TeVPA2011, Stockholm, 1 - 5 August

Radio data and synchrotron emission in consistent cosmic ray models

Torsten Bringmann, University of Hamburg

based on TB, F. Donato & R. Lineros, arXiv:1106.4821

Outlook

- Cosmic ray propagation
- B/C determination of propagation parameters
- Radio data
- Synchrotron radiation
- Bringing it all together...
- Consequences for indirect DM searches
- Outlook & conclusions

- Little known about Galactic magnetic field distribution
- Magnetic fields confine CRs in galaxy for $E \lesssim 10^3 \, {
 m TeV}$
- Random distribution of field inhomogeneities

 propagation well described by diffusion equation

$$\frac{\partial \psi}{\partial t} - \nabla \cdot (\mathbf{D}\nabla - v_c)\psi + \frac{\partial}{\partial p} \mathbf{b}_{\text{loss}}\psi - \frac{\partial}{\partial p} \mathbf{K}\frac{\partial}{\partial p}\psi = q_{\text{source}}$$

- Little known about Galactic magnetic field distribution
- Magnetic fields confine CRs in galaxy for $E \lesssim 10^3 \,\mathrm{TeV}$ 0
- Random distribution of field inhomogeneities 0 ~ propagation well described by diffusion equation

$$\frac{\partial \psi}{\partial t} - \nabla \cdot (\mathbf{D}\nabla - v_c)\psi + \frac{\partial}{\partial p}\mathbf{b}_{\text{loss}}\psi - \frac{\partial}{\partial p}K\frac{\partial}{\partial p}\psi = q_{\text{source}}$$

$$\int \mathbf{f}_{\text{often set to 0}} \mathbf{0}$$
(stationary config.)

ofter

- Little known about Galactic magnetic field distribution
- Magnetic fields confine CRs in galaxy for $E \lesssim 10^3 \, {
 m TeV}$
- Random distribution of field inhomogeneities
 ~> propagation well described by diffusion equation

$$\frac{\partial \psi}{\partial t} - \nabla \cdot (D\nabla - v_c)\psi + \frac{\partial}{\partial p}b_{\text{loss}}\psi - \frac{\partial}{\partial p}K\frac{\partial}{\partial p}\psi = q_{\text{source}}$$

The set to 0
ationary config.)
Diffusion coefficient,
often $D \propto \beta(E/q)^{\delta}$

of

(st

UН

- Little known about Galactic magnetic field distribution
- Magnetic fields confine CRs in galaxy for $E \lesssim 10^3 \, {
 m TeV}$
- Random distribution of field inhomogeneities ~propagation well described by diffusion equation

- Little known about Galactic magnetic field distribution
- Magnetic fields confine CRs in galaxy for $E \lesssim 10^3 \,\mathrm{TeV}$
- Random distribution of field inhomogeneities ~propagation well described by diffusion equation

- Little known about Galactic magnetic field distribution
- Magnetic fields confine CRs in galaxy for $E \leq 10^3 \,\mathrm{TeV}$
- Random distribution of field inhomogeneities ~ propagation well described by diffusion equation

- Little known about Galactic magnetic field distribution
- Magnetic fields confine CRs in galaxy for $E \leq 10^3 \,\mathrm{TeV}$
- Random distribution of field inhomogeneities ~ propagation well described by diffusion equation

Analytical vs. numerical

How to solve the diffusion equation?

Analytical vs. numerical

How to solve the diffusion equation?

Numerically

- 3D possible
- any magnetic field model
- realistic gas distribution, full energy losses
- computations time-consuming
- "black box"

Strong, Moskalenko, ...

DRAGON Evoli, Gaggero, Grasso & Maccione

Analytical vs. numerical

How to solve the diffusion equation?

Numerically

- 3D possible
- any magnetic field model
- realistic gas distribution, full energy losses
- computations time-consuming
- "black box"

(Semi-)analytically

- Physical insight from analytic solutions
- fast computations allow to sample full parameter space
- only 2D possible
- simplified gas distribution, energy losses

Strong, Moskalenko, ...

DRAGON Evoli, Gaggero, Grasso & Maccione

e.g. Donato, Fornengo, Maurin, Salati, Taillet, ...

GCR composition

Fig. from D. Maurin

GCR composition

Fig. from D. Maurin

Primary species

- present in sources
- element distribution
 following stellar
 nucleosynthesis
- accelerated in supernova shockwaves

GCR composition

Fig. from D. Maurin

Primary species

- present in sources
- element distribution
 following stellar
 nucleosynthesis
- accelerated in supernova shockwaves

Secondary species

- much larger relative abundance than in stellar environments
- produced by interaction of primary cosmic rays with interstellar medium

E.g. secondary antiprotons

- Solution Propagation parameters $(K_0, \delta, L, v_a, v_c)$ of two-zone diffusion model strongly constrained by B/C
 - Maurin, Donato, Taillet & Salati, ApJ '01 This can be used to predict fluxes for other species:

UΗ

E.g. secondary antiprotons

- Propagation parameters $(K_0, \delta, L, v_a, v_c)$ of two-zone diffusion model strongly constrained by B/C Maurin, Donato, Taillet & Salati, ApJ '01
- This can be used to predict fluxes for other species:

UH

excellent agreement with new data:

BESSpolar 2004 Abe et al., PRL '08 PAMELA 2008 Adriani et al., PRL '10

E.g. secondary antiprotons

- Propagation parameters $(K_0, \delta, L, v_a, v_c)$ of two-zone diffusion model strongly constrained by B/C Maurin, Donato, Taillet & Salati, ApJ '01
 - This can be used to predict fluxes for other species:

UΗ

excellent agreement with new data:

BESSpolar 2004 Abe et al., PRL '08 PAMELA 2008 Adriani et al., PRL '10

very nice test for underlying diffusion model!

Degeneracies

Maurin, Donato, Taillet & Salati, ApJ '01 Torsten Bringmann, University of Hamburg

UН

- B/C analysis leaves large
 degeneracies in propagation
 parameters that
 - (almost) do not affect standard CR fluxes
 (~everything produced in the disk)

Degeneracies

Maurin, Donato, Taillet & Salati, ApJ '01 Torsten Bringmann, University of Hamburg

UН

B/C analysis leaves large
 degeneracies in propagation
 parameters that

 (almost) do not affect standard CR fluxes (~everything produced in the disk)

but can have a large impact on, e.g., antiprotons from DM annihilations:

Donato, Fornengo, Maurin, Salati & Taillet, PRD 704								
case	δ	K_0	L	V_c	V_A			
		$(\rm kpc^2/Myr)$	(kpc)	(km/sec)	$(\mathrm{km/sec})$			
max	0.46	0.0765	15	5	117.6			
med	0.70	0.0112	4	12	52.9			
min	0.85	0.0016	1	13.5	22.4			

Indirect Dark Matter Searches - 7

Degeneracies

B/C analysis leaves large degeneracies in propagation parameters that

(almost) do not affect standard CR fluxes (~everything produced in the disk)

but can have a large impact on, e.g., antiprotons from DM annihilations:

Donato, Fornengo, Maurin, Salati & Taillet, PRD '04							
case	δ	K_0	L V_c		V_A		
		$(\rm kpc^2/Myr)$	(kpc)	$(\mathrm{km/sec})$	$(\mathrm{km/sec})$		
max	0.46	0.0765	15	5	117.6		
med	0.70	0.0112	4	12	52.9		
min	0.85	0.0016	1	13.5	22.4		

 $\mathcal{O}(10^2)$ change in predicted \bar{p} flux from DM!

┦┝

Indirect Dark Matter Searches - 7

Torsten Bringmann, University of Hamburg

UН

Lepton propagation

Lepton propagation

 Main difference to nuclei: energy losses are dominant
 mainly locally produced (~kpc for 100 GeV leptons)

Lepton propagation

e[±] can also be described in this framework! Delahaye et al., PRD '08, A&A '09, A&A '10

 Main difference to nuclei: energy losses are dominant
 mainly locally produced (~kpc for 100 GeV leptons)

propagation uncertainties:

- secondaries ~ 2-4
- ♀ primaries ~5
- undisputed need for local primary source(s) to describe data well above ~10 GeV

- Several large-scale surveys performed since 1960s
- Convenient HQ sample, fully digitalized:

Oliviera-Costa et al., 0802.1525

- Several large-scale surveys performed since 1960s
- Convenient HQ sample, fully digitalized:

Oliviera-Costa et al., 0802.1525

- Several large-scale surveys performed since 1960s
- Convenient HQ sample, fully digitalized:

Oliviera-Costa et al., 0802.1525

UΗ

- Several large-scale surveys performed since 1960s
- Convenient HQ sample, fully digitalized:

 Intensity measured in brightness temperature (i.e. assume Rayleigh-Jeans law even for non-thermal emission)

 $T_b \equiv \epsilon I_{\nu} c^2 / (2\nu^2 k_B)$

$$\quad \textbf{Intensity:} \quad I_{\nu} = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int d\ell J_{\nu}(\mathbf{x}) e^{-\int_{0}^{\ell} d\ell' \, \alpha_{\nu}(\mathbf{x}')} = 2\nu^{2} k_{B} T_{b}/c^{2} \\
 \quad \textbf{emissivity} \quad J_{\nu} = \int \frac{dn_{e}}{dE} \frac{dw}{d\nu} \, dE \quad \textbf{(absorption length)}^{-1}$$

 $\begin{array}{c} \blacksquare & J \\ \blacksquare & J \\ \blacksquare & J \\ \blacksquare & I \\ \blacksquare & I$

Torsten Bringmann, University of Hamburg

UH

Indirect Dark Matter Searches - 10

Radio=synchrotron?

Assume synchrotron dominates at high latitudes:

Radio=synchrotron?

Assume synchrotron dominates at high latitudes:

Break in e⁻ distribution due to break in energy losses? (scattering on thermal ions/electrons could start to dominate IC here...)

Break in e⁻ distribution due to break in energy losses? (scattering on thermal ions/electrons could start to dominate IC here...)

Solar modulation important at low energies...

Break in e⁻ distribution due to break in energy losses? (scattering on thermal ions/electrons could start to dominate IC here...)

Solar modulation important at low energies...

Rather good agreement with observed electron fluxes!

UH

Angular distribution

→ clear discrimination between halo sizes possible!

Torsten Bringmann, University of Hamburg

UH

Min/med/max propagation

Very similar pattern also at other frequencies:

(10 ° average towards anticenter; normalization/ magnetic field as free parameter to minimize χ^2)

Mod.	prop. parameters			radio data (χ^2 /d.o.f.)		
	$L [\mathrm{kpc}]$	$K_0\left[\frac{\mathrm{kpc}^2}{\mathrm{Myr}}\right]$	δ	22 MHz	$408\mathrm{MHz}$	$1.42\mathrm{GHz}$
min	1	0.0016	0.85	14.4	13.4	13.5
med	4	0.0112	0.70	4.4	4.7	4.7
max	15	0.0765	0.46	15.4	10.6	8.7

"min" and "max" strongly disfavored!

Min/med/max propagation

Very similar pattern also at other frequencies:

(10 ° average towards anticenter; normalization/ magnetic field as free parameter to minimize χ^2)

Mod.	prop. parameters			radio data (χ^2 /d.o.f.)		
	$L [\mathrm{kpc}]$	$K_0\left[\frac{\mathrm{kpc}^2}{\mathrm{Myr}}\right]$	δ	22 MHz	$408\mathrm{MHz}$	$1.42\mathrm{GHz}$
min	1	0.0016	0.85	14.4	13.4	13.5
med	4	0.0112	0.70	4.4	4.7	4.7
max	15	0.0765	0.46	15.4	10.6	8.7

"min" and "max" strongly disfavored!

• At frequencies $\nu \gtrsim 2 \,\text{GHz}$, synchrotron contribution reproduces radio data significantly worse (bremsstrahlung contributions from molecular clouds and pulsars/SNRs !?)

UH

Indirect DM searches

A lower bound on L is quite important for indirect
 DM searches using antiprotons!

This is particularly relevant for low-mass WIMPs (c.f. claimed DM signals in direct detection or from the galactic center...) See also TB, 0911.1124; Lavalle, 1007.5253

UH

- Synchrotron radiation allows to directly measure the interstellar electron distribution
 - independent of solar modulation effects
 - Solution E.g.: break in electron power spectrum can be inferred at $E_e \approx 4 \,\mathrm{GeV}$

- Synchrotron radiation allows to directly measure the interstellar electron distribution
 - independent of solar modulation effects
 - Solution E.g.: break in electron power spectrum can be inferred at $E_e \approx 4 \,\mathrm{GeV}$
- Radio data can be described in simple diffusion models consistent with cosmic ray observations

- Synchrotron radiation allows to directly measure the interstellar electron distribution
 - independent of solar modulation effects
 - Solution E.g.: break in electron power spectrum can be inferred at $E_e \approx 4 \,\mathrm{GeV}$
- Radio data can be described in simple diffusion models consistent with cosmic ray observations
- Can be used to lift degeneracies from B/C analysis and further constrain propagation parameters

- Synchrotron radiation allows to directly measure the interstellar electron distribution
 - independent of solar modulation effects
 - Solution E.g.: break in electron power spectrum can be inferred at $E_e \approx 4 \,\mathrm{GeV}$
- Radio data can be described in simple diffusion models consistent with cosmic ray observations
- Can be used to lift degeneracies from B/C analysis and further constrain propagation parameters
- Lower limit on height of diffusive halo has profound implications for indirect dark matter searches
 - resulting constraints (in particular for light DM!) should be taken into account for a consistent picture

UHU į