ3, (5.38)

with
Φ1 = −n0 ln(1− n3); Φ2 =

n1n2 − n1 · n2

1− n3
, (5.39)

and

Φ3 =
n3

2 − 3n2n2 · n2

24π(1− n3)2
. (5.40)

In the limit of a uniform fluid Φ is identical to the Percus-Yevick (compressibility) excess
free energy density of the hard-sphere mixture, expressed in scaled particle variables.
This is known to yield a reasonably accurate equation of state for a large range of total
density, provided the mixture is not very asymmetric.

The functional (5.31) generates a hierarchy of direct correlation functions c(m)
i,...,im

that
have a very simple structure,

c
(m)
i1,...,im

(r1, . . . rm) = −β δmFex[{ρi}]
δρi1(r1) . . . δρik(rm)

= −
∫
dr

∑
α1,...,αm

∂mΦ
∂nα1 . . . ∂nαm

ω
(α1)
i1

(r1 − r) . . . ω(αm)
im

(rm − r). (5.41)
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Once again a scalar product is implied for vector weights. In the uniform fluid, where
the weighted densities are independent of position, the form is particularly simple. For
example, the pair function (m = 2) has the Fourier transform:

c
(2)
ij (k) = −

∑
α,β

∂2Φ
∂nα∂nβ

ω
(α)
i (k)ω(β)

j (k), (5.42)

where k is the wave number.
It turns out that these pair direct correlation functions c(2)

ij are identical to those
from the Percus-Yevick (PY) theory of the uniform mixture. The PY theory provides a
good description of the pair correlation functions of hard-sphere mixtures for moderate
total densities and asymmetries that are not too extreme.

It is remarkable that the geometrically-based approach of Rosenfeld leads to a func-
tional that generates both the free energy density and the pair correlation functions of
the uniform hard-sphere mixture treated in PY approximation. Insightful connection
is made with scaled-particle theory, [46] and although several heuristic assumptions are
made in the derivation, Rosenfeld’s construction of the FMT was a major step forward
in DFT treatments of inhomogeneous hard-particle systems. The mixture aspect is im-
portant; earlier weighted density approximations struggled to treat multi-component
systems [5].

Shortly after Rosenfeld published his paper, Kierlik and Rosinberg [47] presented an
alternative version of the DFT that employs four scalar weight functions and no vector
weights. Two weights are the same as ω(2)

i and ω
(3)
i of (5.27). The other two involve

derivatives of delta functions. By requiring their functional to generate the PY results
for c(2)

ij and the excess free energy density, Kierlik and Rosinberg derived a DFT that
appeared to be different from that of Rosenfeld. Subsequently it was shown [48] that the
two versions are equivalent; they will yield the same density profiles and free energies
for any external potential. The de-convolution of the Mayer f -function is not unique;
the two versions correspond to different de-convolutions.

There have been many applications of the Rosenfeld (or Kierlik-Rosinberg) FMT
for different types of confinement. These include the pure hard-sphere fluid adsorbed
at a single planar wall [47], and mixtures adsorbed at walls or in model pores [49, 50].
The agreement between the results of the FMT and those of computer simulation for
density profiles is generally very good; the functional captures the effects of short-ranged
correlations, i.e. the packing of the spheres that gives rise to strongly oscillatory profiles.
The FMT also captures selectivity effects arising from the difference in size between the
species.

One noteworthy shortcoming of the original Rosenfeld FMT is that it fails to account
for the freezing transition of the pure hard-sphere fluid [20, 47, 49, 50]. Crystallization
can be viewed as a particular type of strong confinement whereby particles remain lo-
calized near their (perfect) lattice sites, undergoing excursions with a small root-mean
square deviation. Considerations of particular classes of confinement led to subsequent
extensions of the theory and we summarize some of these below. A comprehensive re-
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view of the development and extensions of FMT is given in the excellent recent review
by Tarazona et.al. [50]. There is also an illuminating new review by Roth [51].

Extensions and Modifications of the Rosenfeld Functional

Rosenfeld et. al. [52] invoked the notion of dimensional crossover, examined in earlier
weighted density approaches [53], to propose modifications to the FMT. The basic idea
is that a DFT constructed for a three dimensional inhomogeneous fluid should remain an
accurate approximation for lower effective dimensionality D, e.g. for the fluid confined
to very narrow slits (2D), or narrow cylinders (1D) or even cavities that cannot hold
more than one particle (0D).

For a pure fluid in the 2D limit the imposed distribution is ρ(r) = ρ2D(x, y)δ(z),
i.e. a delta function along the z-axis, and the original Rosenfeld FMT with excess free
energy density given by (5.38-5.40) provides a reasonably accurate free energy density.

In the 1D limit where ρ(r) = ρ1D(x)δ(y)δ(z) the dimensional reduction fails since the
term Φ3 given by (5.40) yields non-integrable singularities. However, the sum Φ1 + Φ2

yields the exact result for the excess free energy density Φhr (4.38) in one-dimension.
The strict 0D limit sets ρ(r) = η0δ(x)δ(y)δ(z) where η0 ≤ 1 is the mean number of

particles in the small cavity. Tarazona and Rosenfeld [54] considered the case of a cavity
that cannot hold more than one hard-sphere and showed that provided the distance
between any two points with ρ(r) 6= 0 is < σ, the hard-sphere diameter, the excess free
energy functional can be calculated exactly for any allowed distribution ρ(r). They find

βF0D
ex = φ0 = (1− η0) ln(1− η0) + η0, (5.43)

which depends upon ρ(r) via only its total integral η0 =
∫
drρ(r).

Demanding that a DFT constructed for three dimensions should reproduce the exact
free-energy (5.43) for a 0D cavity is clearly a stringent requirement. In Ref. [52] Rosen-
feld et. al. proposed empirical modifications to Φ3 in the original FMT that yield an
accurate approximation to the 0D free-energy but also retain a good description of the 3D
hard-sphere fluid, i.e. the Percus-Yevick free-energy density and pair direct correlation
functions. Moreover, the modifications provided a rather good description of hard-sphere
freezing. Subsequently Gonzalez et. al. [55] showed that the modified versions performed
better than the original FMT in accounting for the results of Monte Carlo simulations
of the density profile ρ(r) of the hard-sphere fluid confined in a spherical (hard) cavity,
especially for situations where packing constraints lead to a pronounced peak in ρ(r) in
the centre of the cavity.

Tarazona and Rosenfeld [54] developed a new strategy for constructing Fex[ρ] in 3D
based only on the requirement that the exact 0D limit is recovered over a partial set
of cavity shapes. The building blocks are the local packing fraction n3(r) and density
convolutions with spherical δ shells of radius R. Spurious divergences can be eliminated
and it is argued that the free energy of the 3D uniform hard-sphere fluid is an output
of the theory given in terms of successive derivatives of the 0D excess free energy φ0 in
(5.43). There are classes of cavity shapes, termed lost cases, for which the set of one-
centre convolution weight functions used in the original FMT are inadequate. This led
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Tarazona [56] to introduce a dimensional interpolation version of FMT that is designed
to recover the Percus-Yevick c(2)(r) and compressibility equation of state for the uniform
fluid, as in FMT, but uses the elements of Ref. [54] to eliminate the spurious divergences
in the 1D limit and recover the exact 0D limit. The resulting functional has the same
form as FMT but with Φ3 replaced by ΦT

3 that depends on a rank-2 tensor density T(r).
Neglecting the anisotropy of T(r) but retaining its trace: tr[T] = n0(r), one recovers
the original FMT. Retaining the anisotropy ensures the cancellation of the spurious
divergence of Φ3 in the 1D limit. Tarazona’s dimensional interpolation version provides
a remarkably accurate account of the properties of the hard-sphere crystal [56]. In fact
the predicted equation of state is more accurate than the Percus-Yevick compressibility
approximation is for the high-density fluid!

It turns out that extending the dimensional interpolation procedure to additive hard-
sphere mixtures is not straightforward. The direct analogue, somewhat surprisingly, does
not recover the exact 1D limit although the one-component case does and a new rank-3
tensor weighted density must be introduced to correct for this [57]. However, the two
versions yield essentially the same results for a binary mixture, with size ratio 5, adsorbed
at a planar hard wall or in a narrow slit pore suggesting that the simpler to implement
dimensional interpolation version should be sufficient for most purposes [57, 50].

Whilst it is appealing to build DFTs on the basis of the 0D limit, there is, of course,
nothing sacrosanct about this. Pragmatically one seeks a DFT that performs accurately
for a wide range of inhomogeneities; it is a bonus if the theory happens to be based on
an elegant prescription! One such pragmatic approach to improving the one-component
FMT was made by Tarazona [58]. This maintains the dimensional interpolation (tensor)
structure but adjusts Φ3 so that in the fluid phase the very accurate Carnahan-Starling
(CS) equation of state is recovered.

Roth et. al. [59] introduced the so called White Bear version that employs the
accurate Mansoori-Carnahan-Starling-Leland (MCSL) bulk equation of state for binary
mixtures as input to the theory. Roth et. al. solved (5.36) but with the l.h.s. replaced by
the pressure βpMCSL. The coefficients fα are then re-calculated and one finds f1 and f2

unchanged from the original FMT, but f4 is modified. The conditions f3(n3) = −f2(n3)
and f5(n3) = −3f4(n3) are retained. The upshot is that Φ3 in (5.40) is replaced by

ΦWB
3 = (n3

2 − 3n2n2 · n2)
n3 + (1− n3)2 ln(1− n3)

36πn2
3(1− n3)2

. (5.44)

In the limit n3 → 0, f4(n3)→ 1/(24π) and the exact low-density limit of the functional
is recovered. Note that the same free energy density was proposed earlier [47] but not
implemented. The White-Bear functional faces similar problems to those encountered
in the original FMT when applied to the freezing transition or in the 1D or 0D limits.
For a one-component fluid Roth et.al. [59] proposed replacing the term (n3

2− 3n2n2 ·n2)
by the term that enters Tarazona’s [56] tensor version of Φ3. The resulting theory is
identical to that in [58] and improves the values calculated for coexisting liquid and
crystal densities: ρlσ

3 = 0.934 and ρsσ
3 = 1.023. These should be contrasted with the

results of Tarazona’s dimensional interpolation theory, which retains the Percus-Yevick
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equation of state for the fluid and yields ρlσ
3 = 0.892 and ρsσ

3 = 0.985 [58].
The White Bear version generates pair direct correlation functions, via (5.41), that

have the same form as those from the original FMT which, recall, are those of Percus-
Yevick theory. Since the weight functions are the same as those used in FMT the c(2)

ij (r)
of the uniform fluid also vanish for r > Ri +Rj [59]. In the one-component case c(2)(r)
calculated from the White Bear version is in better agreement with simulation results
for ρσ3 = 0.8 than is the Percus-Yevick result [59]. Roth et. al. [59] calculated density
profiles for hard-sphere fluids adsorbed at planar walls. In general the results from the
White Bear version lie very close to those from the Rosenfeld FMT apart from distances
very close to the wall. Density functional theories that are based on weighted density
approximations satisfy the exact hard wall contact theorem, i.e.

∑
i ρwi = βp, where

p is pressure of the bulk fluid far from the wall and ρwi is the local density of species
i in contact with the wall. Since the White Bear version is constructed to yield the
accurate MCSL equation of state for the mixture (and CS for the one component fluid)
it is guaranteed to yield results closer to those of simulation than the original FMT for
distances that are close to contact but not necessarily at larger distances.

Independently of Ref. [59], Yu and Wu [60] developed the same extension of the
theory. Of course, they did not call it the White Bear version. In a subsequent paper Yu
et.al. [61] applied the theory to study size selectivity in polydisperse hard-sphere mixtures
adsorbed at a hard wall. The results agree well with simulation, even better than those
of Pagonabarraga et. al. [62] who used the original Rosenfeld FMT. These applications
to polydisperse systems are important in illustrating the power of the FMT approach
for mixtures. As emphasized earlier, WDA’s are not easily extended to mixtures [5]
whereas Rosenfeld’s FMT is a theory designed specifically for mixtures. It would not be
feasible to tackle problems of polydispersity using WDA’s where the weight functions
depend on the local densities. Another interesting application of FMT, with the empirical
moidifications of Ref. [52], was made in the study of entropic selectivity of hard-sphere
mixtures confined in model nano-pores [63].

We conclude this brief discussion of extensions of the Rosenfeld functional by return-
ing to an issue of self-consistency. Recall that in the derivation of the original Rosenfeld
functional the relation βp = ∂Φ/∂n3 is imposed-see (5.33)-(5.35). The pressure p ob-
tained by solving (5.36) is the scaled particle or Percus-Yevick compressibility result.
Within the White Bear version the above relation is not imposed and one can enquire
how the pressure calculated from this relation differs from pMCSL that is input into the
theory. This was addressed in Ref. [59] for a one-component fluid. Remarkably the pres-
sure given by β−1∂Φ/∂n3 differs by at most 2% from the accurate pCS for densities up
to freezing which attests to the high degree of self-consistency. In contrast the Percus-
Yevick compressibility result overestimates the pressure close to freezing by about 7%.
In later papers Hansen-Goos and Roth [64, 65] proposed a new generalization of the
Carnahan-Starling equation of state to mixtures that is somewhat more accurate than
the MCSL version and derived an excess free energy functional following the White Bear
route. This White Bear Mark II version is constructed so that in the one-component
fluid ∂Φ/∂n3 = βpCS. It was applied successfully to the calculation of the surface ten-
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sion and other interfacial coefficients for a hard-sphere fluid adsorbed at a hard spherical
surface [65]. The review by Roth [51] provides a summary of recent developments and
applications, comparisons between different versions of FMT and gives a valuable guide
to the practical implementation of FMT.

Non-Additive Mixtures

So far we have considered functionals constructed for additive hard-sphere mixtures. In
recent years there has been much progress in designing functionals that will treat specific
non-additive models. This is a rapidly growing topic and we cannot do justice to it in
the present lecture notes. We refer the reader to the review [50] (see Section 7.9) for a
useful overview and to the articles of Schmidt [66] and Brader et.al. [67] for summaries
of developments up to 2003. The last article focuses on models for colloid-polymer
mixtures.

From the outset one should note that non-additive mixtures are considerably more
difficult to treat than additive ones; even in D = 1 the exact free-energy functional is not
known for any non-additive case. Here we mention a few cases where geometry-based
DFT’s have been constructed and applied.

The Asakura-Oosawa-Vrij (AO) model of colloid-polymer mixtures has been well-
studied using a variety of statistical mechanical techniques [67]. Schmidt et.al. [68,
69] devised a DFT specifically for this model following the FMT scheme and the 0D
treatment of Ref. [54]. For the AO model the 0D cavity can hold at most one hard-sphere
colloid but can hold an arbitrary number of ideal polymers if no colloid is present. The
0D excess free energy can be calculated exactly and differs from that in (5.43). The
resulting functional has several appealing features:

i) for a uniform fluid mixture it yields a bulk free energy density that is identical
to that from the free-volume theory of Lekkerkerker et. al. [70] that is known to
provide a reasonable account of fluid phase equilibria in the AO model.

ii) by construction it satisfies the correct 0D limit.

iii) it generates, via the test particle route, the correct depletion potential between
two hard-sphere colloids immersed in the sea of ideal polymer.

iv) the bulk pair direct correlation functions c(2)
ij (r) are given analytically so that the

partial structure factors Sij(k) are given explicitly and the results are in quite good
agreement with those from simulation [69].

v) the theory is linear in the polymer density ρp(r).This ensures c
(2)
pp (r) = 0, as

in Percus-Yevick approximation, and it also means that ρp(r) can be obtained
explicitly as a functional of the colloid density ρc(r), simplyfying the minimization
procedure.

On the negative side the functional does not yield the correct 1D limit. This could be
corrected [50].
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Schmidt et.al. [71] attempted to incorporate polymer-polymer repulsion by introduc-
ing a repulsive step-function pair potential φpp(r) = ε, r < 2Rg and 0 otherwise. The
resulting DFT captures several, but not all of the effects of polymer-polymer excluded
volume interactions that are found in computer simulations of bulk phase behaviour
which employ realistic effective potentials for polymer-polymer interactions [45].

There have been many applications of the DFT for the AO model to inhomoge-
neous colloid-polymer mixtures [67]. These include studies of the ’free’ interface between
colloid-rich (liquid) and colloid-poor (gas) fluid phases and adsorption phenomena at the
interface between the AO mixture and a hard wall. For size ratios 2Rg/σcc between 0.6
and 1.0 rich behaviour is found. For example, oscillatory density profiles are predicted
for the free interface and novel wetting and layering transitions are predicted for the
hard wall-colloid gas interface. The DFT studies motivated computer simulations by
Dijkstra and van Roij [72] who found jumps in the adsorption which they attributed
to layering transitions of the type determined in the DFT calculations of Brader et.al.
As emphasized in Ref. [67] there are important differences between the type of layering
(and wetting) transitions found in the AO model and those found in DFT and simulation
studies of the adsorption of simple gases at strongly attractive substrates. In the latter
case layering always occurs close to the bulk triple point where the density profiles are
highly structured and the individual fluid layers appear very pronounced. By contrast,
in the AO model layering transitions can occur at state points well-removed from the
triple point and the colloid density profiles are not as highly structured.

Other applications of the AO functional are a) to capillary condensation of the AO
mixture confined by two parallel planar hard walls where depletion attraction favours
condensation of the colloid-rich (liquid) phase [73], b) to the mixture exposed to a
standing laser field modelled as an external potential acting on the colloids that can
stabilize a ’stacked’ fluid phase consisting of a periodic succession of liquid and gas
slabs [74], and c) to sedimentation equilibria where a novel floating liquid phase was
found [75].

Another model for which a DFT has been constructed is the Widom-Rowlinson
model [76]. This is a ν-component non-additive hard-sphere mixture of radii Ri where
the mixing rule is such that particles of like species are non-interacting while unlike
species exhibit infinite repulsion for separation r < Ri + Rj and 0, otherwise. This
choice favours fluid-fluid demixing. Schmidt [77] followed the same procedure as for the
AO model, calculating the excess free energy for the 0D cavity and taking derivatives
of this w.r.t. the packing fraction to obtain the quantities entering the free energy
density Φ. The resulting theory provides a reasonably successful description of the radial
distribution functions gij(r) and of fluid-fluid demixing in the uniform binary model,
ν = 2. Two phase coexistence occurs at high total density and the DFT underestimates
the critical density from simulation by about 30%. Nevertheless this value is somewhat
better than from other mean-field treatments [77].

Perhaps the most ambitious development is that of Schmidt [78] who has introduced
a DFT, based on FMT ideas, for a general class of non-additive hard-sphere mixtures.
The jury is out regarding how accurate Schmidt’s functional is when tested against
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simulation.
We do not discuss DFT’s for fluids composed of hard anisotropic particles as this

takes us into the realm of Löwen’s lectures. Rather we alert the reader to the summary
in Sections 7.10 and 7.11 of Ref. [50]. Using a hard potential to model real molecules that
exhibit liquid crystalline phases is often a gross over-simplification. However, for colloid
liquid crystals this is a reasonable first approximation. The Letter by Hansen-Goos and
Mecke [79] represents the state-of-the-art in recent development of FMT for anisotropic
fluids.

5.3.2 The Lennard-Jones (LJ) Type Fluid

How does one devise a DFT for a fluid or a fluid mixture, in which the particles interact
via a pair potential which has both a sharply repulsive piece, dominant at small separa-
tions r, and a longer ranged attractive piece dominating at large r? Such pair potentials
are directly relevant to simple fluids, e.g. the noble gases, and their mixtures. It is for
such systems that one might expect DFT to be most advanced.

In reality there is little progress in treating attractive interactions within DFT. Most
treatments begin by approximating the free energy functional arising from repulsive
interactions by that of a hard sphere system with appropriately chosen hard-sphere
diameters. How one chooses the latter is a matter for discussion but the well-known
Barker-Henderson prescription [1] has the merit of yielding density independent effective
hard sphere diameters. Attractive interactions are usual treated within a mean-field
approximation, i.e. correlations are neglected in this part of the functional. For a
mixture of LJ fluids the standard ansatz for the excess free energy functional is

Fex[{ρi}] = Fhs
ex [{ρi}] +

1
2

∑
i,j

∫
dr
∫
dr′ρi(r)ρj(r′)φatt

ij (r− r′), (5.45)

where Fhs
ex is the excess free energy functional of the hard-sphere mixture, with appropri-

ately chosen diameters. Fhs
ex is obtained from FMT or one of the earlier weighted-density

approximations. φatt
ij (r) is the attractive part of the pair potential between species i and

j.
One can motivate (5.45) in several ways. Formally one can write the free energy func-

tional as that of a suitable repulsive reference fluid at the same temperature and density
distributions {ρi(r)} plus a contribution that incorporates the attractive perturbation-
see eg. (33) in Ref. [5]. By making a crude mean-field approximation in this contribution
and approximating the free energy functional of the reference system by that of a hard
sphere fluid one arrives at (5.45). Note that for a homogeneous binary fluid mixture
(5.45) yields

fex(ρ1, ρ2) = fhs
ex (ρ1, ρ2)− 1

2

∑
i,j

ρiρjaij , (5.46)

for the excess free energy density of a mixture with constant densities ρ1 and ρ2. Here
aij = −

∫
drφatt

ij (r) is the integrated strength of the attractive potential between i and
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j. Clearly (5.46) provides a van der Waals-like approximation for the free energy of the
bulk mixture [1, 5]. Perhaps the best way to understand the approximation (5.45) is to
take two functional derivatives:

c
(2)
ij (r1, r2) = −β δ2Fex[{ρi}]

δρi(r1)δρj(r2)
= chs

ij (r1, r2)− βφatt
ij (r12), (5.47)

i.e. the pair direct correlation function is that of the inhomogeneous hard-sphere mixture
reference fluid chs

ij plus a term proportional to the attractive pair potential. In the limit
of a homogeneous fluid (5.47) reduces to

c
(2)
ij (r12) = chs

ij (r12)− βφatt
ij (r12), (5.48)

where the density dependence in the hard-sphere term has not been made explicit.
Equation (5.48) is often referred to as a random phase approximation (RPA) for treat-
ing attractive pair potentials [1]. It has the advantage of capturing i) short-ranged
correlations arising from repulsive forces between the particles (packing effects) and ii)
the correct asymptotic decay of correlations, i.e. c(2)

ij (r) ≈ −βφij(r), as r → ∞. How-
ever, the RPA treatment provides a poor quantitative account of the radial distribution
functions gij(r), obtained from the mixture generalization of the OZ equation (5.15),
at separations r corresponding to contact. In particular the RPA can yield negative
values of gij(r) inside the hard-core. Moreover the results are dependent upon how the
attractive perturbation φatt

ij (r) is defined inside the core.
Nevertheless, (5.45) remains the work-horse functional for studies of interfacial prob-

lems and effects of confinement in simple fluids and their mixtures. It has several ad-
vantages over the generic approximations discussed in Section 5.2. The main ones are:
i) dispersion forces are incorporated, i.e. the algebraic decay of the pair potentials is
treated properly and ii) it is straightforward to prove that the DFT is thermodynam-
ically consistent, i.e. the resulting density profiles and adsorption are consistent with
the Gibbs adsorption equation and the profiles satisfy certain exact sum rules, including
the hard wall contact theorem mentioned earlier. Thermodynamic consistency is a key
requirement for a DFT since one of the main applications is in studying phase equilibria
in inhomogeneous systems. Results should not depend on which route is employed to
calculate the adsorption. The main disadvantages of (5.45) lie in its mean-field charac-
ter. It is clear from the result (5.46) for the free energy density of the bulk fluid that
the theory will yield van der Waals (mean-field) critical exponents. The RPA treatment
of the attractive potential does not incorporate the effects of bulk critical fluctuations.
In keeping with other DFTs (5.45) also omits the capillary wave fluctuation-induced
broadening of the density profiles at fluid-fluid interfaces in weak external fields.

In spite of these shortcomings, this DFT approximation has found an enormous num-
ber of applications, especially for one-component fluids. Some of these are reviewed in
Ref. [5]. We do not attempt to provide a comprehensive account of the many applica-
tions. Rather we refer the reader to recent papers concerned with the wetting by gas
of a square-well [80] and a Lennard-Jones type liquid [81, 82] adsorbed at a spherical
substrate. These papers illustrate how a DFT that is thermodynamically consistent can
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be used to investigate quantitatively a large variety of interfacial phenomena, including
the subtle behaviour associated with curvature of the substrate. The case of dispersion
forces, equation (2.1), is especially important since in this case a mean-field DFT cap-
tures the correct critical exponents that describe the divergence of the thickness of a
wetting film and the correlation length of density fluctuations parallel to the (planar)
substrate. The technical reason underlying this bonus for DFT is that the upper critical
dimension for both complete and critical wetting in systems with power-law potentials
is < 3 [83].

There have been attempts to improve upon the mean-field treatment of attractive
interactions. Intuitively one expects the integrand in the second term of (5.45) to in-
clude a factor that accounts for the pair correlations of the reference fluid. The formal
treatment outlined in Ref. [5] gives the full expression but this cannot be implemented
without making several approximations. One approach, for a pure fluid, is to insert
a factor ghs(ρ̄; |r − r′|), where the radial distribution function of the hard sphere fluid
is evaluated at some average or weighted density ρ̄ that depends on the local density
at r and r′. The theory becomes considerably more complicated to implement since
functional differentiation of ghs(ρ̄; |r− r′|) is involved [84].

An interesting alternative approach for incorporating attractive interactions into a
FMT has been developed by Lutsko [85]. Oettel [86] has developed a general reference
functional approach. Both approaches seem rather promising.

5.3.3 Soft Core Model Fluids: the RPA Functional

There is a rapidly growing literature on the properties of soft core (penetrable) model
fluids. Much of the motivation for considering such models comes from polymer physics
where blob models describe the effective interaction between the centres of mass of
polymer coils. For example, the Gaussian core model (GCM) defined by

φ(r) = ε exp(−r2/R2), (5.49)

where the energy scale ε > 0 and the range R is roughly the radius of gyration of the
polymer, provides a reasonably accurate description of the effective interaction between
two identical polymer coils in an athermal solvent provided ε ∼ few kBT . Indeed the
Gaussian shape remains a good approximation to the effective potential in dilute and
semidilute solutions of self-avoiding random walk (SAW) polymers and the parameter
ε does not vary strongly with the concentration: ε ≈ 2kBT [87]. The GCM reproduces
the structure and thermodynamic properties of SAW polymer solutions over a wide
concentration range [87]. Such a procedure of integrating out the monomer degrees of
freedom and treating the coils as soft colloids has great appeal. The review by Likos [88]
provides an admirable survey of the soft colloid approach to polymers in solution.

Note that since φ(0) = ε is finite particles can overlap. The homogeneous GCM
has been investigated in great detail and the bulk structure and phase behaviour are
well-studied[89, 90, 91]. In the (T, ρ) plane there is a region below kBT/ε ≈ 0.01 where
increasing ρ leads to freezing into a fcc phase, followed by a fcc-bcc transition, and then
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melting so that the fluid is stable at high densities. For kBT/ε > 0.01 the fluid is stable
at all densities. Detailed comparisons between the results of Monte Carlo simulations
and integral equation theories of liquids have shown that for high densities the HNC
approximation (5.16) provides an excellent account of the radial distribution function
g(r), the liquid structure factor S(k) and the equation of state of the bulk fluid [90, 91].
It is argued [90] that the HNC should be exact in the limit ρR3 →∞. It is also observed
that the very simple random phase approximation (RPA)

c(2)(r) = −βφ(r), ∀r, (5.50)

becomes accurate for very high densities ρR3 > 5 [90, 91]. This implies that the GCM
behaves as a mean-field fluid over a very wide range of density and temperature. As the
density increases the correlation hole becomes weaker and g(r) → 1, for all separations
r of the particles. Such behaviour is very different from that of fluids with hard cores
where short-ranged correlations, induced by packing of the particles, always exist and
become more pronounced at high density. For the soft-core GCM in the limit ρR3 →∞,
the mean inter-particle separation ρ−1/3 become much smaller than R so that a central
particle interacts with a very large number of neighbours- a classic mean-field situation.
Similar considerations apply to other positive definite, bounded pair potentials for which
the RPA should also be valid at high density [90]. Note that (5.50) differs completely
from (5.48). In the latter the RPA is applied to only the attractive tail of the pair
potential; short-ranged correlations are included in the density dependent hard-sphere
term. By contrast (5.50) applies to the full (repulsive) pair potential and the pair direct
correlation function is independent of density ρ.

The simple mean-field (RPA) free energy functional that generates (5.50) is

FRPA
ex =

1
2

∑
i,j

∫
dr
∫
dr′ρi(r)ρj(r′)φij(r− r′), (5.51)

where we have generalized to mixtures with pair potentials φij(r). It is easy to check
that c(2)

ij (r) = −βφij(r) follows from (5.51). In Ref. [91] it was shown that the one-
component version of the functional (5.51) provides an accurate account of the density
profiles of the GCM model adsorbed at a hard wall; results agree closely with those from
Monte Carlo simulations.

Much attention has been focused on the properties of binary mixtures of repulsive
Gaussian core particles since, for certain choices of mixing rules, these can exhibit fluid-
fluid phase separation at sufficiently high total densities [91, 92]. Specifically a model

φij(r) = εij exp
(
−r2/R2

ij

)
, (5.52)

with i, j = 1, 2, ε11 = ε22 > ε12 and R2
12 =

(
R2

11 +R2
22

)
/2 exhibits demixing, driven by

the positive nonadditivity as R12 > (R11 +R22) /2. In the (ρ, x) plane, where ρ = ρ1+ρ2

is the total bulk density and x is the concentration of species 2, the mixture exhibits a
binodal i.e. coexistence between a fluid phase rich in species 1 and one rich in species
2, at large values of ρ. The fluid-fluid coexistence curve ends at a lower consolute
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point. Within the mean-field (RPA) treatment temperature scales out of the bulk free
energy and the phase behaviour is that of an athermal system. Archer and Evans [92]
investigated the interfacial density profiles and surface tension of the planar interface
between demixed fluid phases of the binary mixture using the RPA functional (5.51).
For certain coexisting states they found oscillations in the density profiles on both sides
of the interface, i.e. approaching both bulk phases. In a subsequent study [93] the
same authors investigated the wetting behaviour of the binary GCM at various, purely
repulsive, planar walls. By following paths at fixed ρ, pre-wetting and complete wetting
by the phase rich in species 1 were observed by decreasing the concentration x of species
2 towards coexistence.

The RPA functional (5.51) was also employed in studies of inhomogeneous binary
star-polymer solutions [94]. Star polymers consist of a number of polymer chains, referred
to as arms, covalently bonded to one common central core [88]. The arm number f , also
termed the functionality, is the property that allows one to interpolate between linear
chains (f = 1, 2) and the so-called colloidal limit f >> 1 in which the stars resemble
hard spheres. Unlike the GCM the effective potential [88] between the centres of two
identical star polymers in an athermal solvent features a weak-ln (r/σ) divergence for
separations r → σ. For r > σ and f < 10 the potential decays as a Gaussian. σ is the
corona diameter. It is known that for one-component star polymers the HNC results are
almost indistinguishable from those of simulation [88]. In Ref. [94] it was shown that
for a binary mixture with f = 2, an additive mixture rule for the corona diameters:
σ12 = (σ11 + σ22) /2 and a non-additive mixing rule for the ranges Rij of the Gaussian
tails similar to that employed in the binary GCM, the RPA generates a fluid-fluid binodal
which is very close to that obtained from the much more sophisticated HNC. The RPA
critical density is only slightly lower than that from HNC. Moreover the total pressure
calculated at a fixed concentration x = 0.5 is extremely close to that from the HNC. The
RPA also yields partial structure factors Sij(k) and radial distribution functions gij(r)
that are very close to their HNC counterparts at high total densities. For the planar free
fluid-fluid interface the interfacial density profiles obtained from the functional (5.51) are
very similar to those obtained for the binary GCM [94]. For a purely repulsive planar
wall potential, with a soft logarithmically diverging core and a rapidly decaying (faster
than Gaussian) tail designed to mimic star polymers at a hard wall, complete wetting
with an accompanying pre-wetting transition was found-similar behaviour to that found
in the GCM. By choosing f = 2 the star polymer pair potential corresponds to that
between central monomers on a pair of polymer chains. This is a different perspective
from the GCM: ‘central monomer’ versus ‘centre of mass’. However, since the same
underlying polymer system should be described by both perspectives it is pleasing that
these do lead to very similar bulk phase diagrams and interfacial phenomena [94].

One of the key advantages of employing the RPA functional (5.51) lies in its sim-
plicity. For problems with planar [92] or spherical symmetry [95] the Euler-Lagrange
equations resulting from minimizing the grand potential functional can be solved easily
and very accurately using Picard iteration [51] even for sophisticated functionals. How-
ever, when the physical problems have less symmetry, so that the density profiles are

42



no longer dependent on a single variable z or r, it is most advantageous in numerical
work if the Euler-Lagrange equations have a simple structure so some of the integrals
can be performed analytically. An example is provided in Ref. [96] where the solvent
mediated (SM) potential is calculated between two big colloidal particles immersed in a
bulk binary mixture of smaller Gaussian core particles. Now the density profiles of the
two solvent species have cylindrical symmetry and depend upon coordinates z (passing
through the centre of the two colloids) and r (the radial distance from the z axis). De-
pending on how close the state point of the solvent is to the bulk binodal and the nature
of the colloid-solvent interactions, thick ‘wetting’ films can develop around the colloids
and bridging transitions can occur whereby two adsorbed films connect abruptly to form
a single fluid bridge of the wetting phase. It would be much more difficult to investigate
these subtle phenomena, with similar precision, using very sophisticated DFTs such as
FMT for hard-core models. The formation of bridges has a profound effect on the SM
potential making this very attractive.

Another simple model of a binary mixture that has been treated by the RPA func-
tional (5.51) is that of purely repulsive point Yukawa pair potentials:

φij(r) =
εMij

4π
exp (−λr)

λr
, (5.53)

where the parameter ε > 0 sets the energy scale, Mij is the magnitude of the interaction
between species i and j and λ is a common inverse length scale. Provided M12 >√
M11M22 and the total density ρ is sufficiently high the mixture separates into two fluid

phases-at least within the RPA [97]. The potentials (5.53) constitute a crude model
for a binary mixture of charged colloidal particles in a charge-compensating solvent,
i.e. λ is equivalent to the inverse Debye length κ. Classical Derjaguin Landau Vervey
Overbeek (DLVO) theory [22] would imply M12 =

√
M11M22, since the amplitudes

Mij are proportional to the product of the charges ZiZj on the colloids. However,
charge screening effects in the double layer of condensed counter ions can lead to a
renormalization of the charges on the colloids and lead to deviations from this ideal
Berthelot mixing rule and which might give rise to positive non-additivity so that the
effective potentials between the colloidal particles satisfy M12 >

√
M11M22 [98].

In Ref. [97] it was shown that the radial distribution functions gij(r) of the bulk
fluid at states close to coexistence are well described by the RPA. Subsequently, using
(5.51), it was shown that the binary Yukawa fluid wets completely a hard-wall and
exhibits a pre-wetting transition slightly away from bulk coexistence [99]. In a later
study [100] Hopkins et. al. calculated the SM potentials between model colloids or
nanoparticles immersed in the binary solvent described by (5.53) using the functional
(5.51) with the colloids treated as fixed particles exerting an external potential on the
solvent. As in the case of the binary GCM, bridging transitions were found to occur
for thermodynamic states sufficiently close to bulk coexistence. Bridging was also found
to occur when a single large colloidal particle was brought close to a planar wall with
an adsorbed wetting film [100]. The DFT approach was also used to investigate the
interaction between a colloidal particle and the planar fluid-fluid interface [100]. All
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three problems have density profiles with cylindrical symmetry: ρi(z, r), which makes
the numerics tractable.

We do not wish the reader to leave with the impression that the approximate func-
tional (5.51) is a panacea for inhomogeneous soft-core fluids. This is certainly not the
case since the RPA is valid only at high total densities where the mean-field description
is a reliable approximation. The main advantage of employing (5.51) with simple model
pair potentials is that it is fairly straightforward to implement numerically for situa-
tions where bulk phase separation occurs so that the subtle interfacial and adsorption
phenomena that take place close to coexistence can be investigated with appropriate
precision. Such phenomena play an important part in the fundamental physics and
chemistry of solvation and in determining the effective interactions between big particles
in a solvent that is close to phase separation (e.g. bridging), or to solvent criticality
where the long-ranged correlations of the solvent have a profound influence on the effec-
tive interactions; this is the regime of critical Casimir forces. Of course, the mean-field
description that is encompassed in (5.51), as with (5.45) for the LJ fluid, does not incor-
porate true criticality; the correlation length of the bulk fluid mixture decays with the
classical exponent 1/2 rather than the true value ν = 0.63. This means that fluctuation
effects are not incorporated properly in the DFT. Nevertheless, most of the physical
phenomena that might occur in a proper treatment of criticality should be manifest in
the RPA treatment.

44



Chapter 6

Concluding Remarks

In these lectures we have given a brief introduction to the formalism of equilibrium DFT
and an overview of some progress in constructing approximate free energy functionals
for three broad classes of fluids described by simple pair potentials.

For additive hard-sphere mixtures, Rosenfeld’s FMT and its subsequent extensions
and modifications have proved enormously successful when applied to a variety of inho-
mogeneous situations. Moreover, FMT provides an elegant geometric framework, based
on deconvolution of the Mayer f-function, that gives much new insight into the nature
of correlations and thermodynamic properties of uniform hard-particle fluids. The ex-
tensions of FMT to non-additive models, introduced by Schmidt and co-workers, have
also been remarkably successful in applications to interfacial and adsorption problems
as well as in describing the properties of the bulk mixtures. This is an area where we
can expect to see many further developments. One outstanding problem for the DFT
of additive hard-sphere mixtures is the case of large size asymmetry, i.e. when the size
ratio q defined in Section 5.3.1 is very small. It remains to develop an accurate DFT
approximation for such mixtures; these are important models for mixtures of colloidal
particles. Non-spherical hard-particles bring their own challenges but the recent devel-
opment of FMT in Ref. [79] is likely to spawn much activity and new understanding for
systems where orientational ordering occurs.

For atomic fluids, where a Lennard-Jones type pair potential is a reasonable model,
the functional (5.45) continues to be the most widely used-in spite of the shortcomings
laid out in Section 5.3.2. Treating accurately a) soft repulsion and b) the attractive part
of the potential present challenges. However, the approaches in Ref. [85] and [86] are
steps forward.

For the third class of fluid, described by soft core repulsive potentials such as the
GCM, the simple RPA or its mixture generalization provides a reasonably accurate
description of the structure and thermodynamics of the bulk fluid at sufficiently high
densities. This observation led to the adoption of the mean-field (RPA) functional
(5.51) as an approximation for inhomogeneous soft core models. The simplicity of (5.51)
and of the resulting Euler-Lagrange equations for the density profiles ensure that it
is feasible to perform accurate numerical calculations for the profiles, determined by
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the external potential V (r), that do not have one-dimensional symmetry. This means
that it is possible to investigate fluid structure and possible phase transitions, such as
the formation of liquid bridges, in great detail for more complex confining geometries,
thereby revealing the essence of the physical phenomena.
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[52] Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, J. Phys. Condens.
Matter 8, 1577 (1996).

[53] P. Tarazona, U. M. B. Marconi, and R. Evans, Mol. Phys. 60, 573 (1987).

[54] P. Tarazona and Y. Rosenfeld, Phys. Rev. E 55, R4873 (1997).

[55] A. Gonzalez, J. A. White, F. L. Róman, and R. Evans, J. Chem. Phys. 109,
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