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1 Fermi Liquids

The electric properties of most metals can be well understood by treating
the electrons as non-interacting. This ”free electron model” describes the
electrons in the outermost shell of the atoms. In a crystal, these electrons are
rather free to move around among the atoms, and can thus be described as
an electron gas.1 The deviation from ideal gas behavior can in many cases be
captured by the concept of Fermi liquid which was introduced by the Russian
physicist Lev Landau. This provides an effective description of interacting
fermions which can be derived from microscopic physics either by resummation
of quantum mechanical perturbation expansions, or by renormalization group
(RG) techniques.

In the first of these four lectures we shall follow Landau’s intuitive approach
to establish the basic properties of Fermi liquids. The aim is to explain the
underlying assumptions and to get an understanding of when the theory is
applicable. For a more detailed exposition I recommend the first chapter in
the book

• Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume
9 of Landau and Lifshitz, Course of Theoretical Physics).

which gives a very good an concise presentation of the theory of Fermi liquids
as developed originally by Landau. I will roughly follow the notation and logic
in this reference.

In the second lecture I will outline the RG approach to Fermi liquids.
Although the basic idea is quite simple, the actual calculations are technically
somewhat involved, so the aim of the lecture is only to explain the principles,
and present some of the results. You can view it as an introduction to the
excellent paper

• R. Shankar, ”Renormalization-group approach to interacting fermions”,
Rev. Mod. Phys, 66, 129 (1994).

which I strongly recommend to those who really want to learn the subject.
Another good review article is

• H. J. Schultz, G. Cuniberti and P. Pieri, Fermi liquids and Luttinger
Liquids, cond-mat/9807366.

which gives a very concise description of Landau’s theory together with a
discussion of the RG approach. In these lectures, I have borrowed several
insights from this paper.

1The more detailed argument for why this is so in a crystal is rather sophisticated and
can be found in e.g. reference [1].
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1.1 Landau’s approach

1.1.1 The basic idea

The starting point is a gas of free fermions with mass me
2 for which the zero

temperature ground state is obtained by filling all single particle (plane wave)
states up to the Fermi energy εF . The total ground state energy is calculated
as3

E = V Tr
∫ d3p

(2π)3

p2

2me

n0(p) ≡ Tr
∫
dτ

p2

2me

(p)n0(p) =
V

5π2

p5
F

2me

=
V p2

F

5π2
εF (1)

where V is the volume of the system, εF = p2
F/2me (h̄ = 1) and we introduced

the notation ∫
dτ = V

∫ d3p

(2π)3
=
∑
~ki

(2)

for the phase space integration (the first expression is appropriate for contin-
uum normalization and the second for quantization in a box). The distribution
function n is a 2x2 matrix nαβ in spin space, and the trace is over these vari-
ables. In the absence of a magnetic field, both spin directions are equally
probable and we have nαβ = δαβn(p). In the following we shall suppress the
spin structure until discussing quasiparticle interactions.

The zero temperature momentum distribution function is given by n0(p) =
θ(p− pF ) where where me is the fermion mass. The total number of particles
is given by

N =
∫
dτ n0(p) = V

p3
F

3π2
. (3)

Excitations from the ground state is obtained by changing the occupation
numbers of the single particle levels, i.e. by changing the distribution function,

n(p) = θ(p− pF ) + δn(p) (4)

It is simplest to think of δn for discrete momentum states, where it can only
take the values ±1 because of the Pauli principle.

2As condensed matter physicists we are interested in electrons, but the theory developed
here is also relevant for liquid helium 3, and cold neutron matter.

3The description can be generalized to include an external potential, but in that case the
integrals can in general not be calculated on a closed form.
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Of particular importance is the distribution function for a state in ther-
mal equilibrium with a reservoir kept at temperature T . This distribution is
determined by maximizing the entropy,

S = −
∫
dτ [n(p) lnn(p) + (1− n(p)) ln(1− n(p))] (5)

under the constraints δE = δN = 0 to get

nβ(p) =
1

eβ(ε(p)−εF ) + 1
. (6)

where β = 1/kT , and ε(p) = p2/(2me).
Landau’s basic idea was that the interacting system can be thought of

as ”connected” to the free fermi gas by an adiabatic switching process. In
particular, this means that there is an one-one correspondence between the
excitations in the free and the interacting system, and that the latter also will
have a Fermi surface.

Clearly the notion of adiabatic switching is a purely theoretical concept; in
a real physical system, there is no way the interaction can be turned on and off.
If we however follow Landau’s reasoning we conclude that the excited states of
the interacting system can also be labeled by the occupations numbers of the
single particle states. For example, adding a single electron to the ground state
of the free Fermi gas will give a state labeled by the conserved quantities charge
q, momentum, ~p, and spin, α. As interaction is turned on adiabatically, the
state will still have the same spin and momentum, but the energy will change
because of the interactions.

|~p, α〉free → |~p, α〉int. (7)

The resulting state can not be thought of as a single electron carrying momen-
tum ~k, while the other fill the Fermi sphere. Instead the momentum will be
spread among many electrons. Pictorially we can think of the original electron
as being ”dressed” by the interaction - it has evolved into a Landau quasielec-
tron. The same arguments can be used to deduce the existence of quasiholes,
and combinations of quasiholes and quasielectrons. From this reasoning, it
is also clear that the zero temperature ground state distribution function re-
mains as θ(p− pF ), since only states with p > pF or holes with p < pF can be
excited out of the non-interacting ground state. So as we already mentioned,
the Fermi liquid at zero temperature still has a Fermi surface. We shall return
to the finite T distribution of quasiparticles in a short while.

That the excited states are labeled by the quantum numbers of the excita-
tions, or equivalently, by the distribution function n(p) implies that the total

4



energy is a functional E[n(p)] of the distribution function. It however does
not mean that it can be written on the form (1) with some modified energy
function ε(p) - this is possible only in the absence of electron-electron inter-
action. Landau’s theory does not provide any methods for determining the
energy functional, but it does give a general framework for describing the low
momentum excitations of the ground state (or a thermal equilibrium state) in
terms of the variation δn of the quasiparticle distribution. The mathematical
expression of this idea is to make a functional Taylor expansion,

δE =
∫
dτε0(p)δn(p) +

1

2V

∫
dτdτ ′f(~p, ~p′)δn(p)δn(p′) + . . . (8)

where V is the volume of the system,

ε0(p) =
δE[n]

δn(p)
|n=n0 (9)

and

f(~p, ~p′) =
δ2E[n]

δn(p)δn(p′)
|n=n0 (10)

(Note that f is a tensor in spin space.) The total energy, ε(p), required to a
add a quasiparticle is obtained by varying E with respect to n

ε[n(p′), p] = ε0(p) +
1

V

∫
dτ ′f(~p, ~p′)δn(p′) + . . . (11)

and it is natural to interpreat ε0(p) as the ”bare” single quasiparticle energy,
and the second term as the interaction energy between the added quasiparticle,
and those already present. This term is absent for the free Fermi gas.

The expression (5) for the entropy follows from a counting argument, and
since there is an one-one correspondence between the states in the interact-
ing and the non-interacting system, the calculation of the entropy will look
precisely the same, except that the constraint δE = 0 now becomes,∫

dτ ′ε[n, p]δn(p) = 0 , (12)

Minimizing the entropy under this constraint gives,

nβ(p) =
1

eβ(ε[n,p]−εF ) + 1
. (13)

which is an in general very complicated functional equation for the distribution
function nβ(p). From the previous arguments we however know that it will
approach θ(p− pF ) as T goes to zero.
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1.1.2 When is the theory applicable?

To proceed, we must find out when the expressions we just arrived at are
applicable, and this will naturally lead to approximations that will allow us
to get some handle on the unknown functions ε0(p) and f(p, p′). The crucial
notion is that a quasiparticles, as opposed to an electron, has a finite lifetime.
The reason is very simple; if we excite say a quasielectron at a momentum ~p1

it can decay into two quasielectrons and one quasihole,

|~p1〉− → |~p2〉− + |~p3〉− + |~p2 − ~p1 − ~p3〉+ (14)

without violating any conservation law. (The subscript denote the charge with
respect to the filled Fermi sea. Why can the quasielectron not decay into two
quasiparticles?) Such a decay process however become less and less probable
as ~p1 approaches the Fermi surface. This is a purely kinematic effect - if ~p1

is close to the Fermi surface, the phase space available for the process (14) is
very tiny, ∼ |~p− ~pF |2 and thus,

τ = 1/Γ ∼ |~p− ~pF |−2 (15)

where τ is the lifetime and Γ the decay rate.4 We conclude that the concept
of quasiparticle, and thus the idea to label (quasi)stationary states according
to their quasiparticle content, only makes sense in the vicinity of the Fermi-
surface. Since the finite T equilibrium state involves excitations with energies
≤ kT , we conclude that our theory will work only at low temperatures. To
give a quantitative estimate, we need the constant of proportionality in (15),
but if interactions are strong in the sense that there is no small number in the
theory (as e.g. the ratio between the interaction energy per particle and the
Fermi energy), the only scale is the Fermi energy and the theory is expected
to be valid for T � TF . To give an idea about scales, the Fermi temperature
for metallic sodium is about 40.000 K and for liquid Helium 3, it is about 7
K. (Can you roughtly explain this ratio without doing a calculation?)

At this point you should rightly be suspicious about the relation (3). As
opposed to the expression (8), which depends only on the deviations from the
equilibrium distribution, this relation, which expresses the density in terms of
the Fermi momentum, involves an integral over all momenta and tacitly as-
sumes that the ground state can be thought of as a collection of quasiparticles.
Even though this is not true, one can nevertheless show that (3) holds for an
interacting Fermi liquid, but the proof based on Greens function techniques
(see e.g. §20 in Ref. [2]) goes beyond this presentation.

4A nice derivation of this result which only uses energy conservation, and thus applies
also to disordered systems and finite systems, is given in section 5.3 of reference [5].
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1.1.3 The effective mass

Now we assume that the temperature is low enough that we can put n(p) =
θ(p− pF ) and expand around the Fermi momentum,

ε[n(p′), p] ≈ ε[θ(p− pF ), p] ≈ εF + vF (p− pF ) + . . . (16)

To discuss the physical meaning of the constants εF and vF , recall that pF is the
same as in the noninteracting theory, but the Fermi energy is not. But, since
according to (11), ε[n, p] is the energy cost for adding a single quasiparticle,
we can still identify εF in (16) as the chemical potential µ. To understand the
meaning of vF consider the expansion (16) for the non-interacting gas,

ε(p) = εF +
pF
me

(p− pF ) + . . . . (17)

From this we conclude that vF is the Fermi velocity, which however will differ
from its value pF/me in the non-interacting gas. if we introduce the reduced
mass by pF = m?vF , we see that to lowest order, the only difference between
the free fermi gas and the interacting Fermi liquid, is that the electron mass
is renormalized.

One of the simplest observables that can be measured for a Fermi liquid is
its specific heat, cV . Using the approximation (17) we can now get the result
directly from the one for the free electron gas by the substitution me → m?,
that is

cV =
m?pF

3
k2
BT (18)

so the specific heat at low temperatures provides a direct determination of the
effective mass. The ratio m?/me can vary from around 3 for liquid 3He to
102 − 103 for ”heavy fermion compunds” such as UPt3.

1.1.4 The meaning of the Fermi surface

We already stressed that the picture of the Fermi liquid ground state as a
filled Fermi sphere of quasiparticles is misleading in the sense that the states
deep inside the sphere cannot be thought of as quasiparticles in momentum
eigenstates. Another possible misconception relates to the momentum distri-
bution N(p) which for free fermions at zero T is just a step function at the
Fermi momentum pF . In the interacting case, the quasiparticle distribution
function n(p) has the same behaviour and, as discussed above, pF is related to
the density just as in the free case. The meaning of n(p) is however not that of
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Figure 1: The T = 0 single particle momentum distribution N(p) in a Fermi
liquid. Z is the wave function renormalization constant, or the strength of the
single particle pole.

the distribution of physical momentum in the ground state. This distribution
does obviously not vanish for p > pF since scattering processes will populate
the ground state with electron-hole pairs. This is not in contradiction with
the notion that this state does not have any quasielectron or quasiholes in it.
It is instructive to calculate the physical momentum distribution N(p) for the
Fermi liquid ground state, and those familiar with many-body perturbation
theory can consult §10 in [2] for the details. The qualitative feature of the
distribution is is shown in Fig. 1. N(p) is no longer just a step function, but
it does have a discontinuity at the Fermi momentum. It is this discontinuity
that is characteristic for a Fermi liquid and which guarantees that there are
low lying quasiparticle quasihole excitations just as in the free fermi gas. In a
superconductor one can show that the discontinuity is not present and a finite
energy 2∆ is required to excite a pair. The superconductor and the Fermi
liquid represent different possible phases of fermionic matter. In the third lec-
ture, we shall consider another case where the Fermi surface is destroyed by
interactions, but the system remains gapless!
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1.1.5 Quasiparticle interactions and the Fermi liquid parameters

We now turn to the second term in (8) and (11), which, as already mentioned,
represent the interaction between two quasiparticles. A comment on the spin-
structure is in order. Writing out the spin indices (11) reads

ε[n(p′), p]αβ = ε0,αβ(p) +
1

V

∫
dτ ′f(~p, ~p′)αγ,βδδnγδ(p

′) + . . . . (19)

Since all the momenta are close to the Fermi surface, the tensor f can only
depend on the angle θ given by ~p · ~p′ = pp′ cos θ ≈ p2

F cos θ. Next recall
that f is the second functional derivative of the energy with respect to the
matrix n, so it must be symmetric under a simultaneous exchange of spin and
momentum variables. This fact, together with constraints from rotational and
time-inversion symmetry implies the following general form forf ,

f(~p, ~p′)αγ,βδ = f(cos θ)δαβδγδ + g(cos θ)~Sαβ · ~Sγδ . (20)

Recall that in the absence of an external magnetic field, there is no preferred
direction for the spin and we have nαβ = nδαβ. In this case the spin structure

becomes simple since the trace over ~Sαβ vanish, and only the first term in (20)
contributes,

ε[n(p′), p] = εF + vF (p− pF ) +
∫
dτ ′f(cos θ)δn(p′) (21)

It is conventional to define the dimensionless function F (cos θ), and its partial
wave components by,

F (θ) =
pFm

?

π2
f(cos θ) =

∞∑
L=0

(2l + 1)FLPL(cos θ) (22)

where PL are the Legendre functions, and the FLs are called Fermi liquid
parameters

The important lesson to take home from all this is that a Fermi liquid is
not characterized simply by a finite set of parameters, but by a function F (θ)
or equivalently an infinite number of parameters FL.5 An infinite number of
parameters sounds like bad news for any phenomenological model, but it turns
out that important observables can be expressed in terms of just a few of the

5From (21) it looks like there is also a single extra parameter, m?, but an argument based
on Galilean invariance gives the relation m?

me
= 1 + F1

3 .
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FLs. We already mentioned the specific heat that only depends on m?, and
another example is the compressibility given by,

κ =
m?pF

π2ρ2(1 + F0)
(23)

where ρ is the density. To calculate the response to a magnetic field, we must
include the term in (20) that involves the function g(cos θ), and the suscepti-
bility is determined by the parameter G0, where GL is defined analogously to
FL

1.2 The Renormalization Group approach

Although Landau’s line of arguments is very suggestive, it cannot be true in
general. We know that many metals at sufficiently low temperatures become
superconductors which are very different from metals. Of particular impor-
tance for our discussion is that in superconductors there are no low energy
quasiparticle excitations, which is related to that the Fermi surface is destroyed
by interactions. Since we have already argued that Landau’s theory should be
applicable at sufficiently low temperature, the presence of superconductors is
a real problem.

The first go at this problem was to start from the free electron gas and take
the electron-electron interaction into account by many-body perturbation the-
ory. The first aim of this program, which was to derive Landau’s theory from
first principle, was rather successful, and it is described in many textbooks[2].
Since the interaction is strong, it is not sufficient just to calculate a couple of
terms, but one must perform (infinite) sums over many terms in the perturba-
tion expansion - this makes the calculations cumbersome, and it is not always
easy to keep track on what is included, what is neglected, and why that is
so. The case of superconductivity is rather interesting. The first microscopic
explanation - the BCS theory - was based on a rather simplified model for the
electron-electron interaction, which however captured the essential physical
mechanism, namely that of Cooper pair formation. Only later was this theory
formally derived using the perturbation theory machinery.

The second approach, which we shall discuss very briefly in this lecture, is
based on Ken Wilson’s concept of the renormalization group (RG). We first
shortly review the basic idea of the RG method, and then show how it can
be adapted to deduce the possibility of a Fermi liquid state, but also why the
superconductor is an alternative low temperature state.
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1.2.1 The basic idea of the RG method

The goal of the RG method is to find an effective action, or Hamiltonian, that
captures the low energy/low momentum properties of a theory.6 The technique
is that of sequential elimination of high momentum modes which starting from
a microscopic action S = SΛ gives to a sequence SΛn of (in general increasingly
complicated) actions. Here Λn is a cutoff and the action SΛn describes the
physics for momenta p < Λn. The first Λ can be thought of as a physical cutoff
such as a lattice spacing in a crystal, or the magnetic lenght in strong magnetic
field. Mathematically this elimination procedure is most easily decribed using
path integrals, and the object to study is the partition function Z[T, µ, . . .],
that depends on some number of control parameters such as the temperature
T , the chemical potential µ etc.. Z can be used to calculate thermodynamic
observables. To get correlation functions, or Greens functions in a quantum
mechanical theory, one must also couple sources for the various fields. In the
Euclidean formulation the correlation functions are directly related to retarded
response functions, but by analytical continuation one can also, at least in
simple cases, retrieve real time correlation functions. In the following we will
supress the dependence on external parameters and sources and just write

Z =
∫
D[φ, φ?] e−S[φ] . (24)

For simplicity you can think of φ as a bosonic field that describes for instance
the density in a gas or the spin density in some direction in a magnet. In
general there will be many fields, and, importantly, some of them will be
fermionic. We shall assume that the action is some local function of the field
φ and its derivatives. As an (important) example we take

S =
∫
ddx

[
1

2
φ?(−~∇2 + g2)φ+ g4|φ|4

]
= S0 + Sint (25)

which for for d = 4 could describe a cloud of cold atoms or a part of the Higgs
sector of the standard model.

Next we fourier transform to momentum space and decompose the field as

φ(~x) =
∑

0≤|~p|≤Λ

ei~p·~xφ(~p) =
∑

0≤|~p|≤Λ1

ei~p·~xφ(~p) +
∑

Λ1≤|~p|≤Λ

ei~p·~xφ(~p) (26)

≡ φ<(~x) + φ>(~x)

6When dealing with quantum mechanical problems, we talk about actions, but we shall
all the time use the Euclidian formulation where i

∫
dt→

∫
dτ , and where τ is the ”imaginary

time” variable. In this way, the generating functional for the quantum system in d spatial
dimension, is mapped into a d+ 1 dimensional classical statistical mechanics system.
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The action becomes

S =
∑

0≤|~p|≤Λ1

[p2 + g2]φ?(~p)φ(~p) +
∑

Λ1≤|~p|≤Λ

1

2
[p2 + g2]φ?(~p)φ(~p) + Sint

= S0[φ<] + S0[φ>] + Sint[φ<, φ>] (27)

and we define the effective action Seff at scale Λ1 = Λ/s by the relation

e−S
eff [p<] = e−S<[p<]

∫
D[φ>] e−S>[~p>]−Sint[~p<,~p>] (28)

We shall not go into the details for how Seff , is calculated, but take for granted
that this can be done, and just state that after the two rescalings,

~p< → 1

s
~p ′ (29)

φ< → ζ φ′ (30)

it can be written in the form

Seff =
∫
ddx

[
φ?(−~∇2 + g′2)φ+ g′4|φ|4 + g6|φ|6 + g22|~∇2φ|2 + ......

]
. (31)

where we skipped the primes on the new field variables. The scaling (29) is
picked so that the original cutoff Λ is restored, and (30) so that the kinetic
term in S and Seff are the same.7 This is necessary for making a meaningful
comparison between the original coupling constants g2 and g4 and the new
coupling constants g′2 and g′4. By studying the ”flow” of the coupling constants
as we change the scale parameter s, we learn whether a particular interaction
term becomes stronger or weaker as we study phenomena at lower and lower
momenta. At first this might seem like an impossible endeavor since the dots
in (31) denotes a, in general infinite, number of terms of higher order in both
φ′ and derivatives, which are generated when evaluating the functional integral
in (28). What saves the day, is that the operators can be classified in three
groups, relevant, irrelevant, and marginal, according to wheter they increase,
decrease, or remain the same under the renormalization group transformation
which consists of the elimination of high momentum modes according to (28)
and then performing the two rescalings (29) and (30). In most cases there are
only a few relevant and marginal operators, and these are the only ones that
will survive at low momenta. Which class a particular operator belongs to often

7In a free field theory simple dimensional analysis gives ζ = s1−d/2, but for interacting
field theories this changes and the scaling dimension of the field becomes ”anomolous”.
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follows from dimensional analysis. In the action (25), the (mass) dimension of

g2 is that of ~∇2, i.e. [g2] = 2 while [g4] = 4−d since [φ] = d/2−1 and the action
itself is dimensionless. Thus under the scale change (29), g2 → g′2 = s2g2 and
g4 → g′4 = s4−dg4. Thus we expect g2 to be relevant while g4 is relevant or
irrelevant depending on whether we are below or above four dimensions.8

Mathematically the flow of coupling constants are determined by a set of
coupled first order differential equations of the type

s
dgi
ds

=
dg

dt
= βi(g1, g2, . . .) (32)

where we introduced the parameter t by s = et. There is no universal method
for calculating the beta functions, but in many cases one can get important
information from various perturbative expansions. In our case, a one loop
calculation gives

dg2

dt
= 2g2 + ag4 (33)

dg4

dt
= −bg2

4

where a and b are positive constants. The resulting flow pattern in the (g2, g4)
plane is shown in the figure 2. A fixed point is a set of values, here (g?2, g

?
4),

for the couplings, which are unchanged under renormalizations, and from (32)
we see that this occurs at zeros of the beta functions. The interesting fixed
points are those at s → ∞, since these determine the low energy theory.9 A
particularly important example is the gaussian fixed point where g?2 = g?4 = 0,
as seen in the figure. In particle physics this describes a free massless theory,
and in statistical mechanics a critical point signalling a phase transition. A
famous example of a non-gaussian fixed point is the Wilson-Fisher fixed point
which appear in the real version of the model (25) in three dimensions.

1.2.2 Renormalization group approach to Fermi systems

We now apply the above method to a system of interacting fermions. The
first step is to construct a path integral for fermions. How to do this is by
no means obvious, but it is described in many textbooks, and with a few

8The marginal case, d = 4 is more tricky and it takes a more careful analysis to find out
whether the interaction is truly marginal, marginally relevant or marginally irrelevant

9In high energy physics it is also of interest to study ”ultraviolet fixed points” corre-
sponding to 1/s→∞, which govern the short distance behavior of the theory.
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Figure 2: The RG flow generated by the equations (33). The gaussian fixed
point is at the origin

changes most expressions parallel those for bosons. There is however a crucial
qualitative difference between bosons and fermions in how the renormalization
group transformations are defined. This difference is illustrated in figure 3
where we show how the cutoff changes if we do not perform any rescaling -
this is the adequate way to illustrate which physical momenta are described
by the effective theory as we follow the RG flow. The crucial point is that for
fermions, the fixed point theory is not defined by the values of the couplings
as the sphere in momentum space shrinks to a point, but as the the values of
the couplings on the Fermi sphere. Thus we do not have a set of fixed point
coupling constants, but rather several fixed point coupling functions of the
position on the Fermi surface.

1.2.3 The RG flow equations

To see a little bit more in detail how this comes about, we now study the
scattering between two particles close to the Fermi surface, 1 + 2→ 3 + 4. We
take two spatial dimensions to simplify the geometry (three spatial dimensions
is discussed in detail in [3]). The Fermi surface is labeled by the polar angles
θi i = 1, . . . 4, and an arbitrary two momentum can be parametrized as ~p =
(pF +p)~Ω, where ~Ω = (cos θ, sin θ). As in the previous section we now consider
a four particle interaction, which in momentum space can be written as,

Sint =
∫ 4∏

i=1

dωi
∑
~pi

ψ†~p3ψ
†
~p4
ψ~p2ψ~p1 f(ωi, ki, θi) δ

4(
∑

Pi) . (34)
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Figure 3: For bosons the RG transformation restricts to momenta to a smaller
and smaller ball around p = 0 while for fermions the momenta are restricted
to a smaller ands smaller shell around the Fermi momentum pF .

Here we distinguished between energy and momentum, used ψ instead of φ to
indicate that we are dealing with fermions, and f instead of g4 to anticipate
the connection to Fermi liquid theory. The last factor is the delta function that
imposes energy and momentum conservation. Under the RG transformation,
ki → ki/s and ωi → ωi/s, while the angles θi remain unchanged. Thus we
expect that any low momentum fixed point, corresponding to s→∞ should be
characterized not by a coupling constant f ?, but by a coupling function f ?(θi).
To get some handle on whether there are any such fixed point functions, and
what properties they have, we must find the RG flow equations. The details of
the perturbative calculations you find in [3], but to understand the results we
must know a few things about how they are derived. The idea is to perform
the integration in (28) using perturbation theory to one loop. We should thus
evaluate the scattering graphs i figure 4. The important point is now that for
all the momenta to lie close to the Fermi circle, there are only three possibilities
for the vectors ~Ωi, as illustrated in figure 5. The first two are,

~Ω1 = ~Ω3 and ~Ω2 = ~Ω4 (I) (35)

~Ω1 = ~Ω4 and ~Ω2 = ~Ω3 (II) (36)
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Figure 4: One loop contribution to electron-electron scattering

Figure 5: The direction of the momenta of particle scattering close to the
Fermi surface. I and III refers to the labels in (35) and (38).

which are identical up to an exchange of the final particles. This process is
possible for arbitrary angles θ1 and θ2, and because of rotational invariance we
expect this scattering to be characterized by a fixed point function,

F (θ1 − θ2) = f(θ1, θ2, θ1, θ2) = −f(θ1, θ2, θ2, θ1) (37)

where the sign comes from the particles being fermions. The third possibility
is

~Ω1 = −~Ω2 and ~Ω3 = −~Ω4 (III) , (38)

that is scattering between particles at opposite positions on the Fermi circle.
Here the coupling function can depend only on the angle θ1 − θ3,

V (θ1 − θ3) = f(θ1,−θ1, θ3,−θ3) . (39)

Here we just used geometric intuition to put in the constraints on the angles
”by hand”, but a carful evaluation of the diagrams in figure 4, taking the cutoff

16



into account, will give the same result. Furthermore it will give the following
RG flow equations for the functions F (θ) and V (θ),

dF (cos θ)

dt
= 0 (40)

dV (cos θ)

dt
= − 1

8π2

∫ dθ′

2π
V (θ − θ′)V (θ′) . (41)

Noting that the RHS of (41) is a convolution, we easily find a solution for the
Fourier components VL,

VL(t) =
VL(0)

1 + VL(0)t/(4π)
, (42)

where VL(0) are the starting values for the RG evolution.

1.2.4 Physical interpretation

We are now finally in the position to to draw some conclusions about the low
energy theory. First assume that all the VL(0)s are positive, as would be the
case for a reasonably behaved repulsive potential, then V (θ) will renormalize
to zero,10 while the function F (θ) remains marginal and characterizes the fixed
point theory which can be identifed as a Fermi liquid! If instead at least one of
the VL(0) is negative, as would be the case for any attractive interaction, the
RG flow will hit a singularity for some t. At this point the coupling constant,
VL grows out of control, and the perturbative treatment can no longer be
trusted. From the details of the calculations, one can however see, that the
contribution to the renormalization of V (θ) comes from the ”BCS” diagram
in figure 4c. We can thus interpret this singularity as the emergence of a
pole in the Lth partial wave of the particle - particle scattering amplitude,
corresponding to the formation of a Cooper pair with angular momentum L.

We have glossed over several important technical points such as how to
properly include spin and and the constraints imposed by the Pauli principle.
It also takes some work and care to establish the flow equations (40) from
perturbation theory, and to make sure that the resulting putative Fermi liquid,
actually coincide with the phenomenological theory discussed in the previous
lecture. Another question of conceptual interest namely how to consistently
impose the cutoff to increasingly thinner shells around the Fermi surface, is
discussed in detail in section V of reference [3].

10This is not strictly true. At sufficiently low temperatures, an additional contribution,
that was neglected in (41) becomes important, and the system is driven towards supercon-
ductivity. This is the RG manifestation of the Kohn-Luttinger effect[6].
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2 Luttinger liquids

Fermion systems in one dimension can be realized in various ways, such as
quantum wires, carbon nano-tubes or QH edge states. In this lecture you will
not learn about the fascinating phenomenology of any of these systems, but get
a glimpse of the rich theoretical machinery that has been developed to describe
them. The simplest model, and the perhaps most studied, is the Tomonaga-
Luttinger model which describes the low lying excitation around the two Fermi
points in a one-dimenstional Fermi gas with density-density interactions. In
figure 6 you see two different realizations of this model. The left, and more
realistic, represents a single parabolic band in some one-dimensional crystal.
It should however be clear that the lowlying excitations in this model are the
same as in the one shown on the right, which is an 1+1 dimensional Dirac
theory. That the former has a finite number of electrons filling the band, and
the other an infinite ”Dirac sea” should not change the physics close to the
Fermi points. The second model, that was originally studied by Luttinger, is
given by the Hamiltonian

H =
∑
α=±1

vF

∫
dxψ†α(iα∂x − kF )ψα −

1

2

∫
dxdx′ ρ(x)V (x− x′)ρ(x′) (43)

where α lables the two Fermi points, vF is the Fermi velocity, and ρ the total
density, ρ = ψ†+ψ+ + ψ†−ψ−. This model can be studied using perturbation
theory or RG methods, but in these lectures we shall describe a method that is
specific to one dimension, namely bosonization. The basic observation is that
in 1+1 dimensions there is no real difference between fermions and bosons.
A strong hint that this is the case comes from noticing the partition sum for
free bosons and free fermions quantized on a circle are in fact identical. This
means that all energy levels, and the degeneracies of these levels, are the same
for fermons and bosons.11 This does not necessarily mean that all observables
in the fermionic theory can be calculated in the boson language, since it is not
obvious how to describe a single fermion in terms of bosons. That this can
indeed be done is the essence of the bosonization scheme, which allows one
to express local fermion field operators in terms of a (non-local) function of
boson fields. The last lecture will be on some aspects of the bosonized theory,
and in particular contrast it with the Fermi liquids we studied earlier. At the
end we shall also discuss the chiral Luttinger liquids that describe the edges
of quantum Hall samples. To set the scene for all this, we shall in this third

11You can easily convince yourself that this is true for the low lying states. The general
analytic proof for the partition functions involves some identities for theta functions and
can be found e.g. in [7]. An elementary proof based on counting is given in chapt. 14 of [8].
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Figure 6: On the left, the dispersion relation for a parabolic band, with the
Fermi level and Fermi momentum indicated in green, and the red denotes states
filled in the ground state. The blue line indicate the approximate linearized
dispersion relation. On the right, the dispertion relation for the Luttinger
model, which consists of two branches of right and left moving chiral fermions.
Note that in this model there is an unphysical infinite ”Dirac sea” of filled
negative energy states.

lecture describe a very simple heuristic method developed by Haldane[9], which
captures the essence of the low energy dynamics of 1+1 dimensional particles
with quartic interactions. En route, it will be clear why fermions and bosons
are so similar.

2.1 Haldane’s description of 1D harmonic fluids

Haldane has formulated a general description of one-dimensional fluids based
on a low-momentum expansion around a constant density[9]. The starting
point is a bosonic field theory in 1+1 dimensions,

S =
∫
dtdx φ?i∂tφ−

∫
dtH (44)

which satisfies the periodic boundary condition φ(x + L) = φ(x). Varying φ?

gives the equation of motion

∂tφ(x, t) =
δH

δφ?(x, t)
. (45)
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and taking

H =
1

2m

∫
dx φ?(−∂2

x)φ+
1

2

∫
dxdx′ φ?(x)φ?(x′)V (x− x′)φ(x)φ(x′) , (46)

we get the non-linear Schrödinger equation

i∂tφ(x, t) = − 1

2m
∂2
xφ+

∫
dx′ φ?(x′)V (x− x′)φ(x)φ(x) (47)

appropriate for spin-less bosons with mass m interacting via a density-density
interaction.

To quantize this theory, which is linear in the time derivative, we notice
that the action is already on the Hamiltonian form.[10] To make this point
clear, assume that the x is discrete and use the notation φ(xi, t) = φi(t). The
action can now be written

S =
∫
dt

[∑
i

φ?i i∂tφi −H
]

(48)

but this we recognize as the action of a collection of canonical variables that
is usually written as S =

∫
[piq̇i −H(pi, qj)]. Thus the action (48) implies the

canonical comutation relations [φi(t), iφ
†
j(t)] = iδij, or in the continuum model

(44)

[φ(x, t), φ†(x′, t)] = δ(x− x′) , (49)

where the delta funtion is understood to be periodic with period L. In the
following, we shall use a phase-density representation,

φ† =
√
ρ eiϕ . (50)

This is however a bit tricky to use in the continuum, so we start with a lattice
version of (49)

[φi(t), φ
†
j(t)] = δij . (51)

Assuming that variables on different sites commute, we immediately gets the
equal time comutation relations

[ρi, e
iϕj ] = eiϕjδij (52)

or12

[ϕi, ρj] = iδij . (53)

12The below relation has to be interpreted with care even in the discrete case. The
problem is that while the phase factor operator is a well defined, it is not unitary, so
the phase is phase operator, ϕ, as naively defined, is not hermitian. Usually one assumes
that this problem is unimportant for states with high mean occupation number. For an
exposition of this problem see e.g. chapt. 10 in [11].
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2.1.1 The mean field description

Since we are going to study the low momentum, or long wave length theory,
we can no go back to a continuum notation and write,

[ϕ(x), ρ(x′)] = iδ(x− x′) (54)

Note that the field ϕ is an angle, i.e. it is only well defined modulo 2π. In
particular this means that the boundary condition on φ implies, ϕ(x+ 2π) =
ϕ(x)+Jπ, with J an even integer, corresponding to non-trivial winding of the
phase field. We shall give the physical interpretation of this winding below.
Integrating (52) relation over x we have

[N̂ , eiϕ] = eiϕ (55)

where N̂ is the total number operator, or the total charge, and thus quantized
in units of 1. The relation (55) shows that the ”soliton” operator eiϕ(x) creates
a unit charge at x, just as on the lattice.

We next parametrize the small, low momentum deviations from the con-
stant density ρ0 = N/L as

ρ(x) = ρ0 + Π(x) , (56)

and of course have,

[ϕ(x),Π(x′)] = iδ(x− x′) . (57)

showing that is ϕ and Π are conjugate variables, but only as long as we confine
ourselves to the low momentum part of the Hilbert space. The cutoff in wave
vector is set by the mean density ρ0, so our approximation is valid for |k| �
kF = πρ0.

2.1.2 Putting the particles back

You might think that all effects having to do with the microscopic particle
content of the theory is irretrievably lost in this coarse-grained approximation.
The basic insight of Haldane, was that this is not necessarily true - certain
aspects of the particle nature of the fluid can be built into the effective low-
momentum description. The trick is to introduce a new low momentum field
θ by,

ρ(x) = ρ0 + Π(x) =
1

π
∂xθ(x) (58)

21



To get some intuition for the new field, let us consider the charge operator N̂ ,

N̂ =
∫ L

0
dx

1

π
∂xθ(x) =

1

π
[θ(L)− θ(0)] (59)

which is half the winding number of the map from the circle in real space,
parametrized by the polar angle α = 2πx/L, to the circle in the space of field
configurations, parametrized by the angular field variable θ. Since the charge
in the system is large (otherwise it is not meaningful to consider fluctuations
around a mean density) the phase θ will wind many times when we go around
the circle. Given this, we expand the field θ as

θ(x) = θ̂ +
πx

L
N̂ + θ̃(x) (60)

where θ̃(x + L) = θ̃(x) and the operator θ̂0 is x independent. Recall that the
winding number of the phase field ϕ was defined as the quantum number J ,
so in analogy we write

ϕ(x) = ϕ̂+
πx

L
Ĵ + ϕ̃(x) (61)

The ”zero mode” operators θ̂ and ϕ̂ are defined by the relations

[ϕ̂, N̂ ] = [θ̂, Ĵ ] = i , (62)

which imply that eimϕ̂ shifts the eigenvalue N of the charge operator N̂ by m
steps, consistent with the relation (55). To interpret the operator Ĵ , recall that
the spatially constant part of the current density is just ρ0∂xϕ, from which we
can infer that J is the zero mode of the total current.

With this background we are prepared to understand Haldane’s ansatz for
the granular density operator, ρg,

ρg(x) = ∂xθ(x)
N∑
n=1

δ(θ(x)− nπ) . (63)

The interpretation of this central formula should now be clear: when we go
around the circle, the integrated charge

∫
dx ρ is not changing continuously,

but jumps one unit at each of the N positions determined by θ(xn) = nπ. It
is thus natural to think of these as the positions of N point-like charges. To
understand the prefactor, first consider the case of a constant density so that
θ(x) = πρ0x = πNx/L, and (63) becomes

ρ0,g =
πN

L

N∑
n=1

δ(
πN

L
x− nπ) =

N∑
n=1

δ(x− n

N
L) (64)
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i.e. a sum over evenly spaced delta functions which we can interpret as the par-
ticle positions. That the normalization is correct also when the mean density
varies, follows by integrating ρ over an interval around x, to get the smeared
density ρs,

ρs(x) =
1

ε

∫ x+ ε
2

x− ε
2

dx ρg(x) =
1

ε

N∑
n=1

∫ θ(x+ ε
2

)

θ(x− ε
2

)
dθ δ(θ − nπ) (65)

≈ 1

ε

θ(x+ ε
2
)− θ(x− ε

2
)

π
≈ 1

π
∂xθ(x) = ρ(x)

where the interval ε is large enough for the delta functions peaks at the ”parti-
cle positions” xn = θ−1(nπ) to be smoothened. Note that it is crucial that θ(x)
is a monotonously increasing function which is guaranteed since the density is
positive. It is only then that the inverse θ−1 and thus the particle positions
are well defined. We see that the smeared density ρ(x) can be identified with
ρs(x) and is thus the smeared version of the granular ρg(x).

Since the sum in (63) defines a periodic delta function, ρg can be rewritten
as,

ρg(x) =
1

π
∂xθ(x)

∞∑
m=−∞

ei2mθ(x) (66)

so we see that the low-momentum approximation (56) amounts to retaining
only the m = 0 term in the sum.

2.1.3 Bosonization

We shall now be more ambitious, and try to construct creation and annihilation
operators in terms of the low momentum boson fields ϕ and θ. You might think
that this is going in a circle, just as the particles we are studying - after all
we started from a bosonic field theory - but the point is that basically the
same procedure will also allow us to express local Fermi fields in terms of the
low momentum bosons. Or in other words, it will allow us to bosonize the
fermions. From (50) we see that we must somehow take the square root of the
expression (64). Clearly, whatever this distribution is, it must have support
only at the points xn, so up to an undetermined normalization constant we
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can again take it as the same delta function.13 Thus, we are led to define,

Ψ†B = A
√
ρ0 + Π(x)

∑
m

ei2mθ(x)eiϕ(x) (67)

where A is a normalization constant that will depend on detailed short distance
properties. From the above it is clear that this operator creates one unit of
charge, but is a linear combination of creating different amount of current.

It is important to check that ΦB(x) and φ†B(x′)) so defined commute for
x 6= x′ as required by Bose statistics. This is not obvious, since it depends on
the fields θ(x) and ϕ(x) which satisfy the commutation relation,

[ϕ(x), θ(x′)] =
iπ

2
ε(x− x′) (68)

where ε(x) is the sign function. Using the notation φm = ei2mθ(x)eiϕ(x) we have

φm(x)φm(x′) = eimπε(x−x
′)−imπε(x′−x)φm(x′)φm(x) = φm(x′)φm(x) (69)

and the other combinations of φ†m(x) and φm(x′) can be checked in the same
manner.14 (This calculation, works for x 6= x′ and we shall here not worry
about the delta function in (49).)

From the expression (69), we can now easily construct Fermi operators,
just by shifting 2m→ 2m+ 1,

Ψ†F = A
√
ρ0 + Π(x)ei(2m+1)θ(x)eiϕ(x) (70)

which will satisfy,

{ΨF (x),ΨF (x′)} = 0 (71)

etc.. For bosons the lowest order approximation is simply Ψ†B ∼
√
ρ0 + Π eiϕ

while for fermions it is

Ψ†F ∼
√
ρ0 + Π

(
eiθ + e−iθ

)
eiϕ (72)

13Instead of worrying what it could mean to take the square root of an distribution, let

us define the delta function as the ε → 0 limit of δε(x) =
√

1
πεe
− x2ε and thus

√
δε(x) =(

1
πε

) 1
4 e−

x2
2ε = (4π)

1
4
√
ε δ2ε(x) which shows that up to a normalization factor the square root

of a delta function is again a delta function.
14Strictly speaking this does not demonstrate that the commutator [ΦB(x),ΦB(x′)] van-

ish, since there are cross terms where m + m′ is not even. Such terms will however come
with oscillatory factors exp[iπ(m±m′)kF (x+ x′)/2].
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Since θ contains the term kFx, the to terms will have the behaviour eikF x

and e−ikF x corresponding to adding a particle at the right or left Fermi point
respectively, it turns out that this gives an exact description of the Luttinger
model (43). For bosons, on the contrary, a charge can be added without any
current, corresponding to a k = 0 state. Also note that in the fermionic case
the condition to make Ψ†F single valued, is no longer that J is an even integer
but that N ± J is an even integer.

2.1.4 The harmonic approximation

To proceed, we must turn our attention to the Hamiltonian. Since we are
interested in small fluctuations around the constant density ρ0, we expand the
interaction energy to second order in the deviation to get,

H =
1

2π

∫
dx

[
vJ(∂xϕ)2 + vN(∂xθ − πρ0)2

]
(73)

where vJ = πρ0/m and vN is a velocity parameter that depends on the in-
teraction.15 The Hamiltonian (73) together with the commutation relations
(68) and (62) defines the theory. We start by finding the spectrum, and in the
next section we shall concentrate on the fermion case and calculate a typical
fermion-fermion correlation function. Substituting the expansions (60) and
(61), and introducing the parameters

vs =
√
vNvJ g =

√
vJ
vN

(74)

we can rewrite the the Hamiltonian as

H =
vs
2π

∫
dx

[
g(∂xϕ̃)2 +

1

g
(∂xθ̃)

2

]
+

π

2L
[vJ Ĵ

2 + vN(N̂ −N0)2] (75)

where ρ0 = N0/L. As we already noticed, the operators e±iϕ̂ and e±iθ̂ provide
creation and annihilation operators for the quantum numbers of total charge,
N , and total current, J , respectively. This allows us to move between different
superselection sectors, and in the following we shall assume that we fixed both
N and J . Typically N is large ∼ N0 since we are at finite density, while J is
small since it measures the imbalance between the population of the right and
left movers. From now one we concentrate on the fluctuation part of H.

15More specifically, it is related to the compressibility κ by vN = κ/(πρ2
0).
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At this point it is convenient to switch to a Lagrangian formalism

L =
1

π
∂xθ̃∂tϕ̃−

vs
2π

[
g(∂xϕ̃)2 +

1

g
(∂xθ̃)

2

]
(76)

and you should make sure that you understand how the first term reproduce
the commutation relation (57). To decouple the two fields θ̃ and ϕ̃, we define,

χ± =
√
gϕ̃∓ 1

√
g
θ̃ (77)

to get

L = ± 1

4π

∑
±
χ±∂x(∂t ± vs∂x)χα (78)

which shows that our action is that of two decoupled chiral bosons. The term
”chiral” refers to the dispersion

(∂t ± vs∂x)χ± = 0 (79)

which shows that χ+ describes a right-moving, and χ− a left moving wave. It
is now also clear that for given values of N and J , the spectrum is that of a
free boson, with the two chiralities described by χ±.

2.2 One-dimensional Fermions

You might not find the above result very impressive - from the point of view of
bosons, it merely says that a bose gas with sufficiently strong repulsive forces
to keep a constant density, will have harmonic sound waves, which is why we
used the subscript s on the velocity. The really interesting thing comes when
we consider the properties of the fermionic operators,

Ψ†F± ∼
√
ρ0 e

∓iθ+iϕ (80)

which is the simplest version of (70). We are interested in correlations functions
of these operators, since they will tell us whether of not we are dealing with a
Fermi liquid.16

16In (80), we shall ignore the the zero mode parts which are of no importance for the
x-dependence of the correlation functions.
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2.2.1 Correlation functions

The first step in the calculation of the correlations functions is to express Ψ†F±
in terms of the independent fields χ±,

Ψ†F± ∼
√
ρ0 e

∓iπρ0xe
i
2

(√
1
g
±√g

)
χ++ i

2

(√
1
g
∓√g

)
χ−
eiϕ (81)

where we restored the term ∼ x from (60). Note that for the free theory
corresponding to g = 1, Ψ†F± ∼ eiχ± . To evaluate correlators, we introduce
the imaginary time variable τ = it and use the formula

〈eiaχ±(x,τ)eibχ±(x′,τ ′)〉 = eabG±(x,t;x′,t′) (82)

where we defined the Euclidean Greens function

G± =
∓2π

∂x(−i∂τ ∓ vs∂x)
. (83)

or more explicitly,

G±(x, τ) = ∓2π
∫ dk

2π

∫ dω

2π

eiωτ+ikx

ik(ω ∓ ivsk)
. (84)

A direct evaluation of this integral gives

G±(x, τ) = ln(x± ivsτ) . (85)

and the corresponding Eucledian correlation functions

〈eiaχ±(x,τ)eibχ±(x′,τ ′)〉 = (x± ivsτ)ab (86)

Combining (81), (82) and (86), we can now calculate the Euclidean correlators
of any number of fermion fields. Here we just give the simplest example,

〈ΨF±(x, τ)Ψ†F±(0, 0)〉 ∼ e±iπρ0x

(x+ ivsτ)γ+(x− ivsτ)γ−
, (87)

where γ± = (1/g + g ± 2)/4. For τ = 0 we get the simple result,

〈ΨF±(x)Ψ†F±(0, 0)〉g=1 ∼
e±iπρ0x

x
1
2g

+ g
2

(88)

From (74) we see that for g = 1 we have vN = vJ = vs = vF where vF is the
Fermi velocity, and, recalling that kF = πρ0, (87) becomes

〈ΨF±(x)Ψ†F±(0, 0)〉g=1 ∼
e±ikF x

(x± ivsτ)
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which is the correct result for free chiral fermions! This shows that we can
recover the correct low energy physics for the fermions starting from the har-
monic liquid that originally knew nothing about quantum statistics. The cru-
cial extra input was of course the ansatz (63) for the granular density operator.

Note that in the expression (88) the exponents γ±, are no longer integer, so
the pole that was present in the free propagator becomes a cut! But in a Fermid
liquid, there is always a pole describing the long-lived quasiparticles close to
the Fermi surface. Thus we suspect that the Fermi surface has disappeared,
and this can be verified by calculating the Fourier transform of the propagator
to see that the pole in the ω-plane is also replaced by a cut and that the
momentum distribution function N(p), discussed in section 1.1.4, no longer has
a discontinuity at pF . For more on how to calculate correlation functions, and
how they relate to observable quantities, you can consult the rather detailed
review by Voit[12]. You should also note that although there are no gapless
fermions in the spectrum, the bosonic excitations are gapless. In this respect
the Luttinger model differs qualitatively from a superconductor. In an RG
treatment one can in fact see that there is a very delicate balance between a
tendency towards superconducting and charge density wave ordering. Since
there can be no spontaneous symmetry breaking of a continuous symmetry
in 1+1 dimension even at zero temperature, neither of these tendencies win,
and the system remains unordered. Which is the dominating tendency is
easily understood from the Hamiltonian (76). For large g, corresponding to
attractive interactions, the phase ϕ̃ tend to be slowly fluctuating, as in a
superconductor, while for small g corresponding to strong repulsion, θ̃ tend to
be uniform, corresponding to the particles sitting at fixed positions with only
small fluctuations, as in a charge density wave.

2.2.2 The concept of Luttinger liquid

As stressed at the start, the above derivations are heuristic. To rigorously
(or at least rigorously enough for a physicist!) establish that the spectrum
and correlation functions is really that of interacting fermions, one starts from
the Luttinger Hamiltonian, (43), and by a series of manipulations derive the
theory we studied in this section. A detailed account of this procedure is
given in [7].17 In this paper two other facts are stressed, first that the above

17The history of bosonization is dates back much further, to Jordan and Wigner, and with
important contributions from among others Mattis, Lieb, Luther, Peschel and Mandelstam.
The 1983 paper by Haldane is however the first to properly treat the zero modes, to stress
the universality of 1+1 dimensional liquids and it is also where the name ”Luttinger liquid”
was first proposed.
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results would be essentially unchanged in a more realistic system where the
dispersion is no longer linear, corresponding to non-harmonic terms in the
energy, secondly that the many other systems, e.g. certain spin chains, show
the same qualitative behavior in the low energy region. The term ”Luttinger
liquid” is used to describe all such system which has low energy characteristics
in common with the simple Luttinger model. The advantage of the heuristic
derivation given in the previous section is that although it does not rely on any
microscopic details - it is never defined whether the ”particle positions” in (63)
are the locations of fermions, bosons, spin excitations, solitons or something
else - it still captures the physics of many different systems. The simplest
example of this we have already seen; by choosing m differently in (66) we
can describe either bosons or fermions. The strength of the formalism does
however go beyond this. As discussed in [9] we can use the more general
form (67), and the corresponding fermion expression, to calculate correlation
functions that will include oscillatory terms of the form ei2mkF x. These terms
are not universal, and the coefficients are not determined, but nevertheless
they provide an expansion of the correlation function that can be successfully
compared with results derived by other methods, such as Bethe ansatz, that
can be applied to specific models. Finally, to connect to the second lecture,
from RG perspective, the Luttinger liquid is a fixed point for electron and
spin systems in 1+1 dimensions. But just as the Fermi liquid fixed point in
higher dimensions is not the only possibility, neither is the Luttinger liquid.
A simple counter example are chains of integer spin where the spectrum is
gapped, while those of half integer spin are gapless and can show Luttinger
liquid behaviour.

2.2.3 Chiral Luttinger liquids and quantum Hall edges

So far we only treated the simplest example of a single Luttinger liquid that
is appropriate for describing interacting spin-less fermions. Things become
much more interesting for fermions with spin, i.e. real electrons. Here one
can show that the charge and spin degrees of freedom are described by two
different Luttinger liquids characterized by different velocity parameters. This
”spin-charge” separation in particular mean that there are spin excitations,
called spinons, that do not carry any charge. You can learn more about this
fascinating subject in the review by Schultz et al.[4]. Here we shortly address
another interesting topic, that of chiral Luttinger liquds.

In (78) the Luttinger liquid was expressed as the sum of two independent
pieces, that in the free limit g = 1, just described the free electrons and holes
at the two Fermi points. When g 6= 1? the physics at the Fermi points were
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coupled, so that a right moving excitation is a superposition of a rightmoving
particle, and a left moving hole. (This interpretation might not be completely
clear from the above, but follows form a more detailed analysis, and is discussed
in some detail e.g. in [13].) You might now ask if there is any way to separate
the two liquids to get particles that move only in one direction, and furthermore
whether such a system could still be interacting in the sense of having g 6= 1.
It turns out the answer to both these questions are positive.

The quantum Hall effect (QHE) is seen in high quality two-dimensional
electron gases at low temperature and high magnetic field.18 Theoretically, the
observation of quantized Hall resistance and several other features, is explained
by the formation of incompressible liquids. These quantum hall liquids are
topological states of matter, as discussed by J. Moore in this school. The
topological field theory describing the simplest QH liquids, are Abelian Chern-
Simons gauge theories,

L =
k

4π
ada+

e

2π
adA− ja . (89)

where we used the notation ab = aµb
µ and abc = εµνσaµbνcσ. Here A is the ex-

ternal electromagnetic potential, and a a ”statistical” gauge field. Integrating
out the a field we get the effective action for the electromagnetic field

L = − e2

4πk
AdA+

e

k
jA− π

k
j

1

d
j , (90)

where we put ν = 1/k. The first term in (89) gives the quantum Hall con-
ductance, σH = νe2/h, the second shows that the quasiparticles have charge
νe, and the third encodes the statistical interaction making them θ = νπ
anyons. This shows that the theory (89) correctly captures the low energy
pheomenology of a quantum Hall liquid with filling fraction ν = 1/k. For the
following analysis we shall take j = 0, i.e. the system does not contain any
quasiparticles.

We now consider our Hall liquid on a bounded region Ω that has a one
dimensional boundary ∂Ω—the edge of the system. A proper specification
requires that we pick a boundary condition which in a concrete case should
follow from the microscopic physics. Here we follow Wen and take a0 = 0 at
the boundary[14]. With this choice, and the absence of background fields, the
action corresponding to (89) can be reorganized as,

S =
k

4π

∫
Ω
d3x [a2ȧ1 − a1ȧ2 + 2a0b] . (91)

18In graphene, it is enough with high magnetic field; the QH effect is observed at room
temperature.
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to exhibit a0 as a Lagrange multiplier field that imposes the constraint b =
da = 0. This can be solved as

aj = −1

k
∂jχ (92)

and on substituting this back in (91) we find that

S = − 1

4πk

∫
∂Ω
d2x ∂0χ∂1χ (93)

where we have chosen to parametrize the edge by the coordinate labelled 1.
We see, consequently, that for a bounded region the action depends only upon
the field χ at the boundary, i.e. the only physical degrees of freedom live at
the boundary. The remaining degrees of freedom are purely gauge ones and
should be eliminated by a suitable choice of gauge for the a field.

The main observation is now that (91) is precisely the kinetic part of one
of the components in (78), i.e. it is our sought after chiral Luttinger liquid!19

There is however one very important difference between (93) and (78) in that
the coefficients in front of the actions differ by the factor 1/k. Naively one
would think that this would only amount to an unimportant renormalization
of the field χ, but this is not the case since this coefficient will change the
Greens function in (85) to k lnx, and thus change the exponent in the corre-
lation function. Note, however, that while in the ordinary Luttinger liquid,
this exponent depended on the compressability, here it is fixed by topology!
A lot of experimental effort has gone into trying to verify that the edge states
of quantum Hall samples really have the expected chiral Luttinger liquid be-
havior, but the situation is still not clear.

A more detailed analysis also shows that the edge supports excitations with
fractional charge ne/k, corresponding to fractional winding numbers. This
is also required by consistency, since there are gapped, fractionally charged
vortex like excitations in the bulk. One might ask whether such fractional
winding numbers are allowed also in the usual Luttinger liquid? Here the
situation is more subtle since the full system is gapless and the definition of
charge has to be carefully examined, as discussed in [13].
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19By taking the instead the boundary condition a0 + va1 = 0, or, more physically, intro-
ducing an edge potential, we can also reproduce the velocity dependent term.
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