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Extensive air shower physics

Studies of high energy CRs - based on extensive air shower (EAS) detection

EAS development <= high energy interactions

. backbone - hadron cascade

« guided by few interactions of initial
(fastest secondary) particle
= main source of fluctuations

« many sub-cascades of secondaries
= well averaged

Most sensitive to hadronic physics:

« shower maximum position X .«

y: inel non—diffr inel
- mostly sensitive to 0% (0% ), K%

- number of muons at ground N,

- mainly depends on N . (at energies ~ /Fj)

Both observables are main tools
for CR composition studies
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CR composition studies & superposition model

For average (only!) EAS characteristics so-called superposition model works well:

shower induced by nucleus A of energy Ey = A proton-induced cascades of energy Ey/A

« follows from the number of interacting nucleons per collision:

(va) =

A O p—air

O A—air
. mean free pass of the nucleus is (0, _air/04—air) times shorter
« but each nucleon interacts with the probability
<VA> _ O p—air
A 0 A—air

e = (XA (Ey)) = (XP, (Ey/A)) = (XP. (Ey)) —ER InA, ER= d{(X?, (Ey))/dIn E,

max max max

Wint =

« = can be used for CR composition studies:
p-induced EAS penetrate deeper in the atmosphere than e.g. Fe-induced cascades

. similarly:
(NA(Ey)) = A(NP(Ey/A)) Eae A= o, ~ 1.1
(NEo)) = A(NE(Ey/A)) o Ey* A= oy, ~ 0.9

(
A
= Fe-induced showers have more muons ((N/( 0)>/<N5(E0/A)> = A%
and less electrons ((NA(Ey)) /{NP(Ey/A)) = A7)
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CR interaction models

In general, interpretation of exp. results requires detailed description of EAS development

Important ingredient: CR interaction models

Representative models:
« QGSJET (Kalmykov & SO, 1993, 1997)
« SIBYLL (Ahn, Engel, Gaisser, Lipary & Stanev, 1999, 2009)
« QGSJET-II (SO, 2006, 2011)
. EPOS (Liu, Pierog & Werner,2007-2011)

All are based on similar ideas / qualitative approaches

But differ in the implementation, theoretical basis, amount of phenomenology, etc.
= in predictions

By consequence, model updates and cross checks with exp. data necessary

In the following: analysis of the impact of LHC data - based on an update of QGSJET-II
(QGSJET-II-03 — QGSJET-II1-04)



Impact of LHC data: multiplicity

CR interaction models met LHC data generally well

E.g. most collider models underestimate multiplicity:
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On the contrary, most of CR interaction models agree with the data within ~ 10%:
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However, certain improvements desirable
e e.g., Ng, grows too fast with /s in QGSJET-II



Multiplicity adjustment in QGSJET-11

In general, a reasonable agreement after the adjustment:

QGSJET-11-04 / QGSJET-11-03 / SIBYLL vrs. CMS data
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Remarks:
. some basic model parameters have been changed

« = other model predictions influenced: slower energy-rise of total and inelastic cross sections



Cross check with ATLAS data for model-independent event selections

QGSJET-11-04 / QGSJET-11-03 / SIBYLL vrs. ATLAS data
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. qualitatively the same trend
. the level of (dis-)agreement varies for different event selections
. overall agreement at 10% level for QGSJET-I1-04

. overall corrections of Ny, at 10% level compared to QGSJET-11-03
« = not important for EAS description



Production of (anti-)baryons and strange hadrons

In general, enhanced production of (anti-)baryons may impact EAS muon content
[Grieder, 1973; Pierog € Werner, 2008/

. more energy kept in the hadronic cascade

. more hadron generations produced (nucleons don’t decay) = more muons

However: no indication on higher than predicted p-multiplicity from LHC data

More important: enhancement of strangeness production
QGSJET-11-04 / QGSJET-II-03 / SIBYLL vrs. CMS data
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LHC: measurements of ’visible’ cross sectios for MB event selections

QGSJET-11-04 / QGSJET-II-03 / SIBYLL predictions for pp and p-air cross sections:
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Similar results for MB_ AND selection by ALICE:

V5 | QGSJET-11-04 | QGSJET-11-03 | SIBYLL | exp. (ALICE)

2.76 TeV 47.4 52.95 56.2 A47.2 £ 3.3
7 TeV 55.1 63.6 69.1 4.2 &+ 3.8

And for CMS selections:
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However: extrapolations for a;‘;fl - model-dependent

Comparison with Models - 1
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Figure 1: Model predictions for total, elas-
tic, and inelastic proton-proton cross sections:
QGSJET-II-4 - solid, QGSJET-II-3 - dashed,
and SIBYLL - dot-dashed. The compilation of
data is from Ref. [17].
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Air shower characteristics

Reduced cross sections = larger EAS elongation rate above 10'® eV

QGSJET-11-04 / QGSJET-11-03 / SIBYLL predictions for Xax:

p-induced EAS
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. even larger increase of X, expected for SIBYLL - if agzlfl is adjusted to LHC data
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EAS characteristics in KASCADE-Grande range

QGSJET-11-04 / QGSJET-1I-03 / SIBYLL predictions for N, ,:
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« N, - no significant changes in the KG range
e N, (>1 GeV) - ~ 10% rise

« = no significant impact on composition studies
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RMS of X,... - model-independence

RMS of Xy - model-independent quantity [Aloisio et al., 2008/

QGSJET / QGSJET-11-03 / SIBYLL
. proton-induced EAS

S g |
mean free pass A\, dominates: U’%
Aok = A, ~ 1/or%, (~ 50 g/cm?); =

° 60
geometry of p — air collisions:
- small b = large Kinel, Nen 40
- large b = small Kjne, Nen

« A-induced EAS: 20

superposition model (o4 = 0% /v/A) - invalid
[Kalmykov € SO, 1989, 1995/ 0

E, GeV

collision geometry dominates:
fluctuations of multiplicity (on, /Ny ~ 1) and N of 'wounded’ nucleons = Kiyel

nuclear fragmentation - factor of 2 difference for af}max between extreme assumptions

still much smaller fluctuations than for p-induced showers
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RMS of X,,.. - Pierre Auger data

Pierre Auger measurements of RMS of X,,.«: change from protons to iron?

One has to check the energy-trend, e.g with a 2-component model:
« [o(E) = 1= 31g(E/EeV), fr(E) =1~ f,(E)
cor f(B) =041 = 21g(E/EeV)|, fee(E) = 1= f,(E)

NE -
S i
~ 60 fem +
£ R R
2 |
T 40 |
20 |-
i o
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E, eV
Clearly, data favor a ’heavy mix’ at 1 EeV already!
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Muon puzzle

Pierre Auger collaboration - models underestimate p,, by 50%:
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Even larger (factor of 2) mismatch reported now -
1 |
Complete mystery: requires to increase multiplicity -
by an order of magnitude over a wide energy range I
- in strong variance to LHC data 0o |

Example: increase N]S}_lair by 100% (QGSJET) ! | | |

1 20
or N® . by 10% - nearly same effect 10 10 10 E, &

T—air
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Conclusions (1)

Composition studies - crucial for understanding very- and ultra-HECRs:

« CR ’knee’: propagation effect or acceleration cutoff
. galactic-extragalactic transition

. UHECR sources/acceleration mechanisms
Interpretation of data - depends on EAS simulation procedures / hadronic MC models

First experience at LHC:

. CR interaction models are 'not bad’

« only cosmetic improvements needed

Important exception: inelastic cross section

. data favor smaller o' (as extrapolated from E710 data)

. = smaller 0™, = larger elongation rate above 10" eV

p—air

« decisive results to come soon from the TOTEM experiment
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Conclusions (2)

CR composition - things seem so promising few years ago:

« theoretically: B-field enhancement put the ’knee’ at the ’correct place’
« KASCADE experiment: rigidity-dependent knee’ positions for p, He

. HiRes experiment: abrupt change from Fe- to p-dominance at 10! eV
« Auger experiment: correlations with AGNs

« theoretically: 'dip’ model for galactic-extragalactic transition

Presently one seems to be on a 'heavy track’

« KASCADE-Grande: ’iron knee’ is at the place but doesn’t look like a spectral cutoff
(mixed composition up to 10'% eV?!)

. Auger: RMS(X ,ax) also seems to support a "heavy mix’ at 10'® eV (going to pure Fe above?)

However, puzzling contradictions:
. between (Xjax) and RMS(Xpax)
. between Auger data on N, and model predictions

Most annoying is not a model-dependence of the results, rather their ‘'model-independence’:

none of the models is able to bring them together in a coherent fashion
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