

Effects of Lorentz Invariance Violation in Ultra High Energy Cosmic Ray Physics

Andrey Saveliev¹

University of Hamburg

August 1st, 2011

¹with Luca Maccione (DESY Hamburg) and Günter Sigl (Univ. Hamburg)

Contents

Possibilities of Lorentz Invariance Violation (LIV)

Minimal Standard Model Extension

LIV observations and constraints

LIV for UHECR Nuclei

Conclusions and Outlook

Possibilities of Lorentz Invariance Violation (LIV)

Lorentz invariance has been found to hold for the scales which are described by the Standard Model (SM) of particle physics, BUT

- Non-compactness of the Lorentz group
- ► LIV as a possible result from Quantum Gravity (QG)
 - ightarrow Planck Mass ($M_{
 m Pl} pprox 1.22 imes 10^{28} \, {
 m eV}$) suppression

 \Rightarrow LIV might be visible only at extremely high energies which lie beyond the observational possibilities

Possibilities of Lorentz Invariance Violation (LIV)

Lorentz invariance has been found to hold for the scales which are described by the Standard Model (SM) of particle physics, BUT

- Non-compactness of the Lorentz group
- ► LIV as a possible result from Quantum Gravity (QG)
 - ightarrow Planck Mass ($M_{
 m Pl} pprox 1.22 imes 10^{28} \, {
 m eV}$) suppression
- \Rightarrow LIV might be visible only at extremely high energies which lie beyond the observational possibilities
 - Lorentz invariance is not an axiom, but rather a consequence from four principles [Ignatowsky, 1910]:
 - 1. Relativity
 - 2. Isotropy of spacetime
 - 3. Homogeneity of spacetime
 - 4. Precausality

 \Rightarrow Giving up any of them gives LIV

Possibilities of Lorentz Invariance Violation (LIV)

Lorentz invariance has been found to hold for the scales which are described by the Standard Model (SM) of particle physics, BUT

- Non-compactness of the Lorentz group
- ► LIV as a possible result from Quantum Gravity (QG)
 - ightarrow Planck Mass ($M_{
 m Pl} pprox 1.22 imes 10^{28} \, {
 m eV}$) suppression
- \Rightarrow LIV might be visible only at extremely high energies which lie beyond the observational possibilities
 - Lorentz invariance is not an axiom, but rather a consequence from four principles [Ignatowsky, 1910]:
 - 1. Relativity
 - 2. Isotropy of spacetime
 - 3. Homogeneity of spacetime
 - 4. Precausality
- \Rightarrow Giving up any of them gives LIV
 - ▶ CPT violation implies LIV for local QFT [Greenberg, 2002]

Minimal Standard Model Extension

The **minimal Standard Model Extension (SME)** is an effective field theory which is motivated by QG. The most important ideas:

- SM should be the low-energy limit of SME
- Only SM fields are used
- Validity of various physical principles: Energy-momentum conservation, preserved passive Lorentz Transformations, gauge invariance, positive energies, ...
- Preferred reference frame, i.e. coupling of the fields to a unit vector u^α (e.g. with uⁱ = 0 for i = 1, 2, 3 for rotation symmetry conservation)

Minimal Standard Model Extension

The **minimal Standard Model Extension (SME)** is an effective field theory which is motivated by QG. The most important ideas:

- SM should be the low-energy limit of SME
- Only SM fields are used
- Validity of various physical principles: Energy-momentum conservation, preserved passive Lorentz Transformations, gauge invariance, positive energies, ...
- Preferred reference frame, i.e. coupling of the fields to a unit vector u^α (e.g. with uⁱ = 0 for i = 1, 2, 3 for rotation symmetry conservation)

⇒ Modification of the SM Lagrangian: $\mathcal{L}_{SME} = \mathcal{L}_{SM} + \Delta \mathcal{L}$, $\Delta \mathcal{L}$ containing in general a large number of possible terms (dimension 3 and 4 operators) which meet the requirements above [Colladay and Kostelecký, 1998]

Minimal Standard Model Extension and Beyond

Different kinds of extensions for SME - higher order operators [Mattingly, 2007]

One of the possible consequences of SME are modified dispersion relations (MDR). A simple case for just the photon sector of the modified Lagrangian is given by [Myers and Pospelov, 2003]

$$\mathcal{L}_{SME,\gamma} = \mathcal{L}_{\gamma} + \Delta \mathcal{L}_{\gamma}^{(5)} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\xi}{2M_{\rm Pl}} u^{\mu} F_{\mu\nu} \left(u \cdot \partial \right) \left(u_{\alpha} \tilde{F}^{\alpha\nu} \right) \,.$$

Minimal Standard Model Extension and Beyond

Different kinds of extensions for SME - higher order operators [Mattingly, 2007]

One of the possible consequences of SME are modified dispersion relations (MDR). A simple case for just the photon sector of the modified Lagrangian is given by [Myers and Pospelov, 2003]

$$\mathcal{L}_{SME,\gamma} = \mathcal{L}_{\gamma} + \Delta \mathcal{L}_{\gamma}^{(5)} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\xi}{2M_{\rm Pl}} u^{\mu} F_{\mu\nu} \left(u \cdot \partial \right) \left(u_{\alpha} \tilde{F}^{\alpha\nu} \right) \,.$$

Using the unit vector u given earlier, Lorentz Gauge and $E\approx p$ for a photon propagating along the z axis this gives

$$\epsilon^2 = k^2 \pm \xi \frac{k^3}{M_{\rm Pl}}\,,$$

a modified dispersion relation.

Modified Dispersion Relations

These results give the motivation to assume a MDR to be in general of the form

$$E^2 = p^2 + m^2 + \eta^{(n)} rac{p^{n+2}}{M_{
m Pl}^n} \, .$$

One can now estimate at which critical energies E_{cr} these MDRs might result in a visible effect on particle propagation:

$$E_{cr} \approx \left(m^2 M_{\rm Pl}^n / \eta^{(n)}\right)^{\frac{1}{n+2}}$$

Modified Dispersion Relations

These results give the motivation to assume a MDR to be in general of the form

$$E^2 = p^2 + m^2 + \eta^{(n)} rac{p^{n+2}}{M_{
m Pl}^n} \, .$$

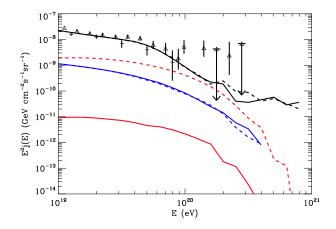
One can now estimate at which critical energies E_{cr} these MDRs might result in a visible effect on particle propagation:

$$E_{cr} \approx \left(m^2 M_{\rm Pl}^n / \eta^{(n)}\right)^{rac{1}{n+2}}$$

For $\eta^{(n)} \approx 1$ this gives

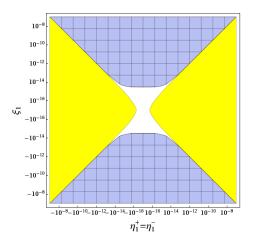
n	E_{cr} for $ u_{ m e}$	E_{cr} for e^-	E_{cr} for p^+
1	$pprox 10^9 { m eV}$	$pprox 10^{13} \ { m eV}$	$pprox 10^{15} \ { m eV}$
2	$pprox 10^{14}~{ m eV}$	$pprox 10^{17}~{ m eV}$	$\approx 3\times 10^{18}~\text{eV}$

[Jacobson et al., 2003]

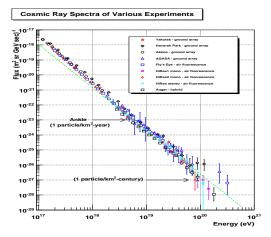

Modification of reaction thresholds

- Modification of reaction thresholds
- New reactions are possible which has been forbidden before due to energy-momentum conservation

- Modification of reaction thresholds
- New reactions are possible which has been forbidden before due to energy-momentum conservation


Still very high energies are needed \rightarrow astrophysics/astroparticle physics

LIV Constraints - UHE Photons



Expected **proton**, **neutrino** and **photon** fluxes with (solid) and without (dashed) pair production [Galaverni and Sigl, 2008b]

LIV Constraints - UHE Photons

Constraints from upper limits on the CR photon fraction (blue) and from a possible 10^{19} eV photon detection (yellow) [Galaverni and Sigl, 2008a]

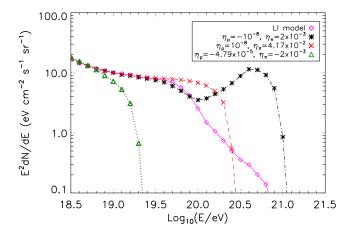
[Hanlon, 2008]

10

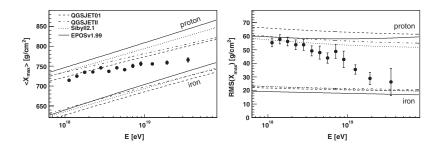
 The GZK suppression is predicted to appear at around 6 × 10¹⁹ eV due to the dominant Δ resonance production:

$$p + \gamma \rightarrow \Delta(1232 \text{MeV}) \rightarrow p + \pi^0$$

 $\rightarrow n + \pi^+$


By choosing the right combination of LIV parameters it is possible to change the threshold momenta and as a result to "close" the Δ channel \rightarrow Elimination of the GZK cutoff! [Bietenholz, 2008]

 The GZK suppression is predicted to appear at around 6 × 10¹⁹ eV due to the dominant Δ resonance production:


$$p + \gamma \rightarrow \Delta(1232 \text{MeV}) \rightarrow p + \pi^{0}$$

 $\rightarrow n + \pi^{+}$

By choosing the right combination of LIV parameters it is possible to change the threshold momenta and as a result to "close" the Δ channel \rightarrow Elimination of the GZK cutoff! [Bietenholz, 2008]

 LIV has also a crucial impact on the propagation lengths (especially due to Vacuum Cherenkov radiation) and therefore may change the observed spectrum dramatically.

Constraints: $-10^{-3} \lesssim \eta_p \lesssim 10^{-6}$ [Maccione et al., 2009]

Recent results from the Pierre Auger Observatory showing the average value and the RMS of the air shower maximum distance X_{max} in the atmosphere indicating a heavy component at the highest energies. [Abraham et al., 2010]

Ultra High Energy Cosmic Rays (UHECRs) are the particles with the highest energies ever observed \rightarrow Candidates for observing LIV effects

The main reaction for UHECR nuclei is photodisintegration, in the simplest case:

$${}^{A}_{Z}N + \gamma \rightarrow {}^{A'}_{Z'}N' + {}^{B}_{W}N''$$

with A' = A - B and Z' = Z - W.

Ultra High Energy Cosmic Rays (UHECRs) are the particles with the highest energies ever observed \rightarrow Candidates for observing LIV effects

The main reaction for UHECR nuclei is photodisintegration, in the simplest case:

$${}^{A}_{Z}N + \gamma \rightarrow {}^{A'}_{Z'}N' + {}^{B}_{W}N''$$

with
$$A' = A - B$$
 and $Z' = Z - W$.

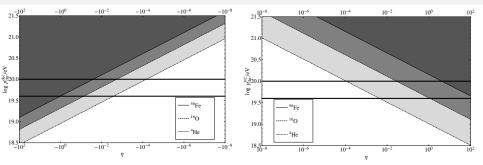
However, due to LIV and the MDR for composite particles [Jacobson et al., 2003],

$${\cal E}_{A,Z}^2 = {\it p}_{A,Z}^2 + {\it m}_{A,Z}^2 + {\eta \over A^2} {{\it p}_{A,Z}^{n+2} \over {\cal M}_{
m Pl}^n} \, ,$$

two new reactions may appear:

Spontaneous Decay (SD) of LI-stable particles

$${}^{A}_{Z}N
ightarrow {}^{A'}_{Z'}N' + {}^{B}_{W}N''$$

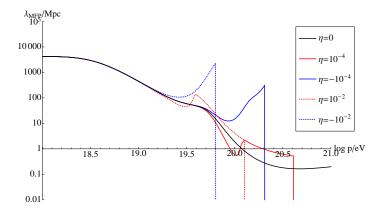

Spontaneous Decay (SD) of LI-stable particles

$${}^{A}_{Z}N
ightarrow {}^{A'}_{Z'}N' + {}^{B}_{W}N''$$

Vacuum Cherenkov (VC) effect

$$^{A}_{Z}N \rightarrow ^{A}_{Z}N + \gamma$$

with threshold momentum $p_{thr,VC} = \left(\frac{m_{A,Z}^2 M_{\rm Pl}^n A^2}{(n+1)\eta}\right)^{\frac{1}{n+2}}$



Constraints from Spontaneous Decay and VC radiation for n = 2 and single nucelon emission.

	$E_{max} = 10^{19.6} { m eV}$	$E_{max}=10^{20}\mathrm{eV}$
⁴ He	$ -3 imes 10^{-3} \lesssim \eta \lesssim 4 imes 10^{-3}$	$-7 imes 10^{-5} \lesssim \eta \lesssim 1 imes 10^{-4}$
¹⁶ 0	$-7 imes 10^{-2} \lesssim \eta \lesssim 1$	$-2 imes 10^{-3} \lesssim \eta \lesssim 3 imes 10^{-2}$
⁵⁶ Fe	$-1 \lesssim \eta \lesssim 200$	$-3 imes 10^{-2} \lesssim \eta \lesssim 4$

[Saveliev et al., 2011]

Typical impact on the mean free path (here shown for oxygen):

 \rightarrow Still work to be done, e.g. computations of spectra. [Saveliev et al., 2011]

Conclusions and Outlook

- LIV is an interesting concept to test physics beyond the SM (like QG)
- Due to preserved Lorentz invariance at low energies, LIV is predicted to be seen only at the highest energy scale, i.e. the best candidate is UHE Cosmic Ray physics
- Various constraints on LIV have been set for different particles and operator dimensions

Conclusions and Outlook

- LIV is an interesting concept to test physics beyond the SM (like QG)
- Due to preserved Lorentz invariance at low energies, LIV is predicted to be seen only at the highest energy scale, i.e. the best candidate is UHE Cosmic Ray physics
- Various constraints on LIV have been set for different particles and operator dimensions
- Still, due to high uncertainties in the UHECR measurements (rare events, composition, ...), future years of experiments may bring more reliable data
- Especially the investigation of LIV for heavy nuclei is just at its beginning