

Number-Theory Dark Matter

5. August 2011 @TeVPA 2011

Fumi Takahashi (Tohoku Univ. and IPMU)

1. Introduction

Dark Matter

rotation curve

NGC 6503

10

Radius (kpc)

150

V_c (km s⁻¹)

50

0₀

Angular scale 2* 0.5* 0.2* 90* 6000 E 5000 1(1+1)C₁/2n [Jak¹] 1000 E OLIN 10 100 1000 500 Multipole moment I

CMB

lensing

Bullet cluster

halo

disk gas

30

20

Dark Matter

rotation curve

NGC 6503

10

Radius (kpc)

150

V_c (km s⁻¹)

50

0

Angular scale 2* 0.5* 0.2* 90' 6000 E 5000 4000 uZ/ 2000 z 1000 E 100 10 500 1000 Multipole moment I

CMB

lensing

Bullet cluster

disk gas

30

20

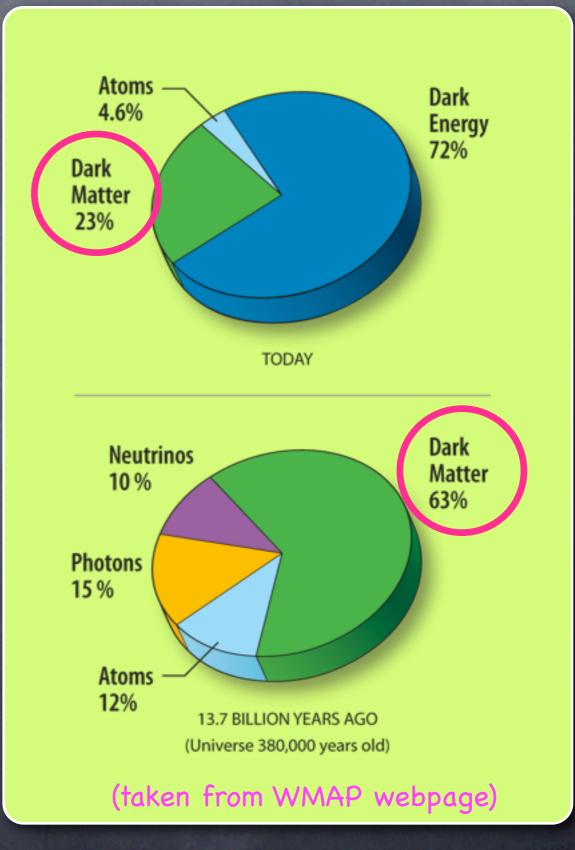
DM is now on sale

Dark Matter

The presence of DM has been firmly established.

 $\Omega_{DM} \sim 0.2$

DM is perhaps made of an asyet-undiscovered particle.



What are its properties?

Electrically neutral
(Very)weak interactions
Cold or warm
Long-lived.

Why long-lived?

1) Symmetry

e.g. R-parity, KK parity: LSP, LKP.

2) Light mass

e.g. $au \propto 1/m^3$

3) Very weak interactions

e.g. Hidden sector, gravity sector.

These are not exclusive: e.g. axion [2 & 3], gravitino [1 & 3 (also 2)]

Why long-lived?

1) Symmetry

Global symmetries are expected to be explicitly broken; if gauged, stable DM.

e.g. R-parity, KK parity: LSP, LKP.

2) Light mass

e.g. $au \propto 1/m^3$

The light mass and/or weak int. may be due to symmetry (e.g. chiral, shift sym, SUSY) or extra dim or compositeness.

3) Very weak interactions

e.g. Hidden sector, gravity sector.

These are not exclusive: e.g. axion [2 & 3], gravitino [1 & 3 (also 2)]

2. DM model

The longevity of DM is a puzzle. It may be stabilized by an unbroken symmetry such as Z_2 symmetry.

Global symmetries are expected to be explicitly broken. So, the symmetry may be a part of new gauge symmetry.

2. DM model

The longevity of DM is a puzzle. It may be stabilized by an unbroken symmetry such as Z_2 symmetry.

Global symmetries are expected to be explicitly broken. So, the symmetry may be a part of new gauge symmetry.

 \sim Z₂ subgroup of U(1)_{B-L}

The seesaw mechanism:

T. Yanagida `79, M.Gell-Mann, P.Ramond and R.Slansky `79, (Minkowski, `77)

$$\mathcal{L} = i\bar{N}_i\gamma^{\mu}\partial_{\mu}N_i + \left(\lambda_{i\alpha}\bar{N}_iL_{\alpha}\phi - \frac{1}{2}M_{Ri}\bar{N}_i^cN_i + \text{h.c.}\right),$$

$$(m_{\nu})_{\alpha\beta} = \sum_{i} \lambda_{i\alpha} \lambda_{i\beta} \frac{\left\langle \phi^{0} \right\rangle^{2}}{M_{Ri}}.$$

Then the right-handed neutrino mass scale turns out to be close to the GUT scale $M_R \sim 10^{15} \, {
m GeV}$ for $\lambda_{i lpha} \sim 1$

Heavy Majorana mass for right-handed neutrinos spontaneously breaks $U(1)_{B-L}$ down to Z_{2B-L} :

$$\mathcal{L} = \frac{1}{2} \kappa_i \Phi \bar{N}_i^c N_i$$
$$\langle \Phi \rangle = v_{\rm B-L} = 10^{15} \, {\rm GeV}$$

	Φ	N
B-L	2	-1

Since Φ has a B-L charge +2, the Z₂ subgroup of U(1)_{B-L} symmetry remains unbroken, and this may make the DM stable.

We introduce a set of chiral fermions charged under B-L, $\{\psi_i\}$, some of which are stable and become DM.

Non-trivial constraints on the number and B-L charges of the additional fermions from the anomaly cancellation conditions of U(1)_{B-L}.

We show that

1) non-trivial solutions appear when at least five fermions are added.

2) One of them contains a (W)DM candidate.

Anomaly cancellation conditions:

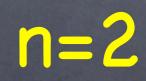
$$\sum_{i=1}^{n} Q_i^3 = 0, \qquad \sum_{i=1}^{n} Q_i = 0,$$

where $\mathbf{Q}_{\mathbf{i}}$ is B-L charge of ψ_{i} . $\mathbf{Q}_{\mathbf{i}}$ must be a rational number.

Let us rewrite them as

$$\sum_{i=1}^{n} (Z_i)^3 = 0, \quad \sum_{i=1}^{n} Z_i = 0,$$

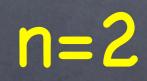
where $\{Z_1, \cdots Z_n\} = \{aQ_1, \cdots, aQ_n\}$ is an integer.



 $Z_1 = -Z_2$

The following mass term is allowed by symmetry. They can be very heavy ~ $M_{p.}$ $\mathcal{L} = \frac{1}{2}m\psi_1\psi_2 + h.c.$

We exclude such vector-like solution.

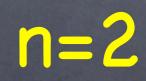


 $Z_1 = -Z_2$

The following mass term is allowed by symmetry. They can be very heavy ~ $M_{p.}$ $\mathcal{L} = rac{1}{2}m\psi_1\psi_2 + \mathrm{h.c.}$

We exclude such vector-like solution.

 $x^{3}+y^{3} = Z^{3}$



 $Z_1 = -Z_2$

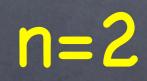
The following mass term is allowed by symmetry. They can be very heavy ~ $M_{p.}$ $\mathcal{L} = rac{1}{2}m\psi_1\psi_2 + \mathrm{h.c.}$

We exclude such vector-like solution.

n=3

$$x^{3}+y^{3} = z^{3}$$

There is no integer solution; this is a special case (n=3) of the Fermat's last theorem.



n=3

 $Z_1 = -Z_2$

The following mass term is allowed by symmetry. They can be very heavy ~ $M_{p.}$ $\mathcal{L} = rac{1}{2}m\psi_1\psi_2 + \mathrm{h.c.}$

We exclude such vector-like solution.

$$x^{3}+y^{3} = z^{3}$$

There is no integer solution; this is a special case (n=3) of the Fermat's last theorem.

 $\begin{array}{ll} \textbf{n=4} & (Z_1+Z_2)(Z_2+Z_3)(Z_3+Z_1) = 0. \\ & \textbf{Two sets of vector-like fermions.} \end{array}$

n=5 There are non-trivial solutions:

Table 1Independent solutions to Eqs. (4) and (5) for max{ $|Z_i|$ } ≤ 25 for n = 5. Z_1 Z_2 Z_3 Z_4

Z_1	Z2	Z ₃	Z4	Z ₅
-9	-5	-1	7	8
-9	-7	2	4	10
-18	-17	1	14	20
-21	-12	5	6	22
-25	-8	-7	18	22

Let us consider an integer solution, a=1.

 $(Q_1, Q_2, Q_3, Q_4, Q_5) = (-9, -5, -1, 7, 8),$

 ψ_5 is the only fermion with an even B-L charge, and so it is stable due to Z₂ (B-L) !!

n=5 There are non-trivial solutions:

Table 1 Independent solutions to Eqs. (4) and (5) for $\max\{|Z_i|\} \le 25$ for n = 5.

Z ₁	Z ₂	Z3	Z4	Z5
-9	—5	-1	7	8
-9	-1	2	4	10
-18	-17	1	14	20
-21	-12	5	6	22
-25	-8	-7	18	22

Let us consider an integer solution, a=1.

 $(Q_1, Q_2, Q_3, Q_4, Q_5) = (-9, -5, -1, 7, 8),$

 ψ_5 is the only fermion with an even B-L charge, and so it is stable due to Z₂ (B-L) !!

n=5 There are non-trivial solutions:

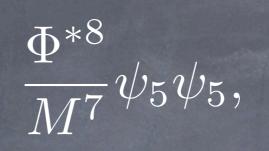
Table 1 Independent solutions to Eqs. (4) and (5) for $\max\{|Z_i|\} \le 25$ for n = 5.

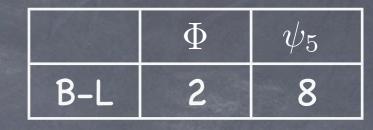
Z ₁	Z ₂	Z3	Z4	Z5
-9	—5	-1	7	8
-9	-1	2	4	10
-18	-17	1	14	20
-21	-12	5	6	22
-25	-8	-7	18	22

Let us consider an integer solution, a=1.

 $(Q_1, Q_2, Q_3, Q_4, Q_5) = (-9, -5, -1, 7, 8),$

 ψ_5 is the only fermion with an even B-L charge, and so it is stable due to Z₂ (B-L) !!





8

$$m_{\psi_5} \approx 10 \,\mathrm{keV} \left(\frac{v_{\mathrm{B-L}}}{3 \times 10^{15} \,\mathrm{GeV}} \right)$$

Note that there is no mixing between ψ_5 and the other fermions.

 $Y_{\psi_5} \equiv \frac{n_{\psi_5}}{s} \sim \frac{\langle \sigma v \rangle n_f^2 / H}{\frac{2\pi^2}{45} g_* T^3} \bigg|_{T=T_B}$ $\sim 4 \times 10^{-5} \left(\frac{g_*}{10^2}\right)^{-\frac{3}{2}} \left(\frac{Q_5}{8}\right)^2 \left(\frac{v_{\rm B-L}}{3 \times 10^{15} \,{\rm GeV}}\right)^{-4} \left(\frac{T_R}{4 \times 10^{13} \,{\rm GeV}}\right)^3,$ Number-theory $\Omega_{\psi_5} h^2 \approx 0.1 \left(\frac{m_{\psi_5}}{10 \,\text{keV}} \right) \left(\frac{Y_{\psi_5}}{4 \times 10^{-5}} \right).$ warm DM

Comments:

1. DM mass will be too light for other solutions with larger charges.

2. DM can be unstable if the charges of additional fermions are fractional.

Conclusions

Longevity of dark matter may be due to some unbroken symmetry, and Z₂ subgroup of U(1)_{B-L} is a prime candidate.

At least 5 chiral fermions charged under U(1)_{B-L} are needed to satisfy the anomaly cancellation condition.

One of the chiral femrions become a DM of mass about 10keV.

Thank you very much!