UHENU and GRB

Péter Mészáros Pennsylvania State University

Albanova 2011

Astrophys. UHECR/NU Sources ?

AGN Active

Galactic Nucleus

Gamma Ray Burst

ΗN

Hypernova

MGR Magnetar

CR acceleration: shocks?

- Shocks present in HE non-thermal γ-ray sources (or else: magnetic reconnection).
- Electrons are definitely accelerated
- γ-rays usually attributable to leptonic mechanisms (synchrotron, inv. Compton)
- But: UHECR *must be* accelerated somewhere; likely (?) in the same shocks of one of these HE γ-ray sources- but which?

Maximum E_p for various sources from DSA

UHECR spectrum vs. Extragal. (GRB, AGN, other astrophys.) model

Can neutrinos be used as a test?

- If have protons in jet $\rightarrow p^+$ are Fermi accelerated too
- $\mathbf{p}, \gamma \rightarrow \pi^{\pm} \rightarrow \mu^{\pm}, \nu_{\mu} \rightarrow \mathbf{e^{\pm}}, \nu_{e}, \nu_{\mu}$
- Δ -resonance: $E_p E_{\gamma} \sim 0.3 \text{ GeV}^2$ in jet frame
- Depending on target photon energy, the typical observer frame neutrino energies in the $E_v \sim GeV EeV$ range
- Potentially, can detect with **ICECUBE**, **KM3NeT**
- Also: $p, \gamma \to \pi^0 \to 2\gamma \to \gamma\gamma$ cascade **Fermi**, ACTs..
- Test content of jets (are they pure MHD/e[±], or baryonic ...?)

UHE neutrinos from GRB

- Need baryon-loaded relativistic outflow
- Need to accelerate protons (as well as e⁻)
- Need target photons or nuclei with τ≥1 (generally within GRB itself or environment)
- Need $E_{rel,p} \ge 10-20 E_{rel,e}$
- Might hope to detect individual GRB if nearby (z≤0.15), or else cumul. background
- If detected, can identify hadronic γ in GRB?

GRB py Neutrino Spectrum

 $E_v^2 dN_v/dE_v$

Mészáros pan05

Internal shock v's contemp. with y's

Detailed v_{μ} diffuse flux incl. cooling, using GEANT4 sim., integrate up to z=7, U_p/U_γ =10 (left); z=20, U_p/U_γ =100 (right)

Flavor composition at source

• Pionic:

 $p, \gamma(p, p) \to \pi^+ \to \mu^+, \nu_\mu \to e^+, \bar{\nu}_\mu, \nu_e \to [1; 2; 0]_{src}$

• Damped muons :

 $\pi^+ \to \mu^+, \nu_\mu \quad (+cooled \ muons) \to [0; 1; 0]_{src}$

• Prompt :

 π^+ (dense : interact before decay) $\rightarrow [1;1;0]_{src}$

• Beta beam :

(neutron decay) $n \to p^+, e^-, \bar{\nu}_e \to [1; 0; 0]_{src_{11}}$

Flavor oscillations in vacuum

Vacuum oscillations: $[i,j,k]_{obs} = P_{osc} \cdot [i,j,k]_{src}$,

where $P_{osc} \sim$ "tri-bi-maximal" vac. osc. prob. matrix

$$P_{TBM} \simeq \frac{1}{18} \begin{bmatrix} 10 & 4 & 4 \\ 4 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix}$$

Thus, approximate flavor composition observed is:

• Pionic: $P_{TBM} . [1,2,0]_{src} = [1 ; 1 ; 1]_{obs}$ Damped muons: $P_{TBM} . [0,1,0]_{src} = [1 ; 1.8 ; 1.8]_{obs}$, Prompt (dense): $P_{TBM} . [1,1,0]_{src} = [1 ; 0.6 ; 0.6]_{obs}$, Beta beam: $P_{TBM} . [1,0,0]_{src} = [5 ; 2 ; 2]_{obs}$

UHE V from GRB

7 possible (long) GRB v-sites:

- 1) at collapse, make gravitational waves + \rightarrow thermal v (MeV)
- 2) If jet outflow is baryonic, have p,n,
 → p,n relative drift, pp/pn collisions

\rightarrow VHE ν (GeV)

- 3) Int. shocks while jet is inside star can accel. protons → pγ, pp/pn collisions
 - \rightarrow UHE \vee (TeV)
- 4) Photospheric shocks/mag. reconn. $\rightarrow p\gamma$ collisions $\rightarrow UHE \vee (\sim TeV)$
- 5) Int. shocks outside star, accel. protons $\rightarrow p\gamma$ collisions $\rightarrow UHE \vee (100 \text{ TeV})$
 - 6) Ext. rev. shock \rightarrow EeV \vee (10¹⁸ eV)
- **7)** External forward shock? can accelerate CRs, but unless there is a reverse shock, photon field too dilute for effective **p**_γ. *May not produce UHENU, nor neutrons which escape*

Mészáros pan05

1) Initial core collapse or double NS merger: \rightarrow "thermal" ν 's

- Core density increases dramatically
- inverse beta-decay, $p^+ + e^- \rightarrow n + v_e$
- Thermal neutrinos ("low energy"), with
 *k*_B*T*_{vir} ~ *Gm*_p *M*_{core}/*R*_{core} ~ *10-30 MeV*
- Detectable by **Super-K**, or by **IceCube**,
- no directionality, but clear timing,
- **BUT** only det. if distance **D**≤ **50** kpc

2) Hadronic GRB Fireballs: At $r \gtrsim 400 \ r_0, \ \textbf{p,n}$ decouple \rightarrow VHE $\mathcal{V}, \ \boldsymbol{\gamma}$

(Well inside collapsing star, or only few hundred inner radii outside merging double neutron star)

- Radiation pressure acts on e⁻, with p⁺ coming along (charge neutrality)
- The n scatter inelastically with p⁺
- The p,n initially expand together, while t_{pn} <t_{exp} (p,n inelastic)
- When $t_{pn} \sim t_{exp} \rightarrow p, n$ decouple
- At that time, $v_{rel \ge} 0.5c$ \rightarrow p,n becomes inelastic $\rightarrow \pi^+$
- Decoupling important when $\Gamma \ge 400$, resulting in $\Gamma_p > \Gamma_n$
- Decay $\rightarrow v$, of $E_v \ge 30-40 \text{ GeV}$
- Motivation for DEEP-CORE !

3) Later: While Jet is still inside Progenitor Star:

• $\varepsilon_v \ge 10^{12.5} \text{ eV}$ $N_{v \to \mu} \approx 0.2 / \text{km}^2/\text{Collapse}$ (10³ GRBs/yr)

Both "Chocked" and "successful" jets

Choked jets \Rightarrow v-burst (γ -dark) Succesful jets \Rightarrow precursor v (before γ)

Mészáros & Waxman 01

Mészáros pan05

Precursors & stellar tomography

Razzaque, Mészáros, Waxman, 2003, PRD 68:3001

- Precursor v-burst, both pp and py, leads by $\Delta t_{adv} \sim$ 10-100s, spectra depend on R*
- Spectrum depends on size of stellar envelope - i.e., diagnostic for progenitor

4) GRB'Photospheric'Neutrinos

- GRB relativistic outflows have a Thomson scattering τ_T~1 "photosphere", below which photons are quasi-thermal
- Shocks and dissipation can occur below photosphere.
- Acceleration of protons occurs, followed by pp and pγ interactions → neutrinos
- Gas and photon target density higher than in shocks further out.
- Characteristics resemble precursor neutrino bursts, but contemporan. with prompt gamma-rays

Wang, Dai, 2009, ApJL, 691:L67 (0807.0290)

5, 6) Even Later (10-100 s after collapse): Jet emerged from Progenitor Star, int. & ext. shocks

Int. & ext. shocks, accelerate protons and electrons, $e, B \rightarrow \gamma$, $p\gamma \rightarrow \nu$ (contemporaneous)

Central engine: e.g. black hole formation by massive star core collapse

Jet of relativistic particles

Internal shocks in jet (GRB)

Reverse shock : prompt visible/X-rays Jet shock on interstellar medium Forward shock : visible/X-ray/radio afterglow

internal shocks

∠ external shock

20

Vs from pγ in internal & external shocks in GRB (5,6)

Waxman, Bahcall 97 & 99 PRL

- Δ-res.: E'_p E'_γ ~0.3GeV² in comoving frame, in lab:
 - $\rightarrow E_p \ge 3x10^6 \Gamma_2^2 \text{ GeV}$
 - $\rightarrow E_{v} \ge 1.5 \times 10^{2} \Gamma_{2}^{2} \text{ TeV}$
- Internal shock $p\gamma_{MeV} \rightarrow$ ~100 TeV ν s
- (External shock $p\gamma_{UV} \rightarrow \sim$ 0.1-1 EeV ν s)
- Diffuse flux: det. w. km³

GRBs: Limits on prompt emission

- 1.9 evts needed for $\geq 5\sigma$ (50% cases)
- IC59: No signal-like events found (expected 5.8)
 - \rightarrow limit (90% CL) factor 2 below model

```
(Kappes et al, NUSKY, June 2011)
```


- Combination with upper limits
 from IC40
 - \rightarrow limit factor 5 below model

Reality check: sobering...

Internal shock proton acceleration model (using nominal parameters) constrained

Alexander Kappes, NUSKY, Trieste, 24.06.2011

GRBs and UHECRs

(Kappes et al, NUSKY, June 2011)

- Up to now no hint for neutrinos from GRBs
- Diffuse IC40 limit starts to disfavor GRBs as major sources of UHECR (see M. Ahlers' talk) (... from the internal shock model, 5)

• But GRBs could still be neutrino sources !

Note :

GZK GRB model used for IC58 limits is based on *internal shock* prompt *v*-burst (WB 97) model (with more liberal choice of proton spectral index)

- Internal shock model of gamma prompt emission is easy to calculate, and for this reason has been used preferentially
- But internal shocks have been known to have difficulties even for gamma-ray phenomenology (efficiency, spectrum, etc)
- Internal shock proton models with index -2 are less constraining than steeper ones (but they still push the IC58 limits)
- Injection rate of protons vs. electrons is unknown; protons are not injected into the acceleration process as efficiently as electrons?
- Alternatives to internal shock gamma-ray emission region: they are being investigated but so far are much less "calculable"

Model-dependence of predictions & detectability of GRB V

 E_v ~100 TeV (IS, simult.) would be least model dependent, provided assume IS - but the latter may not be justified (see BAT gamma-ray modeling)

(use observed MeV $\,\gamma\,$ & same shocks as accelerate e^{\pm})

- E_v ~1 TeV : (precursor) more model dependent, (assume collapsar, sub-stellar jet, and R ~10¹¹ cm)
- E_v ~ 10¹⁷ eV : (afterglow) need assume reverse shock prompt opt flash is ubiquituous (?)
- E_v ~ 5 GeV: (decoupling) p,n likely, but detection needs Deep Core or similar
- E_v ~5-100 TeV : (pop III) speculative; very massive star

Population III GRB UHE-ν?

(here, assumed an external shock model!)

Pop. III: earliest "stellar" objects to form after the Big Bang

Pop. III v. massive stars →v. massive black holes

- ← Nu-fluence from one burst over ~I day
- $\leftarrow M_h \lesssim 300 M_{\odot}$ $E_j \lesssim 10^{55.3} \text{ erg},$ $z=20, \theta_j=10^{-2},$ $B,D: n_{ext}=$ $(10^2, 10^4) \text{ cm}^{-3}$

case	M_h/M_{\odot}	E_j/erg	θ_{-2}	$\epsilon_{e,-1}$	n/cm^3
A_{300}	300	$10^{55.3}$	10	1	1
B_{300}	300	$10^{55.3}$	1	2	10^{2}
B_{100}	100	$10^{54.8}$	1	2	10^{2}
B_{30}	30	$10^{54.3}$	1	2	10^{2}
C_{300}	300	$10^{55.3}$	10	2	104
D_{300}	300	$10^{55.3}$	1	2	10^{4}
D_{100}	100	$10^{54.8}$	1	2	104
D_{30}	30	$10^{54.3}$	1	2	10^{4}

UHE-v muons from *one* Pop. III GRB

Model parameters¹

Gao, Toma, Mészáros, 2011, PRD 83:103004

		В		D(2)			D(1)			
M_h	E	10	20	70	10	20	70	10	20	70
	TeV - PeV	3.0	2.1	1.4	0	0	0	10.3	5.6	2.1
300	PeV - EeV	6.1	3.2	1.0	2.7	1.5	0.65	3.8	1.6	0.37
	TeV - PeV	0.71	0.51	0.33	—	_	—	4.5	2.7	1.1
100	PeV - EeV	1.6	0.83	0.28	0.64	—	—	2.1	0.90	0.18
	TeV - PeV	0.16	0.11	—	—	_	—	1.8	1.0	0.40
30	PeV - EeV	0.41	0.22	-	—	—	—	0.72	0.30	0.06

← µ-events / burst: Models B,D with M_h= 30,100,300 M☉, at avg. z= 10, 20, 70

Pop. III diffuse nu-flux

vs. instrumental sensitivity

if $M_h = 30 M_{\odot}$

- Diff. nu flux, avg'd/yr (green, blue lines)
- $M_h=30 M_{\odot}$, $z=20, n_b=1/yr$, $E_j=10^{54.5} erg$, $\theta_j=10^{-2}$, B,D: $n_{ext}=(10^2, 10^4)$ cm^{-3}

→below IceCube 5 year limit

Pop. III diffuse nu-flux

if M_h= **300** M_☉

- Diff. nu flux, avg'd/yr (green, blue lines)
- $M_h = 300 M_{\odot}$, $z=20, n_b=1/yr,$ $E_j = 10^{55.3} erg,$ $\theta_{i} = 10^{-2}$, B,D: n_{ext} = $(10^2, 10^4)$ cm⁻³

→ above IceCube 5 year limit

Outlook

- The sources of the UHECR and UHENU are still unknown
- GRB remain good candidates, together with AGN, maybe HNe, MGR
- IC59 constraints on GRB int. shock nus severe: other regions?
- Will increasingly constrain such possibilities with GeV and TeV photon observations
- Will learn even more if & when astrophysical UHENUs are observed from any type of source
- Would be able to constrain particle acceleration / shock parameters, compactness of emission region (dimension, mag.field,.)
- UHE v will allow test of proton content of jets, proton injection fraction, test shock acceleration physics, magn. field
- If UHE v NOT detected in GRB, AGN → jets are Poynting dominated!
- **Probe v interactions at ~ TeV CM energies**
- Constraints on stellar birth & death rates @ high-z, first structures?