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Density Functional for Hard Sphere Crystals: A Fundamental Measure Approach
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A new free energy density functional for hard spheres is presented, along the lines of the fundamental
measure theory, which reproduces the Percus-Yevick equation of state and direct correlation function for
the fluid, with a tensor weighted density. The functional, based on the zero-dimension limit, is exact for
any one-dimensional density distribution of the spheres. The application to the hard sphere crystals gives
excellent results, solving all of the qualitative problems of previous density functional approximations,
including the unit cell anisotropy in the fcc lattice and the description of the metastable bcc lattice.

PACS numbers: 64.10.+h, 05.20.–y, 05.70.–a
The hard sphere (HS) model is central to the study of
molecular packing effects in fluids [1]. The Percus-Yevick
(PY) approximation for the correlation structure in the HS
fluid [2] is a keystone in the theory of liquids, and the de-
velopment of density functional (DF) approximations for
the Helmholtz free energy of inhomogeneous HS systems,
F �r�, opened the study of fluids near walls or inside pores
[3]. The transition from the dense HS fluid to the fcc
crystal has been studied since the 1980s with nonlocal ap-
proximations for F �r�, based on the previous knowledge
of the thermodynamics and the direct correlation function,
c�r, r�, in the bulk fluid [4,5]. The solid phase is treated as
a self-maintained inhomogeneous fluid, corresponding to a
local minimum of the grand potential, V � F �r� 2 mN ,
which is compared with that for the homogeneous fluid
in the same approximation. The results for the coexist-
ing fluid and solid densities and for the properties of the
solid phase at higher density are quite good with different
types of nonlocal DF, such as the weighted density (WDA)
[6,7], the effective liquid [8] approximations (ELA) and
their modified forms (MWDA, GELA) [9–11].

However, this general success has limitations: a good
description of the solid phase is obtained only within a vari-
ational minimization of V restricted to normalized Gauss-
ian peaks centered at the lattice positions; the relaxation of
the normalization of each peak produces unphysical values
of the unit cell occupancy and spoils the good results for
the equation of state. Also there is a small but rather sys-
tematic error predicting too low values for the Lindemann
ratio (the mean square deviation of the molecules from the
lattice positions); attempts to remove this problem by re-
laxing the isotropic Gaussian unit cell density distributions
gave qualitatively bad results, with the wrong sign for the
anisotropy [12]. A new problem appears when the DF are
used to describe less packed crystal structures, such as the
bcc lattice which is never the equilibrium state for hard
spheres but still may be useful when the HS are a refer-
ence system for softer interactions. Constrained computer
simulations have been used to describe the hard sphere
bcc crystal as a metastable state [13] and it is also pos-
sible to find local minima of the WDA free energy when
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the density is restricted to normalized peaks at the bcc lat-
tice [13,14], but the results of the later are fully unphysical,
with the Lindemann ratio increasing with the density and
very high compressibility even at the close-packed den-
sity, when the molecules should be fixed at their lattice
positions.

To understand the reasons for both the remarkable suc-
cess of the DF theories of crystallization, within the re-
stricted minimization of normalized isotropic peaks in the
fcc lattice, and their qualitative failure when the restrictions
are removed, we have to look at the way in which the DF
approximations are built. The nonlocal forms for F �r� re-
produce, through its second order functional derivative, a
given approximation (PY usually) for c�r , r� in the fluid.
In the fcc crystal, with twelve nearest neighbor normal-
ized Gaussian peaks around each particle, the short-range
molecular correlations are similar to those in a dense ho-
mogeneous fluid, so that any F �r� built to reproduce the
latter may give a good description of the crystal-free en-
ergy. However, the molecular distribution in a bcc lattice
is very different from that in a fluid and the same approxi-
mations for F �r� lack the information needed to describe
it [15]. Moreover, the information given by c�r , r� and
used to build F �r� includes only the linear response of
the homogeneous bulk to weak external fields. Wise com-
binations of this information and the equation of state of
the fluid have been shown to also give good descriptions of
highly inhomogeneous fluids, but they still lack any direct
information about the individual molecules contributing to
build up the density distribution r�r�, so that they cannot
reproduce the details of unit cell density distribution in the
crystal (normalization, Lindemann ratio, and anisotropy).
These problems may be avoided by the restricted mini-
mization of V for the solid phase but the practical use
of the theories to study the crystal interfaces is severely
limited.

The fundamental measure theory (FMT) was proposed
[16–18] as a different way to build approximations for
F �r� which reproduce the PY equation of state and c�r , r�
for the HS fluid. The first FMT versions had a mixed flavor
with excellent results in some cases (wall-fluid interfaces,
© 2000 The American Physical Society
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etc.) but with complete failure in the description of the
HS crystal. The reason was that the nonlocality of F �r�
is described through a set of geometrical basis functions
with delta-function shells at the molecular radius distance.
F �r� has convolutions of these delta-function shells to
describe the sharp nonlocal dependence on r�r�, but the
overlap of concentrical shells produced divergences which
fully invalidate the use of F �r� for density distributions
with narrow peaks. An empirical correction [19] opened
the possibility of using the FMT for the crystal phase, but
a systematic way to avoid the spurious divergences was
produced only in a later work [20].

The approach is based on the zero-dimension (0D) limit:
the free energy in a narrow cavity which cannot hold more
than one molecule. For hard molecules of radius R in any
dimension D, the functional form to recover this limit is
[20]

F �r� � Fid�r� 1 kBT
DX

n�1

FD
n �r� , (1)

where Fid�r� is the ideal gas-free energy. The excess is
given by D terms (three for HS) with the form

FD
n �r� �

Z
dr wn�h�r��

nY
i�1

3
Z

dRiw�Ri�r�r 1 Ri�KD
n , (2)

where h�r� �
R
jr0j#R dr0 r�r 1 r0� is the local packing

fraction, wn�h� is the n’s order derivative of the 0D excess
free energy w0�h� � �1 2 h� log�1 2 h� 1 h; w�Ri�
is a normalized delta-function shell for jRij � R, and
KD

n �R1, . . . , Rn� are kernels which may be fully deter-
mined from the 0D exact result for narrow cavities of arbi-
trary shape, with KD

1 � 1. For hard spheres �D � 3� the
second kernel is K

�3�
2 �R1, R2� � 4pR�R2 2 R1 ? R2�,

which inserted in (2) reproduces precisely the same
forms as used in the original FMT. The third kernel
K

�3�
3 �R1, R2, R3� has a complex form, defined in geomet-

rical terms [20], and it differs from the previous empirical
trials in the property that it vanishes whenever any two
vectors, out of R1, R2, and R3, become identical. This
property makes regular the FMT, i.e., without the spurious
divergences created by the overlap of the delta-function
shells, and gives a unique feature: when (1),(2) are used
to evaluate the free energy of any one-dimensional (1D)
density distribution, embedded in the higher molecular
dimension D, the third term F

D
3 becomes null [21], while

F
D
1 1 F

D
2 recovers the exact 1D density functional for

hard rods as given by Percus [22].
This approach may be used to build F �r� fully on the

basis of the exact 0D limit, so that the equation of state and
the correlation structure of the homogeneous fluid are par-
ticular outputs rather than inputs to the DF. However, and
as a consequence of the lost cases (0D cavities with pe-
culiar shapes which cannot be described within the FMT),
the accuracy of the results decays with increasing embed-
ding dimension, and the purely 0D-based FMT form may
be regarded as a low D expansion for F �r�. On the other
hand, a workable approximation for FD

n �r� requires a ker-
nel function which might be factorized in terms of one-cen-
ter convolutions of r�r�, as it can be done with F

�3�
2 �r� in

terms of the scalar and vector weighted densities,

n�r� �
Z

dR w�R�r�r 1 R� ,

v�r� �
Z

dR w�R�r�r 1 R�R̂ ,

with the unit vector R̂ � �R̂x , R̂y , R̂z� � R�R. This
is not possible with the full geometrical definition of
K

�3�
3 �R1, R2, R3�, and as a compromise it was proposed

[20,23] to take K
�3�
3 � 12p2�R1 ? �R2 3 R3��2, which

gives the PY equation of state and vanishes when the
two vectors become equal. However, this kernel does not
reproduce the PY correlation because it fails to give the
exact first order term in the density expansion of c�r , r�
(i.e., the triangle diagram [1]).

The DF structure (1),(2), as emanated from the 0D limit,
is such that if the kernel K

�3�
3 gives the exact triangle con-

tribution to c�r , r�, it reproduces its full PY form for the
bulk fluid. This is done by the new regular form proposed
here [24]:

K
�3�
3 � 4p2

√Y
�ij�

�R2 2 Ri ? Rj� 2 �R1 ? �R2 3 R3��2

!
(3)

[where �ij� runs over (1 2), (2 3) and (3 1)], which allows
the calculation of F

�3�
3 �r� in terms of n�r�, v�r�, and a

tensor weighted density T �r�, with components

ta,b�r� �
Z

dR w�R�r�r 1 R�R̂aR̂b , (4)

where a, b run over x, y, z. The final DF form is

F
�3�
3 �r� � 12p2R6

Z
dr

f3�r�
�1 2 h�r��2 , (5)

with f3 � v ? T ? v 2 nv ? v 2 Tr�T 3� 1 n Tr�T 2�,
in terms of the trace of the powers of T , with Tr�T � � n.

This DF, together with F
�3�
1 and F

�3�
2 , in their well-

established forms [16], give the new approximation which
captures all of the good properties of any previous version:
it reproduces the PY correlation in the fluid (as done by the
old WDA, ELA, . . ., density functionals), but it does it as a
dimensional interpolation within the FMT, from the exact
0D and 1D limits to the exact zeroth and first order terms
in the expansion c�r , r� � c0�r� 1 rc1�r� 1 . . . for the
bulk fluid. This DF is completely free of the divergences
present in the earlier FMT versions but still it may be used
with a similar computing effort, due to the factorization in
terms of the scalar, vector and tensor weighted densities.
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The application to the HS crystal is done here through a
variational minimization with

r�r� � h0

µ
a

p

∂3�2 X
G

e2a�r2G�2

�1 1 ta2fa�r 2 G�� ,

(6)

where G runs over the lattice vectors and fa�r� � x4 1

y4 1 z4 2 3r4�5 is the leading term for the unit cell
anisotropy in cubic lattices. The free variational parame-
ters are the lattice size, the Gaussian parameter a, the
anisotropy t, and the unit cell occupancy h0.

The correct 0D limit leads always to values of h0, very
close to the perfect normalization �1 2 h0 , 1028� with-
out the constraints of previous theories. The computer
simulation results for the parameter a, shown in Fig. 1,
have some scatter due to the different methods used to ex-
tract the information, but the previous DF theories pre-
dicted clearly too narrow Gaussians (i.e., too large a and
too low Lindemann ratio). In contrast, the present re-
sults go well within the simulation data, showing that with
a better description of the correlations the molecules are
allowed to wander further from their lattice sites. As
the mean packing fraction h approaches its close-packing
limit �hc � 0.74� the Gaussian parameter goes like a �
C�hc 2 h�22; the exponent of this divergence was cor-
rectly given by some previous theories, but the present DF
gives also the correct prefactor. The equation of state and
the free energy results in Fig. 2, also show the quasiexact

FIG. 1. The logarithm of the Gaussian parameter a (in units of
the HS diameter s) vs the mean packing fraction h for the fcc
crystal. The computer simulation results include the data [25]
(large circles for N � 500 and triangles for their extrapolation
to infinite N), from [26] as interpreted in [27] (small circles),
and from [12] (crosses). The DF approximations are: the WDA
[6] (dashed line), the MWDA [9,11] (dotted line), the GELA
[11] (dash-dotted line) and the present FMT (full line). The
insets show, with horizontal log-scale, the approach to the close-
packing density for the fcc and bcc lattices. The GELA and
WDA results for the bcc lattice are taken from [10] and [14],
respectively.
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character of the present DF for the fcc crystal: the pres-
sure is in excellent agreement with the molecular dy-
namics data [25] in the full range of densities and the
free energy follows; in the close-packing limit, the form
F��kTN� � 3 ln�hc 2 h� 1 g with the correct value for
the constant g.

The anisotropy parameter t is always small and nearly
irrelevant for the equation of state; using the pure Gauss-
ian parametrization �t � 0� would raise the free energy
per particle in less than 1023kT . The information from
computer simulations is reduced to a Monte Carlo (MC)
study [12] for two density values, and its main interest was
showing the qualitative failure of the WDA and MWDA in
the description of the unit cell density structure. These
DF give broader peaks in the �110� direction than in the
�100� direction, by as much as 40%. In contrast, the MC
distributions show densities elongated in the interstitial di-
rections (�100� and �111�), with anisotropies in the order of
10% or less. The variational minimization (6) used here is
more restrictive than that used in Ref. [12], but it is enough
to give good qualitative agreement with the MC data: for
h � 0.54 the minimum is obtained for t � 0.02, with the
correct sign to represent the spreading of the density in
the interstitial directions, in the order of 10%–15% with
respect to the nearest neighbor direction �110� (the WDA
and MWDA would give negative t).

The thermodynamics and the structure of the HS crys-
tal may also be explored with (6) for the bcc lattice. This
crystal structure is unstable with respect to the shear de-
formations for a pure HS system, but it may be stable in
systems with other interactions which could be described
by means of a reference HS crystal [27]. Computer simu-
lations for this crystal are obtained with a pinning external

FIG. 2. The equation of state for the fcc crystal. The MD
results [25] (circles) are compared with the present results and
with other DF theories, with the same notation as in Fig. 1. The
inset presents the free energy per particle in the approach to the
close-packing limit.
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potential [13], although the results are scarce and limited
to low h. When the WDA or the MWDA [13,14]) are used
to study the bcc crystal they give fully unphysical results
in the approach to the close-packing limit (which is now at
hc � 0.68): a has a maximum around h � 0.6 so that the
Gaussian peaks become wider as h approaches hc and the
free energy has no signature of divergences at hc. Similar
problems appear with the GELA [10], although at higher
packing fractions. In contrast, the present DF produces the
correct qualitative behavior with a � C�hc 2 h�22 (see
the inset in Fig. 1) and F��kTN� � 3 ln�hc 2 h� 1 g,
although there are not computer simulation results to com-
pare with the values of the constants.

In summary, the density functional for hard spheres pro-
posed here solves the qualitative limitations of previous
theories: it may be minimized without artificial constraints
giving the correct unit cell normalization, anisotropy and
Gaussian width; with the exact close-packing behavior in
any lattice structure. This is achieved because the new DF
is not (as the WDA or the ELA) an extrapolation from the
homogeneous fluid towards inhomogeneous systems, but
rather a functional interpolation between the exact 0D limit
(i.e., the extreme inhomogeneous density distributions) and
the 3D bulk fluid (up to the first two orders in the density
expansion). Moreover, the quantitative agreement with all
the available computer simulation data for the HS crystals
is excellent, improving over the already rather good results
of other theories. The accuracy obtained for the thermo-
dynamics and the structure of the fcc crystal is even better
than that of the PY approximation in the description of the
homogeneous fluid, as a consequence of the dimensional
interpolation character of the DF approximation.
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