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Pierre Auger Observatory

e Hybrid detector:

e Surface Detector: array of 1660
Cherenkov detectors; 3000 km?
* Fluorescence Detector: 27

fluorescence telescopes overlooking
the array from 4 locations
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Auger events
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Why is it important to study the
composition of UHECRs?

* Combined with other measurements such as energy spectrum and distribution of

arrival directions will help us to separate the different scenarios of origin and
propagation of UHECR:s.

* Understanding the origin of UHECRsS:

» Bottom-up models: acceleration mechanisms depend on Z.
* Top-down models: predict large fluxes of photons and neutrinos.

* Determining a possible ‘“contamination” with UHE photons will reduce the
systematic uncertainties on mass composition, energy spectrum and cross section.



How can we study composition with Auger?

The first interaction of a hadronic shower is expected to be shallower as the primary mass
increases. For photons, the small multiplicity of EM interactions also induces deeper showers.

<

Determine the longitudinal development
of the shower in the atmosphere.

v

Different shower developments are going to imprint different
signatures in the recorded signals. Several observables can be

defined to extract information about the shower development. [ ]
- FD:
* X, ,..x Mmain shower observable sensitive to primary composition.
* RMS(X,,.x)-
* SD:

» Azimuthal asymmetry of the risetime.
* Maximum depth of muon production.
* Shape of the lateral distribution at ground level.

: . 5
*These observables can be combined to strengthen the sensitivity or to cross-check results.
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dE/dX [PeV/(g/em?))

Longitudinal profile

~100 g/cm?

4= MC of proton
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« X .. reflects the properties of the first interaction.
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* Distributions for heavy primaries, as iron, are expected to be narrower and shallower.
Lighter primaries, like protons, have a characteristic tail towards deep X, 6



Data sample for the FD analysis

Selection of high quality hybrid events:
* X, .« Observed.
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Unbiased selection: _
rejected

Select the distance to the SD station, and zenith angle
so that the tank trigger probability does not depend on

the mass of primary. event
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whole X, distribution (from measurement). fluorescence | \
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Xmax resolution [g/cm?]

X

max

resolution

Good X, ., resolution required for a good mass discrimination and to allow measurements
of narrow distributions characteristic of heavy primaries.

------ detector
------ density profile

***** aerosols
— total

 From simulations with a realistic description of the
DAQ conditions.

* Xhax Fesolution including the detector resolution and
fluctuations of the atmospheric conditions from

simulations ~ 20 g/cm?.
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Systematics (analysis, reconstruction, atmosphere, calibration):
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<X....> and RMS from FD
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» Data 1s best described using two different slopes.
* At high energies <X_ > increases slowly with energy.

* The decrease of RMS becomes stepper at the joint of the 2 fits towards values expected for
heavy primaries. ’



X distributions i
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As energy increases:
* narrower distributions. * For low energies shape compatible with a significant fraction of protons.

* deep X, tail less evident, more * The shape of the distributions (and the RMS) 1is heavy-like at high energy.
symmetric distributions.

Any interpretation, especially at high energies, is difficult since it

would rely on the extrapolation provided by the different models. 0



Composition using the azimuthal
asymmetry in SD signals

The time structure of SD signals has information about shower development:
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Risetime (t,,): time required to go from 10%

to 50% of the total signal.

For non-vertical showers particles striking
detectors in the different regions will have
different stages of development because of the
different path travelled.
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Azimuthal asymmetry in SD signals

a) [_‘]’,a
Vertical
symmetry in the signals

Inclined

asymmetry!!

The early-late asymmetry as function of

the zenith angle is expected to have a
maximum which is correlated with X_ .,

Observable: ©_,, : secO for which b/a is maximum

Different primaries will have different
asymmetry profiles.

Event selection:
¢ 30°< 0 < 60°
e 500m<r<2000m
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Correlation of O, with X__

max

* As expected, the asymmetry 1s correlated with the stage of development and therefore with X,

* From golden hybrid events: @ _ . and X . are correlated.

max max

* From simulations: The correlation is independent of the primary.
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16851 SD events (Jan 2004 - Dec 2010)
E >3.16 EeV and 30°< 60 <60°
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Muon Production Depth

Muons are produced within a narrow cylinder centered at the shower axis. They travel along

straight lines, practically unaffected by multiple scattering and bremsstrahlung.
Z

Muon Production Depth (MPD): the depth,

measured parallel to the shower axis, at which a given
muon 1is produced. It can be obtained from the SD

muon production point
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Correlation of X+

with X

max

X* . depends on the primary and it is correlated with X
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<Xv _ >vs logE
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Search for photons

* Previous analyses were done using X .. or SD observables (rise-time, radius of curvature) independently.
» New analysis using hybrid events to combine the strength of FD and SD observables:

X LDF

Photon showers produce smaller signals at a given
Photons develop deeper showers : . :
distance and trigger fewer stations

max

E C
S 10° _ —=— proton
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station distance to shower axis [m]
SD 4
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S4(Y) < S4 (p) 19



X . ..-S4analysis

Photon and proton simulations
reproducing real data taking conditions
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* Photon-like events: X > X, ==) photon detection efficiency ~ 50%

* Proton background < 1%
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Analysis applied to Hybrid data between January 2005- September 2010
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Photon upper limits
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* Fraction limits Hybrid 2009 converted to flux scaling for the Auger spectrum Energy[eV]

» Systematic uncertainties from exposure, hadronic interaction model and mass composition
: +20% 0
assumptions: 4., for 1 EeV and +3165(;’f0r E>1 EeV.
- 0

* As previous Auger results, they disfavor exotic models.

« Upper limits to the integral photon fraction assuming the Auger spectrum:
0.4%, 0.5%, 1.0%, 2.6% and 8.9% for E> 1, 2, 3,5 and 10 EeV
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Conclusions

 From the FD and the SD data of the Pierre Auger observatory, several observables

carrying information about the shower development useful for composition studies can be
defined.

* Different analyses with independent systematic uncertainties show compatible results.

» Assuming that the hadronic interaction models are correct:
» At low energy, data i1s consistent with a significant number of protons.
» Comparison of the data and simulation leads to the conclusion that the mean mass
increases with energy.
» Data have to be adjusted within their systematic uncertainties to simultaneously
match both <X __ > and its RMS.

* Any significant departure from the predictions of hadronic models would modify the
interpretation in terms of primary mass.

* FD and SD observables have been also combined to look for photons.

* New photon limits provide tighter constraints for models. GZK region within reach
combining both SD and FD observables.
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Events

Events

X distributions
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Events

Events

Events

Events
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Azimuthal asymmetry. Method

I. The risetime asymmetry from all SD detectors for all
events in a given (E, sech) bin ) fit to {#,,/r) = a+bcosC

log(E/eV) = 18.85-19.0
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Since the asymmetry at ground level depends on the
shower development, different primaries will have
different asymmetry profiles:

Systematic uncertainty = 10% of p-Fe separation
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Systematics

X Atmosphere, FD reconstruction.

max

RMS(X ) FD resolution, event selection.

max

® SD geometrical reconstruction.

max

XH o MPD reconstruction.
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p-air cross section

Assumption: at E~1EeV composition mainly dominated by protons.

Equivalent c.m. energy\'s, [TeV]
107 10 102

LN ' """TT '?""f'l?' LR vorrd

700 0.9TeV 236TeV  7TeV 14TeV
0O Nametal 1975 LHC
A Siohan et al. 1978

600 v Baltrusaitis et al. 1984
® Mielke et al. 1994
A Honda et al. 1999

500 O  Knurenko et al. 1999 ‘
¢»  ICRCO7 HiRes ) ¥

P

{  Aglietta et al. 2009

400 0 Aielli et al. 2009
—&@)— This work —— QGSJet01c
== QGSJetll.3
—— . Sibyll 2.1

Cross section (proton-air) [mb]

300

+ 1 S, Epos 1.99

200 lI | lIIIlIlI | lllllll 1 lllIllIl 1 lIIlIIII 11 lIllIII 1l lllllll 11 lIllllI | llllllll 11 IIllllI |

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
Energy [eV]

Result favours a moderately slow rise of the cross-section towards higher energies.
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