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Possibilities of Lorentz Invariance Violation (LIV)

Lorentz invariance has been found to hold for the scales which are
described by the Standard Model (SM) of particle physics, BUT

I Non-compactness of the Lorentz group
I LIV as a possible result from Quantum Gravity (QG)
→ Planck Mass (MPl ≈ 1.22× 1028 eV) suppression

⇒ LIV might be visible only at extremely high energies which lie
beyond the observational possibilities

I Lorentz invariance is not an axiom, but rather a consequence
from four principles [Ignatowsky, 1910]:
1. Relativity
2. Isotropy of spacetime
3. Homogeneity of spacetime
4. Precausality

⇒ Giving up any of them gives LIV
I CPT violation implies LIV for local QFT [Greenberg, 2002]

3 A. Saveliev



Possibilities of Lorentz Invariance Violation (LIV)

Lorentz invariance has been found to hold for the scales which are
described by the Standard Model (SM) of particle physics, BUT

I Non-compactness of the Lorentz group
I LIV as a possible result from Quantum Gravity (QG)
→ Planck Mass (MPl ≈ 1.22× 1028 eV) suppression

⇒ LIV might be visible only at extremely high energies which lie
beyond the observational possibilities

I Lorentz invariance is not an axiom, but rather a consequence
from four principles [Ignatowsky, 1910]:
1. Relativity
2. Isotropy of spacetime
3. Homogeneity of spacetime
4. Precausality

⇒ Giving up any of them gives LIV

I CPT violation implies LIV for local QFT [Greenberg, 2002]

3 A. Saveliev



Possibilities of Lorentz Invariance Violation (LIV)

Lorentz invariance has been found to hold for the scales which are
described by the Standard Model (SM) of particle physics, BUT

I Non-compactness of the Lorentz group
I LIV as a possible result from Quantum Gravity (QG)
→ Planck Mass (MPl ≈ 1.22× 1028 eV) suppression

⇒ LIV might be visible only at extremely high energies which lie
beyond the observational possibilities

I Lorentz invariance is not an axiom, but rather a consequence
from four principles [Ignatowsky, 1910]:
1. Relativity
2. Isotropy of spacetime
3. Homogeneity of spacetime
4. Precausality

⇒ Giving up any of them gives LIV
I CPT violation implies LIV for local QFT [Greenberg, 2002]

3 A. Saveliev



Minimal Standard Model Extension

The minimal Standard Model Extension (SME) is an effective
field theory which is motivated by QG. The most important ideas:

I SM should be the low-energy limit of SME
I Only SM fields are used
I Validity of various physical principles: Energy-momentum

conservation, preserved passive Lorentz Transformations,
gauge invariance, positive energies, ...

I Preferred reference frame, i.e. coupling of the fields to a unit
vector uα (e.g. with ui = 0 for i = 1, 2, 3 for rotation
symmetry conservation)

⇒ Modification of the SM Lagrangian: LSME = LSM + ∆L,
∆L containing in general a large number of possible terms
(dimension 3 and 4 operators) which meet the requirements above
[Colladay and Kostelecký, 1998]

4 A. Saveliev



Minimal Standard Model Extension

The minimal Standard Model Extension (SME) is an effective
field theory which is motivated by QG. The most important ideas:

I SM should be the low-energy limit of SME
I Only SM fields are used
I Validity of various physical principles: Energy-momentum

conservation, preserved passive Lorentz Transformations,
gauge invariance, positive energies, ...

I Preferred reference frame, i.e. coupling of the fields to a unit
vector uα (e.g. with ui = 0 for i = 1, 2, 3 for rotation
symmetry conservation)

⇒ Modification of the SM Lagrangian: LSME = LSM + ∆L,
∆L containing in general a large number of possible terms
(dimension 3 and 4 operators) which meet the requirements above
[Colladay and Kostelecký, 1998]

4 A. Saveliev



Minimal Standard Model Extension and Beyond

Different kinds of extensions for SME - higher order operators
[Mattingly, 2007]
One of the possible consequences of SME are modified dispersion
relations (MDR). A simple case for just the photon sector of the
modified Lagrangian is given by [Myers and Pospelov, 2003]

LSME ,γ = Lγ+∆L(5)γ = −1
4FµνFµν+

ξ

2MPl
uµFµν (u · ∂)

(
uαF̃αν

)
.

Using the unit vector u given earlier, Lorentz Gauge and E ≈ p for
a photon propagating along the z axis this gives

ε2 = k2 ± ξ k3

MPl
,

a modified dispersion relation.
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Modified Dispersion Relations
These results give the motivation to assume a MDR to be in
general of the form

E 2 = p2 + m2 + η(n)
pn+2

Mn
Pl
.

One can now estimate at which critical energies Ecr these MDRs
might result in a visible effect on particle propagation:

Ecr ≈
(
m2Mn

Pl/η
(n)

) 1
n+2 .

For η(n) ≈ 1 this gives

n Ecr for νe Ecr for e− Ecr for p+

1 ≈ 109 eV ≈ 1013 eV ≈ 1015 eV

2 ≈ 1014 eV ≈ 1017 eV ≈ 3 × 1018 eV

[Jacobson et al., 2003]
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LIV Observations

Although suppressed by orders of the Planck Mass, LIV may be
observable:

I Modification of reaction thresholds
I New reactions are possible which has been forbidden before

due to energy-momentum conservation
Still very high energies are needed → astrophysics/astroparticle
physics
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LIV Constraints - UHE Photons

Expected proton, neutrino and photon fluxes with (solid) and
without (dashed) pair production [Galaverni and Sigl, 2008b]
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LIV Constraints - UHE Photons

Constraints from upper limits on the CR photon fraction (blue)
and from a possible 1019eV photon detection (yellow)
[Galaverni and Sigl, 2008a]
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LIV Constraints - GZK Cutoff
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Yakutsk - ground array

Haverah Park - ground array

Akeno - ground array

AGASA - ground array

Fly’s Eye - air fluorescence

HiRes1 mono - air fluorescence

HiRes2 mono - air fluorescence

HiRes stereo - air fluorescence

Auger - hybrid

Cosmic Ray Spectra of Various Experiments

[Hanlon, 2008]
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LIV Constraints - GZK Cutoff

I The GZK suppression is predicted to appear at around
6× 1019eV due to the dominant ∆ resonance production:

p + γ → ∆(1232MeV)→ p + π0

→ n + π+

By choosing the right combination of LIV parameters it is
possible to change the threshold momenta and as a result to
"close" the ∆ channel → Elimination of the GZK cutoff!
[Bietenholz, 2008]

I LIV has also a crucial impact on the propagation lengths
(especially due to Vacuum Cherenkov radiation) and therefore
may change the observed spectrum dramatically.
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LIV Constraints - GZK Cutoff

Constraints: −10−3 . ηp . 10−6

[Maccione et al., 2009]
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LIV for UHECR Nuclei
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Recent results from the Pierre Auger Observatory showing the
average value and the RMS of the air shower maximum distance
Xmax in the atmosphere indicating a heavy component at the
highest energies. [Abraham et al., 2010]
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LIV for UHECR Nuclei

Ultra High Energy Cosmic Rays (UHECRs) are the particles with
the highest energies ever observed → Candidates for observing LIV
effects

I The main reaction for UHECR nuclei is photodisintegration, in
the simplest case:

A
Z N + γ → A′

Z ′N ′ + B
W N ′′

with A′ = A− B and Z ′ = Z −W .

However, due to LIV and the MDR for composite particles
[Jacobson et al., 2003],

E 2
A,Z = p2

A,Z + m2
A,Z +

η

A2
pn+2

A,Z
Mn

Pl
,

two new reactions may appear:
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LIV for UHECR Nuclei

I Spontaneous Decay (SD) of LI-stable particles

A
Z N → A′

Z ′N ′ + B
W N ′′

I Vacuum Cherenkov (VC) effect

A
Z N → A

Z N + γ

with threshold momentum pthr ,VC =

(
m2

A,Z Mn
PlA

2

(n+1)η

) 1
n+2
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LIV for UHECR Nuclei
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Constraints from Spontaneous Decay and VC radiation for n = 2
and single nucelon emission.

Emax = 1019.6 eV Emax = 1020 eV
4He −3× 10−3 . η . 4× 10−3 −7× 10−5 . η . 1× 10−4

16O −7× 10−2 . η . 1 −2× 10−3 . η . 3× 10−2

56Fe −1 . η . 200 −3× 10−2 . η . 4

[Saveliev et al., 2011]



LIV for UHECR Nuclei
Typical impact on the mean free path (here shown for oxygen):
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→ Still work to be done, e.g. computations of spectra.
[Saveliev et al., 2011]
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Conclusions and Outlook

I LIV is an interesting concept to test physics beyond the SM
(like QG)

I Due to preserved Lorentz invariance at low energies, LIV is
predicted to be seen only at the highest energy scale, i.e. the
best candidate is UHE Cosmic Ray physics

I Various constraints on LIV have been set for different particles
and operator dimensions

I Still, due to high uncertainties in the UHECR measurements
(rare events, composition, ...), future years of experiments
may bring more reliable data

I Especially the investigation of LIV for heavy nuclei is just at
its beginning
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