GRBs and the connection to HECR

Péter Mészáros Pennsylvania State University

Albanova, 2011

Cosmic ray spectrum (2011)

How far do they come from?

AUGER : UHECR spatial correlations with AGNs (or LSS)

- Dashed line: supergalactic equator
- Circles (proton): Events $E > 5x10^{19} \text{ eV}$, D < 75 Mpc
- Asterisks : Veron-Cety catalog AGNs

Science Nov 2007; newer: arXiv:1009.1855; also ICRC 11

Auger spatial correlation

- Initially found 3- σ corr. with VC AGNs within $\theta \le 3.5^{\circ}$ and D< 75 Mpc, for 27 events E>4.5x10¹⁹ eV (Science, 2007)
- The above correlation would suggest protons
- But: there is even better correlation with "average" galaxies
- If heavy: r_L smaller, rms. dev. angle $\theta \sim n^{1/2} \theta_s \sim (r/\lambda_B)^{1/2} (\lambda_B/r_L) \sim (r\lambda_B)^{1/2} / r_L$ is larger, many more gals. inside error circle
- Also: (arXiv:1009.1855, etc.): now (>2010) the VCV-AGN significance has weakened to ≤ 1.5σ
- Low or no VC AGN corr.: also from HiRes (Sagawa talk)
 - → Could be sources are in galaxies GRB ? HNs? MGRs? Or in other, less extreme and more common galaxies?
 - \rightarrow Or could be they are heavy nuclei, larger error circle?

Rigidity-dependent acceleration: anisotropy expectations

(Lemoine, Waxman, 2009, JCAP 11:009)

If *excess* observed in spatial regions *ⓐ* VCV AGNs at energies $E_{th} > 5.5 \ 10^{19} \ eV$, and this is due to *nuclei* Z, then must expect *protons* to show excesses in the same regions at energies E/Z.

Acceleration controlled by rigidity, $\Rightarrow \frac{\mathrm{d}n_Z}{\mathrm{d}E} = k_Z \Phi(E/Z)$

thus
$$N_p(>E_{th}/Z) = \frac{k_p}{Zk_Z}N_Z(>E_{th}).$$

If $\Phi \propto (E/Z)^{-s}$, get bounds on the low en. abundance ratio

$$\frac{k_p}{k_Z} = \frac{f_p}{f_Z} Z^s$$

Rigidity-dep. accel. composition: test

Conclusion: *either* E>5. 10¹⁹ eV UHECR are mainly protons, *or else* it's all heavy nuclei, also at low E (?...)

Auger spectrum compared to models

(flux mult. by E^3 , > 2011)

Cut-off: clearly present

BUT: sources? spectrum?

9

UHECR : maximum energy ?

gyroradius: $r_L \sim ct_{gy} \sim m_p \ c^2 \gamma / ZeB = \epsilon_p / ZeB < R \ (size \ of \ accel.)$

But if relativistic expansion, bulk Lorentz factor $\Gamma >> 1$, then time_{obs} ~ R/c Γ , and size_{obs} ~ R/ Γ , hence need

 \Rightarrow GRB, AGN..?

(only strongest qualify !)

Maximum E_p for various sources (Hillas plot)

GRB? E_{max}:

- Require : $r'_L = E'/ZeB' \ge R'$)
- \Rightarrow $E_{max} \sim \Gamma Z e B' R'$
- but, what are R', B' for a GRB?

- primed: comoving;
 unprimed : lab frame;
 Γ: jet Lorentz factor
- we have R'~R/ Γ ; and external shock occurs at R where $E_0 \sim n m_p c^2 R_{dec}^3 \Gamma^2$ $\rightarrow R \sim R_{dec} \sim (E_0/nm_p c^2)^{1/3} \Gamma^{-2/3}$
- for B', energy equip. : $B'^{2}/8\pi \sim \epsilon_{B} n m_{p} c^{2} \Gamma^{2}$ $\rightarrow B' \sim \epsilon_{B}^{1/2} (8\pi n m_{p} c^{2})^{1/2} \Gamma$, so
- $E_{max} \sim Ze(8\pi\epsilon_B)^{1/2} E_0^{1/3} (n m_p c^2)^{1/6} \Gamma^{1/3}$, or
- $E_{max} \sim 2x10^{20} Z E_{53}^{1/3} \epsilon_{B,-2}^{1/2} \Gamma_2^{1/3} n^{1/3} eV^{-12}$

างเธระสาบร yrb-glast06

GRB: energetics OK?

- Luminosity function: $\Phi(L)=(L/L_*)^{-\alpha}$, where $\alpha=(0.2, 1.4)$ for $(L < L_*, L > L_*)$ (Wanderman-Piran '10)
- $L_* = L_{*,\gamma,iso} \approx 10^{52} \text{ erg/s}$ (0.01-10MeV)
- $\Delta T \sim 10 \text{ s/(1+z)} \sim 4 \text{ s}$ (long GRB duration in RF)
- $E_{*,\gamma,iso} \approx L_* \Delta T \approx 10^{52.5} \text{ erg}$
- $(dn_{GRB}/dt) \approx 10^{-9} \text{ Mpc}^{-3} \text{ yr}^{-1}$ (GRB rate @ z=0)
- $Q_{\gamma,GRB} \approx 10^{-9} \ 10^{52.5} \approx 10^{43.5} \ erg \ Mpc^{-3} \ yr^{-1}$
- $Q_{p,10}^{19} eV = E_p^2 (dn_p/dE) \approx 10^{43.5} \text{ erg Mpc}^{-3} \text{ yr}^{-1} \checkmark$

Note: This is if $E_p \sim E_{\gamma}$. If extrapolate E_p with spectrum -2 down to ~GeV, need $E_p \sim 10 E_{\gamma}$, and $E_{GRB} \sim 10^{53.5}$ erg (OK). But if E_p spectrum is -2.3, need $E_{GRB} \sim 10^{55.5}$ erg (too much)

Number of sources?

- $N_{cr} \sim 10^2$ CR events @ $E \ge 10^{19.5}$ eV
- If no repeaters \Rightarrow # sources $N_s > N_{cr}^2$
- Each source produces on avg. ~ N_{cr}/N_s events, so \Rightarrow Probability of repeating $P_{rep} \sim N_{cr}^2 / N_s <<1$
- \Rightarrow Require N_s $\gtrsim 10^4$ sources (all-sky),
 - ⇒ source density: $n_s \ge 3x10^{-4} Mpc^{-3}$ (at E>10^{19.5} eV, within D<200 Mpc) ; while, e.g.,
- Density of normal galaxies: $n_G \sim 10^{-2} Mpc^{-3}$
- Density of "active" galaxies: $n_{AGN} \sim 10^{-4} Mpc^{-3}$
- Rate density of GRB : $(dn_{GRB}/dt) \sim 10^{-9} Mpc^{-3} yr^{-1}$

But: protons in random intergal. magnetic field

$$\theta \simeq 0.3^o \left(\frac{D_f}{1Mpc}\right) \left(\frac{f}{0.1} \frac{d}{100Mpc} \frac{\lambda}{10kpc} \frac{\epsilon_B}{0.01}\right)^{1/2} \left(\frac{E/Z}{10^{20}eV}\right)^{-1}$$

 $\lambda_{\rm B}$

Mean deflection angle (Kotera, Lemoine 08 PRD 77:123003), where

- f= volume filling fraction of magn. filaments
- $D_f = filament diameter$
- λ = field coherence lenght
- $\epsilon_B = mag$. energy density/thermal energy density

and dispersion time delay

$$\Delta t(E,d) \simeq \theta^2 \left(\frac{d}{c}\right) \simeq 2 \times 10^5 \text{yr} \left(\frac{d}{200Mpc}\right) \left(\frac{E/Z}{10^{19.5}eV}\right)_{16}^{-1}$$

Hence, if transient sources:

- n_{GRB} ~ (dn_{GRB}/dt) . Δt(E,d) ~ 10⁻⁹ . 2x10⁵ ~ 2x10⁻⁴ Mpc⁻³, ✓ comparable to minimum number of sources required, n_s
- Could do similar argument with flaring AGNs, but AGN flare rate unknown inside 200 Mpc.
- Or might do similar argument with hypernovae in normal gals. inside 200 Mpc (but HN can only accel. heavies up to 10²⁰ eV)

Two \neq views on G-XG spectral shape

(A): fine tuning?

(Katz, Budnik, Waxman 09, JCAP 03, 020)

- Any smooth match between two steep (G, slope 3 and XG, slope 2.7) spectra requires fine tuning (flattening caused by dip)
- E.g. if increase XG by 3 or G by 3, would get extra flattening bumps, not seen
- Whereas match between G slope 3 and XG slope 2 always lead to a smooth flattening

but, (B):

need G ~ XG @ E~10¹⁹ eV; and it is unclear what G source can get up to that energy $_{20}$

"A" and "B" UHECR constr. from LAT

- Use FERMI obs. diffuse γ-ray backgr. to check if compatible w. EM cascade production
- Can restrict the CR spectrum & evolution law
- Evol. $(1+z)^m$ with m>3 are excluded
- \leftarrow Plotted is m=0

- Difference between secondaries from PL with $\beta=2$ and $\beta=2.3$ are significant
- Also differences between secondaries from different compositions
- Current diffuse γ -bkg *not* constraining, could expect obs. diffuse $\sqrt[23]{v}$ -bkg

Generic HiRes-LAT joint GZK fits

Ahlers et al, 2010, ApPh 34:106

 $Y \equiv p$: proton diff. index n=m : redshift evol. index

- Use Fermi LAT diffuse γ-ray flux to constrain, via EM cascades, the allowed proton diff. spectral index p and redshift evol. index m
- Pink 68%, Blue 85%, Magenta 99% CL, includ. LAT constraint
- (Black lines: same CL limits but without LAT constraints)

Another alternative: Hypernovae?

← supernova SN 1006 (X-ray)

- Hypernovae: similar but ~ $10-10^2$ times more energetic; and portion of ejecta reaches \geq semi-relativistic speed, possibly anisotropic

~500 times the rate density of GRBs

Hypernova ejecta as UHECR sources

(Wang et al, 2007, PRD 76:3009; Budnik et al, 2008, ApJ 673:928)

- Type Ib/c but isotropic equiv $E_{HN} \sim 3-5x10^{52} erg$
- 500 times GRB rate, and 10⁻¹-10⁻² usual SNIa rate
- *Semi-relativistic (v~c, or \Gamma\beta \ge 1)* comp. in outflow (shock accelerates down the envelope gradient)
- Assume shock expands in WR progenitor wind, magnetic field fraction ϵ_B of equipartition

 $B^2/8\pi = 2\epsilon_B \rho_w(R) c^2 \beta^2 \qquad \qquad \rho_w(R) \propto R^{-2}$

Max. CR energy:
$$\varepsilon_{\max} \simeq ZeBR\beta = 4 \times 10^{18}Z$$

 $\times \epsilon_{B,-1}^{1/2} \left(\frac{v}{10^{10} \text{cms}^{-1}}\right)^2 \left(\frac{\dot{M}}{3 \times 10^{-5} \text{M}_{\odot} \text{yr}^{-1}}\right)^{1/2} v_{w,3}^{-1/2} \text{eV}$

 \rightarrow Proton: $E_{max} \sim 10^{19} \text{ eV}$, and Fe: $E_{max} \sim 2.6 \ 10^{20} \text{ eV}$

Is flat spectrum result of CR escape from relativistic shocks (GRB, HN)?

Katz, Mészáros, Waxman 2010, JCAP 10:012 (arXiv:1001.0134)

Approximations - assume:

- Relativistic ejecta of approximately uniform velocity
- CRs accelerated in ext. shock have constant fraction *f* of post-shock thermal energy, indep. of radius R
- Instantaneous spectrum produced is $N(E) \propto E^{-2-x}$
- Expand into some medium of density $\rho \propto R^{-\delta}$
- Max. CR energy E_{max} is some power of radius, and the CRs at $E \equiv E_{max}$ are the *only ones that escape* upstream, and these are the CRs observed at E_{31}

- CR energy escaping @ E_{max} : Q= E² N(E) ~ f η E_{kin} where $E_{kin} \propto \Gamma^2 M \propto \Gamma^2 R^{3-\delta}$, $\eta \propto (E_{max}/E_{min})^{-x}$, and $E_{max} \propto B'R \propto \rho^{1/2}\Gamma R$, $E_{min} \propto \Gamma^2$
- $\Gamma \propto R^{-(3-\delta)/2}$ (impulsive, energy-conserving)
- $E_{kin} \propto \Gamma^2 R^{3-\delta} \propto R^0 \propto E^0$; assume $f \sim const.$
- $E=E_{max} \propto \rho^{1/2} \Gamma R \propto R^{-1/2}$, $E_{min} \propto \Gamma^2 \propto R^{-(3-\delta)}$, so
- $\eta \propto (E_{\text{max}}/E_{\text{min}})^{-x} \propto (\rho^{1/2} R/\Gamma)^{-x} \propto R^{-[(5-2\delta)/2]x} \propto E^{(5-2\delta)x}$,
- $Q=E^2N(E) \propto \eta \propto E^{(5-2\delta)x}$, and $N(E) \propto E^{-2+(5-2\delta)x}$, i.e.
- $N(E) \propto E^{-2+5x}$ ($\delta=0$), and $N(E) \propto E^{-2+x}$ ($\delta=2$), in both cases *harder than -2!* (E> E_{*CR} ~ 10¹⁹ eV)

(Reason: E_{min} decreases with radius faster than E_{max} , so at later times, corresponding to lower high end E_{max} =E, there is less escaping CR energy, i.e. less CRs at low E, i.e. flatter spectrum.)

• and, after ejecta becomes non-relativistic (E< $E_{*CR} \sim 10^{19} \text{ eV}$): escaping spectrum = instant. injected spectrum: $N(E) \propto E^{-2-x}$

(2010, JCAP 10:012; arXiv:1001.0134)

Or another alternative: RQ AGNs

Pe'er, Murase, Mészáros, 2009, PRD 80, 123018 (0911.1776)

- Could be that culprits are radio-quiet (RQ) AGNs
- Enough number inside GZK radius (10x more common)
- Evidence for small jets in RQ AGNs
- Evidence for heavy CR composition (X_{max} vs. E)
- Can accelerate heavy elements to right GZK energies, $E_{max} \sim ZeBR \sim 10^{20} Z_{26}B_{-3}R_{10} eV$ (if B~10⁻³G, R~10 pc)
- Can survive photo-dissociation
- Heavy elements have larger rms. deviation angles
- Correlation with matter (gal) distribution is good.

Outlook

- The sources of the UHECR are still unknown
- They are almost certainly astrophysical sources (not TD)
- GRB remain good candidates, together with AGN, maybe HNe, MGR
- Will increasingly constrain such possibilities with GeV and TeV photon observations
- Will learn even more if & when astrophysical UHENUs are observed from any type of source
- Constraints from diffuse (and intrasource) γ-ray emission will be very useful, and may remain for a long time the main constraint
- Composition will also provide important clues, as will

Figure 5: Upper limits on the photon flux above 1, 2, 3, 5 and 10 EeV derived in this work (red arrows) compared to previous limits from Auger (SD [1] and Hybrid 2009 [7]), from AGASA (A) [19] and Yakutsk (Y) [20]. The shaded region and the lines give the predictions for the GZK photon flux [2] and for top-down models (TD, Z-Burst, SHDM from [2] and SHDM' from [21]). The Hybrid 2009 limits on the photon fractions are converted to flux limits using the integrated Auger spectrum. Auger *photon fraction* (ICRC'11)

- Top-Down (TD) largely ruled out
- Z-burst (maybe?)
- GZK photons: compatible