

Gamma-ray Supernova remnants

Stefan Funk, August 5th 2011, TeVPA

High-energy Supernova remnants

- Cosmic particle accelerators (X-ray synchrotron suggesting 100 TeV e⁻)
- Prime candidate for Proton acceleration to the knee
 - Energetics: 10% of kinetic energy of SN would suffice
 - Diffusive shock acceleration (prediction: power-law in energy)
- Magnetic field amplification by factor O(100), SNRs accelerate protons to 10¹⁵ eV

Observational evidence for protons

- Strong indirect indications for p⁺ in young SNRs, mainly from Chandra X-rays:
 - Large (mG) B-Fields:
 - Small filaments (cooling times), (Bamba 2003, ...)
 - X-ray variability on yearly timescale, (Uchiyama 2008, ...)
 - Large proton pressure:
 - Large B-fields (CR pressure)
 - Proximity of contact discontinuity to forward shock (Warren 2005)
 - Post-shock temperature very low. CRs are an additional sink of energy (Helder 2009)

Shell-type SNRs in TeV $\gamma\text{-rays}$

- 4 Young (historical) SNRs resolved at TeV energies
 - Vela Junior
 - RX J1713.7-3936
 - RCW 86
 - SN 1006
- Clear correlation with non-thermal X-rays
- Detection of Cas A, Tycho, W28 (~15 safe associations)
- upper limits for Kepler SNR

Protons or Electrons? E.g. RX J1713.7-3946

Protons or Electrons? E.g. RX J1713.7-3946

Protons or Electrons? E.g. RX J1713.7-3946

Description	Identified		Associated	
	Designator	Number	Designator	Number
Pulsar, identified by pulsations	PSR	83		
Pulsar, no pulsations seen in LAT yet			\mathbf{psr}	25
Pulsar wind nebula	PWN	3	pwn	0
Supernova remnant	SNR	6	snr	4
Supernova remnant / Pulsar wind nebula			†	58

Mid-aged SNRs interacting with clouds

- W51C, W44, IC 443, W28, ... extremely GeV bright
- Ages: ~5000 40000 years
- Archetypal remnants interacting with molecular clouds (shock overtaking the cloud)

Mid-aged SNRs interacting with clouds

- Spectra show cutoffs in the 1-10 GeV range.
- Large density favors Bremsstrahlung and π^0 -decay, e/p ratio favors the latter

Young SNRs with Fermi

- Detection of young SNRs (Tycho, Cas A, RX J1713.7-3946, Vela Jr. ...) provides spectral measurements over more than 5 orders of magnitude in energy
- E.g. Cas A:
 - At publication (11 month of data) could not distinguish between hadronic and leptonic scenarios
 - In either scenario CR content ~2% of SN explosion energy
 - Measurements below 500 MeV crucial for determining emission mechanism

Abdo et al. 2009

The gamma-ray SNR zoo

What do we expect?

- Complicated:
 - Shock weakens with time, B-field drops. Maximum energy drops with time
 - More detailed model of shock-evolution describes evolution of shock-velocity, density of surrounding medium, ...
 - Additional complication: density of surrounding medium

What do we expect?

- Complicated:
 - Shock weakens with time, B-field drops. Maximum energy drops with time
 - More detailed model of shock-evolution describes evolution of shock-velocity, density of surrounding medium, ...
 - Additional complication: density of surrounding medium

Understanding hadronic gamma-ray emission from supernova remnants

Caprioli Damiano

INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, Firenze, Italy

E-mail: caprioli@arcetri.astro.it

For core-collapse SNRs

What do we expect?

• "The total luminosity may be orders of magnitudes larger at earlier and later stages, inside the dense wind and inside the ISM, respectively"

What do we expect?

• "The total luminosity may be orders of magnitudes larger at earlier and later stages, inside the dense wind and inside the ISM, respectively"

Radio and GeV gamma rays

 For cloud-interacting remnants expect relation due to n~B² relation in dense molecular clouds

The unequivocal evidence of hadron acceleration in Tycho's Supernova Remnant

G. Morlino^{1*}, D. Caprioli¹[†], ¹INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125, Firenze, Italy

The Future

Neutrinos?

- Gamma-rays in part trace neutrino sources
- Can make detailed prediction of neutrino fluxes in IceCube or KM3Net
 - Will be very difficult for northern Galactic SNRs (typical neutrino rates are of order 0.1/year).
 - Might be very different for flaring Fermi sources ... (ratio of neutrinos to gamma-rays can get very large due to γγ-absorption)

The origin of Cosmic rays - population of SNRs

- No clear sign of other 'potential' source of CRs (Novae, stellar winds, ...)
- Cosmic ray power in our Galaxy: ~ **5 x 10⁴⁰ ergs/s**
 - Fermi-LAT data will give upper limit to CR content in SNRs
 - Next step: CR content as function of age, shock speed, ...
 - Connect this as a population to the total CR power in our Galaxy

The Future

- Can explain all H.E.S.S. Galactic plane survey sources with reasonable population of SNRs (CR efficiency, SN frequency, ambient density, ...) (see e.g. Funk & Hinton 2008)
 - From that derive O(200) SNRs should be visible by CTA
 - Detecting SNRs with gamma rays! (see e.g. HESS J1731-341)

Summary

- Supernova remnants are an abundant source of gamma rays
 - Both at GeV and TeV energies
- Start to address the evolution of particle acceleration in remnants
- Disentangle source intrinsic from external effects (in particular ambient density)

Spectra versus age

• For cloud-interacting remnants expect lower E_{max} since shock-speed will be lower

Cosmic rays in other Galaxies

- Diffuse emission similar to our own Galaxy observable for close-by galaxies, or those with enhanced star-formation
- Detection of M82, NGC 253, SMC, LMC, M31
- LMC: clear correlation with star-formation, no obvious correlation with HI (target material). Implies CR gradient in the LMC

Abdo et al. 2010

Other Galaxies

- Start to see trend of correlation between GeV γ-ray luminosity and Star formation
- Suggest that CR density is related to star-formation
- Important to estimate contribution of star-forming galaxies to Isotropic diffuse emission
- And possibly the star-formation history of the Universe ...

