High energy CR composition, interaction models, and LHC data

S. Ostapchenko

NTNU Trondheim

TeVPA-2011

Stockholm, August 1-5, 2011

Outline

- extensive air shower physics
- \bullet CR composition sudies & superposition model
- CR interaction models and LHC data
- impact on EAS characteristics
- UHECR puzzles
- ${\scriptstyle \bullet}$ outlook

Extensive air shower physics

Studies of high energy CRs - based on extensive air shower (EAS) detection

EAS development \Leftarrow high energy interactions

- backbone hadron cascade
- guided by few interactions of initial (fastest secondary) particle
 ⇒ main source of fluctuations
- many sub-cascades of secondaries \Rightarrow well averaged

Most sensitive to hadronic physics:

- shower maximum position X_{max} - mostly sensitive to $\sigma_{p-\text{air}}^{\text{inel}}$ ($\sigma_{p-\text{air}}^{\text{non-diffr}}$), $K_{p-\text{air}}^{\text{inel}}$
- number of muons at ground N_{μ} - mainly depends on $N_{\pi-\mathrm{air}}^{\mathrm{ch}}$ (at energies $\sim \sqrt{E_0}$)

Both observables are main tools for CR composition studies

CR composition studies & superposition model

For average (only!) EAS characteristics so-called superposition model works well: shower induced by nucleus A of energy $E_0 = A$ proton-induced cascades of energy E_0/A

• follows from the number of interacting nucleons per collision:

$$\langle
u_A
angle = rac{A \, \sigma_{p-\mathrm{air}}}{\sigma_{A-\mathrm{air}}}$$

- mean free pass of the nucleus is $(\sigma_{p-\text{air}}/\sigma_{A-\text{air}})$ times shorter
- but each nucleon interacts with the probability

$$w_{\text{int}} = \frac{\langle \nu_A \rangle}{A} = \frac{\sigma_{p-\text{air}}}{\sigma_{A-\text{air}}}$$

- $\Rightarrow \langle X_{\max}^A(E_0) \rangle = \langle X_{\max}^p(E_0/A) \rangle = \langle X_{\max}^p(E_0) \rangle \text{ER ln A}, \text{ ER} = d \langle X_{\max}^p(E_0) \rangle / d \ln E_0$
- → can be used for CR composition studies:
 p-induced EAS penetrate deeper in the atmosphere than e.g. Fe-induced cascades
 i i i
- similarly:

$$\langle N_e^A(E_0) \rangle = A \langle N_e^p(E_0/A) \rangle \propto E_0^{\alpha_e} A^{1-\alpha_e}; \quad \alpha_e \simeq 1.1 \langle N_\mu^A(E_0) \rangle = A \langle N_\mu^p(E_0/A) \rangle \propto E_0^{\alpha_\mu} A^{1-\alpha_\mu}; \quad \alpha_\mu \simeq 0.9$$

 $\Rightarrow \mbox{Fe-induced showers have more muons } (\langle N^A_\mu(E_0) \rangle / \langle N^p_\mu(E_0/A) \rangle = A^{0.1}) \mbox{ and less electrons } (\langle N^A_e(E_0) \rangle / \langle N^p_e(E_0/A) \rangle = A^{-0.1})$

CR interaction models

In general, interpretation of exp. results requires detailed description of EAS development

Important ingredient: CR interaction models

Representative models:

- QGSJET (Kalmykov & SO, 1993, 1997)
- SIBYLL (Ahn, Engel, Gaisser, Lipary & Stanev, 1999, 2009)
- QGSJET-II (SO, 2006, 2011)
- EPOS (Liu, Pierog & Werner, 2007-2011)

All are based on similar ideas / qualitative approaches

But differ in the implementation, theoretical basis, amount of phenomenology, etc. \Rightarrow in predictions

By consequence, model updates and cross checks with exp. data necessary

In the following: analysis of the impact of LHC data - based on an update of QGSJET-II (QGSJET-II-03 \rightarrow QGSJET-II-04)

Impact of LHC data: multiplicity

CR interaction models met LHC data generally well

E.g. most collider models underestimate multiplicity:

On the contrary, most of CR interaction models agree with the data within $\sim 10\%$:

• e.g., $N_{\rm ch}$ grows too fast with \sqrt{s} in QGSJET-II

Multiplicity adjustment in QGSJET-II

In general, a reasonable agreement after the adjustment:

Remarks:

- some basic model parameters have been changed
- \Rightarrow other model predictions influenced: slower energy-rise of total and inelastic cross sections

Cross check with ATLAS data for model-independent event selections

QGSJET-II-04 / QGSJET-II-03 / SIBYLL vrs. ATLAS data

- qualitatively the same trend
- the level of (dis-)agreement varies for different event selections
- \bullet over all agreement at 10% level for QGSJET-II-04
- \bullet over all corrections of $N_{\rm ch}$ at 10% level compared to QGSJET-II-03
- $\bullet \Rightarrow$ not important for EAS description

Production of (anti-)baryons and strange hadrons

In general, enhanced production of (anti-)baryons may impact EAS muon content [Grieder, 1973; Pierog & Werner, 2008]:

- more energy kept in the hadronic cascade
- more hadron generations produced (nucleons don't decay) \Rightarrow more muons

However: no indication on higher than predicted \bar{p} -multiplicity from LHC data More important: enhancement of strangeness production

 $\rm QGSJET\text{-}II\text{-}04$ / $\rm QGSJET\text{-}II\text{-}03$ / $\rm SIBYLL$ vrs. CMS data

LHC: measurements of 'visible' cross sectios for MB event selections

QGSJET-II-04 / QGSJET-II-03 / SIBYLL predictions for pp and p-air cross sections:

'Visible' cross section for different event selections by ATLAS - support smaller $\sigma_{pp}^{\text{inel}}$:

	QGSJET-II-04	QGSJET-II-03	SIBYLL	exp. (ATLAS)
MB_OR	54.1	62.3	68.4	51.9 ± 5.7
MB AND	60.8	69.8	74.7	58.7 ± 6.5

QGSJET-II-03 and SIBYLL exceed data by 2σ and 3σ respectively

Similar	results	for	MB	AND	selection	by	ALICE:
			_			•/	

\sqrt{s}	QGSJET-II-04	QGSJET-II-03	SIBYLL	exp. (ALICE)
2.76 TeV	47.4	52.5	56.2	47.2 ± 3.3
7 TeV	55.1	63.6	69.1	54.2 ± 3.8

And for CMS selections:

However: extrapolations for $\sigma_{pp}^{\text{inel}}$ - model-dependent

Figure 1: Model predictions for total, elastic, and inelastic proton-proton cross sections: QGSJET-II-4 - solid, QGSJET-II-3 - dashed, and SIBYLL - dot-dashed. The compilation of data is from Ref. [17].

Air shower characteristics

Reduced cross sections \Rightarrow larger EAS elongation rate above 10¹⁸ eV

QGSJET-II-04 / QGSJET-II-03 / SIBYLL predictions for X_{max} :

• even larger increase of X_{\max} expected for SIBYLL - if $\sigma_{pp}^{\text{inel}}$ is adjusted to LHC data

EAS characteristics in KASCADE-Grande range

QGSJET-II-04 / QGSJET-II-03 / SIBYLL predictions for $N_{e/\mu}$:

- N_e no significant changes in the KG range
- N_{μ} (>1 GeV) ~ 10% rise
- $\bullet \Rightarrow$ no significant impact on composition studies

RMS of X_{max} - model-independence

RMS of X_{max} - model-independent quantity [Aloisio et al., 2008]

QGSJET / QGSJET-II-03 / SIBYLL

• proton-induced EAS

fluctuations of multiplicity ($\sigma_{N_{\rm ch}}/N_{\rm ch} \sim 1$) and N of 'wounded' nucleons $\Rightarrow K_{\rm inel}$

nuclear fragmentation - factor of 2 difference for $\sigma_{X_{\text{max}}}^A$ between extreme assumptions

still much smaller fluctuations than for p-induced showers

RMS of X_{max} - Pierre Auger data

Pierre Auger measurements of RMS of X_{max} : change from protons to iron? One has to check the energy-trend, e.g with a 2-component model:

•
$$f_p(E) = 1 - \frac{2}{3} \lg(E/EeV), \ f_{\text{Fe}}(E) = 1 - f_p(E)$$

• or $f_p(E) = 0.4 \left[1 - \frac{2}{3} \lg(E/EeV)\right], \ f_{\text{Fe}}(E) = 1 - f_p(E)$

Clearly, data favor a 'heavy mix' at 1 EeV already!

Muon puzzle

Pierre Auger collaboration - models underestimate ρ_{μ} by 50%:

Conclusions (1)

Composition studies - crucial for understanding very- and ultra-HECRs:

- \bullet CR 'knee': propagation effect or acceleration cutoff
- \bullet galactic-extragalactic transition
- UHECR sources/acceleration mechanisms

Interpretation of data - depends on EAS simulation procedures / hadronic MC models

First experience at LHC:

- CR interaction models are 'not bad'
- only cosmetic improvements needed

Important exception: inelastic cross section

- data favor smaller $\sigma_{pp}^{\text{inel}}$ (as extrapolated from E710 data)
- \Rightarrow smaller $\sigma_{p-\text{air}}^{\text{inel}} \Rightarrow$ larger elongation rate above 10¹⁸ eV
- decisive results to come soon from the TOTEM experiment

Conclusions (2)

CR composition - things seem so promising few years ago:

- theoretically: B-field enhancement put the 'knee' at the 'correct place'
- KASCADE experiment: rigidity-dependent 'knee' positions for p, He
- HiRes experiment: abrupt change from Fe- to p-dominance at 10^{17} eV
- Auger experiment: correlations with AGNs
- theoretically: 'dip' model for galactic-extragalactic transition

Presently one seems to be on a 'heavy track':

- KASCADE-Grande: 'iron knee' is at the place but doesn't look like a spectral cutoff (mixed composition up to 10^{18} eV?!)
- Auger: $\text{RMS}(X_{\text{max}})$ also seems to support a 'heavy mix' at 10^{18} eV (going to pure Fe above?)

However, puzzling contradictions:

- between $\langle X_{\max} \rangle$ and $RMS(X_{\max})$
- between Auger data on N_{μ} and model predictions

Most annoying is not a model-dependence of the results, rather their 'model-independence': none of the models is able to bring them together in a coherent fashion