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Outline

• extensive air shower physics

• CR composition sudies & superposition model

• CR interaction models and LHC data

• impact on EAS characteristics

• UHECR puzzles

• outlook
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Extensive air shower physics

Studies of high energy CRs - based on extensive air shower (EAS) detection

EAS development ⇐ high energy interactions Dete
tion: extensive air showers (EAS)
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• backbone - hadron cascade

• guided by few interactions of initial

(fastest secondary) particle

⇒ main source of �uctuations

• many sub-cascades of secondaries

⇒ well averaged

Most sensitive to hadronic physics:

• shower maximum position Xmax

- mostly sensitive to σinel
p−air (σ

non−diffr
p−air ), K inel

p−air

• number of muons at ground Nµ

- mainly depends on N ch
π−air (at energies ∼

√
E0)

Both observables are main tools

for CR composition studies
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CR composition studies & superposition model

For average (only!) EAS characteristics so-called superposition model works well:

shower induced by nucleus A of energy E0 = A proton-induced cascades of energy E0/A

• follows from the number of interacting nucleons per collision:

〈νA〉 =
A σp−air

σA−air

• mean free pass of the nucleus is (σp−air/σA−air) times shorter

• but each nucleon interacts with the probability

wint =
〈νA〉
A

=
σp−air

σA−air

•⇒ 〈XA
max(E0)〉 = 〈Xp

max(E0/A)〉 = 〈Xp
max(E0)〉 − ER ln A, ER= d〈Xp

max(E0)〉/d ln E0

•⇒ can be used for CR composition studies:

p-induced EAS penetrate deeper in the atmosphere than e.g. Fe-induced cascades

• similarly:

〈NA
e (E0)〉 = A 〈N p

e (E0/A)〉 ∝ Eαe
0 A1−αe; αe ' 1.1

〈NA
µ (E0)〉 = A 〈N p

µ(E0/A)〉 ∝ E
αµ
0 A1−αµ; αµ ' 0.9

⇒ Fe-induced showers have more muons (〈NA
µ (E0)〉/〈N p

µ(E0/A)〉 = A0.1)

and less electrons (〈NA
e (E0)〉/〈N p

e (E0/A)〉 = A−0.1)

4



CR interaction models

In general, interpretation of exp. results requires detailed description of EAS development

Important ingredient: CR interaction models

Representative models:

• QGSJET (Kalmykov & SO, 1993, 1997)

• SIBYLL (Ahn, Engel, Gaisser, Lipary & Stanev, 1999, 2009)

• QGSJET-II (SO, 2006, 2011)

• EPOS (Liu, Pierog & Werner,2007-2011)

All are based on similar ideas / qualitative approaches

But di�er in the implementation, theoretical basis, amount of phenomenology, etc.

⇒ in predictions

By consequence, model updates and cross checks with exp. data necessary

In the following: analysis of the impact of LHC data - based on an update of QGSJET-II

(QGSJET-II-03 → QGSJET-II-04)
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Impact of LHC data: multiplicity

CR interaction models met LHC data generally well

E.g. most collider models underestimate multiplicity:

η
-4 -2 0 2 4

=0η|η
/d

ch
dN

0

2

4

6

 = 900 GeVs, ± h→pp 

CMS (NSD)

ALICE (NSD)

UA5 (NSD)

PYTHIA 6.422 (Atlas-CSC)

PYTHIA 6.422 (Perugia-0)

PYTHIA 8.130 (Tune-1)

PHOJET 1.12 (+PYTHIA 6.11)

η
-4 -2 0 2 4

=0η|η
/d

ch
dN

0

2

4

6

 = 2.36 TeVs, ± h→pp 

CMS (NSD)

ALICE (NSD)

PYTHIA 6.422 (Atlas-CSC)

PYTHIA 6.422 (Perugia-0)

PYTHIA 8.130 (Tune-1)

PHOJET 1.12 (+PYTHIA 6.11)

η
-4 -2 0 2 4

=0η|η
/d

ch
dN

0

2

4

6

 = 7.0 TeVs, ± h→pp 

CMS (NSD)

PYTHIA 6.422 (Atlas-CSC)

PYTHIA 6.422 (Perugia-0)

PYTHIA 8.130 (Tune-1)

PHOJET 1.12 (+PYTHIA 6.11)

On the contrary, most of CR interaction models agree with the data within ∼ 10%:
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However, certain improvements desirable

• e.g., Nch grows too fast with
√

s in QGSJET-II
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Multiplicity adjustment in QGSJET-II

In general, a reasonable agreement after the adjustment:

QGSJET-II-04 / QGSJET-II-03 / SIBYLL vrs. CMS data

2.5

3

3.5

4

4.5

-2 0 2
 η

 d
N

ch
 / 

dη

 p + p → charged hadrons (0.9 TeV c.m.)

4

5

6

7

8

-2 0 2
 η

 d
N

ch
 / 

dη

 p + p → charged hadrons (7 TeV c.m.)

Remarks:

• some basic model parameters have been changed

•⇒ other model predictions in�uenced: slower energy-rise of total and inelastic cross sections
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Cross check with ATLAS data for model-independent event selections

QGSJET-II-04 / QGSJET-II-03 / SIBYLL vrs. ATLAS data
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• qualitatively the same trend

• the level of (dis-)agreement varies for di�erent event selections

• overall agreement at 10% level for QGSJET-II-04

• overall corrections of Nch at 10% level compared to QGSJET-II-03

•⇒ not important for EAS description
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Production of (anti-)baryons and strange hadrons

In general, enhanced production of (anti-)baryons may impact EAS muon content

[Grieder, 1973; Pierog & Werner, 2008]:

• more energy kept in the hadronic cascade

• more hadron generations produced (nucleons don't decay) ⇒ more muons

However: no indication on higher than predicted p̄-multiplicity from LHC data

More important: enhancement of strangeness production

QGSJET-II-04 / QGSJET-II-03 / SIBYLL vrs. CMS data
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LHC: measurements of 'visible' cross sectios for MB event selections

QGSJET-II-04 / QGSJET-II-03 / SIBYLL predictions for pp and p-air cross sections:
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'Visible' cross section for di�erent event selections by ATLAS - support smaller σinel
pp :

QGSJET-II-04 QGSJET-II-03 SIBYLL exp. (ATLAS)
MB_OR 54.1 62.3 68.4 51.9± 5.7
MB_AND 60.8 69.8 74.7 58.7± 6.5

QGSJET-II-03 and SIBYLL exceed data by 2σ and 3σ respectively
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Similar results for MB_AND selection by ALICE:
√

s QGSJET-II-04 QGSJET-II-03 SIBYLL exp. (ALICE)
2.76 TeV 47.4 52.5 56.2 47.2± 3.3
7 TeV 55.1 63.6 69.1 54.2± 3.8

And for CMS selections:

11



However: extrapolations for σinel
pp - model-dependent
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Air shower characteristics

Reduced cross sections ⇒ larger EAS elongation rate above 1018 eV

QGSJET-II-04 / QGSJET-II-03 / SIBYLL predictions for Xmax:
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• even larger increase of Xmax expected for SIBYLL - if σinel
pp is adjusted to LHC data
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EAS characteristics in KASCADE-Grande range

QGSJET-II-04 / QGSJET-II-03 / SIBYLL predictions for Ne/µ:
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• Ne - no signi�cant changes in the KG range

• Nµ (>1 GeV) - ∼ 10% rise

•⇒ no signi�cant impact on composition studies
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RMS of Xmax - model-independence

RMS of Xmax - model-independent quantity [Aloisio et al., 2008]

QGSJET / QGSJET-II-03 / SIBYLL
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• proton-induced EAS

mean free pass λp dominates:

∆σp
X = λp ∼ 1/σinel

p−air (∼ 50 g/cm2);

geometry of p− air collisions:

- small b ⇒ large Kinel, Nch

- large b ⇒ small Kinel, Nch

• A-induced EAS:

superposition model (σA
X = σp

X/
√

A) - invalid

[Kalmykov & SO, 1989, 1993]

collision geometry dominates:

�uctuations of multiplicity (σNch/Nch ∼ 1) and N of 'wounded' nucleons ⇒ Kinel

nuclear fragmentation - factor of 2 di�erence for σA
Xmax between extreme assumptions

still much smaller �uctuations than for p-induced showers

15



RMS of Xmax - Pierre Auger data

Pierre Auger measurements of RMS of Xmax: change from protons to iron?

One has to check the energy-trend, e.g with a 2-component model:

• fp(E) = 1− 2
3 lg(E/EeV ), fFe(E) = 1− fp(E)

• or fp(E) = 0.4
[
1− 2

3 lg(E/EeV )
]
, fFe(E) = 1− fp(E)
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Clearly, data favor a 'heavy mix' at 1 EeV already!
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Muon puzzle

Pierre Auger collaboration - models underestimate ρµ by 50%:

Even larger (factor of 2) mismatch reported now

Complete mystery: requires to increase multiplicity

by an order of magnitude over a wide energy range

- in strong variance to LHC data

Example: increase N ch
p−air by 100% (QGSJET)

or N ch
π−air by 10% - nearly same e�ect
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Conclusions (1)

Composition studies - crucial for understanding very- and ultra-HECRs:

• CR 'knee': propagation e�ect or acceleration cuto�

• galactic-extragalactic transition

• UHECR sources/acceleration mechanisms

Interpretation of data - depends on EAS simulation procedures / hadronic MC models

First experience at LHC:

• CR interaction models are 'not bad'

• only cosmetic improvements needed

Important exception: inelastic cross section

• data favor smaller σinel
pp (as extrapolated from E710 data)

•⇒ smaller σinel
p−air ⇒ larger elongation rate above 1018 eV

• decisive results to come soon from the TOTEM experiment
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Conclusions (2)

CR composition - things seem so promising few years ago:

• theoretically: B-�eld enhancement put the 'knee' at the 'correct place'

• KASCADE experiment: rigidity-dependent 'knee' positions for p, He

• HiRes experiment: abrupt change from Fe- to p-dominance at 1017 eV

• Auger experiment: correlations with AGNs

• theoretically: 'dip' model for galactic-extragalactic transition

Presently one seems to be on a 'heavy track':

• KASCADE-Grande: 'iron knee' is at the place but doesn't look like a spectral cuto�

(mixed composition up to 1018 eV?!)

• Auger: RMS(Xmax) also seems to support a 'heavy mix' at 1018 eV (going to pure Fe above?)

However, puzzling contradictions:

• between 〈Xmax〉 and RMS(Xmax)

• between Auger data on Nµ and model predictions

Most annoying is not a model-dependence of the results, rather their 'model-independence':

none of the models is able to bring them together in a coherent fashion
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