

NEUTRINO POINT-SOURCE SEARCH IN ICECUBE

Juan Antonio Aguilar TeVPA 2011 Stockholm, Sweden

NEUTRINO ASTRONOMY

- ▶ Protons are deviated by magnetic fields (E_D < 10¹⁹) and very energetic protons travel distances of a few Mpc.
 - Neutrons reach distances of ~kpc at very high energy.
 - ▶ Photons interact with the EBL (~100 Mpc) and CMB (~10 kpc).
 - Neutrinos are neutral stable weakly interacting particles.

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis Conclusions

DETECTION PRINCIPLE

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis

Conclusions

ICECUBE COLLABORATION

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis

Conclusions

THE ICECUBE OBSERVATORY

ICECUBE

IceCube

Completion with 86 strings in January 2011

IceCube 79 (2010-11)

79 strings are in operation.

IceCube 59 (2009-10)

IceCube IC59 data is being processed. Analysis starting now.

IceCube 40 (2008-9)

IC40 data has been analyzed for point sources.

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis

Conclusions

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis Conclusions

ICECUBE MUON SAMPLE

Detector rates:

Strings	Year	Livetime	SMT rate (Hz)	μ filter rate (Hz)	atm.∨ final rate
9	2006	137 d	80	6	1.7
22	2007	276 d	450	20	18/d
40	2008	375.5 d	1100	23	40/d
59	2009	348 d	1900	24	120/d
79	2010		2300	40	~ 170/d

- ▶Low noise rates: ~500 Hz (SPE/sec)
- High duty cycle: > 96% (analysis level)
- Event rates (59 strings): Trigger rate: ~ 1.9 kHz Neutrinos: ~ 120/day

IC59+IC40 POINT SOURCE ANALYSIS

OOD AND DENSITY FUNCTIONS

Signal pdf:

$$S_i = \frac{1}{2\pi\sigma_i^2} e^{-r_i^2/2\sigma_i^2} \cdot P(E_i|\gamma)$$

Likelihood Space around track solution fit to paraboloid: width $=\sigma$

LIKELIHOOD AND DENSITY FUNCTIONS

Signal pdf: $\mathcal{S}_i = \frac{1}{2\pi\sigma_i^2} e^{-r_i^2/2\sigma_i^2} \cdot P(E_i|\gamma)$

100D AND DENSITY FUNCTIONS

Signal pdf:

$$S_i = \frac{1}{2\pi\sigma_i^2} e^{-r_i^2/2\sigma_i^2} \cdot P(E_i|\gamma)$$

Background pdf:

$$\mathcal{B}_i = B(\theta_i) \cdot P_{atm}(E_i)$$

Scrambled real data. (zenith dependence)

OOD AND DENSITY FUNCTIONS

Signal pdf:

$$S_i = \frac{1}{2\pi\sigma_i^2} e^{-r_i^2/2\sigma_i^2} \cdot P(E_i|\gamma)$$

Likelihood:

$$\mathcal{L}(n_s, \gamma) = \prod_{i=1}^{N} \left(\frac{n_s}{N} \mathcal{S}_i(\gamma) + (1 - \frac{n_s}{N}) \mathcal{B}_i \right)$$

Background pdf:

$$\mathcal{B}_i = B(\theta_i) \cdot P_{atm}(E_i)$$

Maximize:

- $ightharpoonup \gamma$, the neutrino spectral index
- ▶ **n**_s, number of signal events

OOD AND DENSITY FUNCTIONS

Signal pdf:

$$S_i = \frac{1}{2\pi\sigma_i^2} e^{-r_i^2/2\sigma_i^2} \cdot P(E_i|\gamma)$$

Likelihood:

$$\mathcal{L}(n_s, \gamma) = \prod_{i=1}^{N} \left(\frac{n_s}{N} \mathcal{S}_i(\gamma) + (1 - \frac{n_s}{N}) \mathcal{B}_i \right)$$

Background pdf:

$$\mathcal{B}_i = B(\theta_i) \cdot P_{atm}(E_i)$$

Maximize:

- $ightharpoonup \gamma$, the neutrino spectral index
- ▶ **n**_s, number of signal events

Maximization of the likelihood ratio:

$$\log \lambda = \log \left(\frac{L(\hat{\gamma}, \hat{n}_s)}{L(n_s = 0)} \right)$$
 Estimates that maximize the

Likelihood

The final significance is determined by scrambling the data in r.a. and repeating the analysis.

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis

Conclusions

- ▶ We combined the IC59 data and IC40 data into one likelihood analysis.
- Each dataset has its own background distribution and detector performance.

$$\mathcal{L}(n_s, \gamma) = \prod_{i=1}^{N} \left(\frac{n_s^j}{n_{tot}^j} \mathcal{S}_i^j + \left(1 - \frac{n_s^j}{n_{tot}^j} \right) \mathcal{B}_i^j \right) \text{ where } \mathbf{j} = \{\text{IC40, IC59}\}$$
 and $\mathbf{N} = \mathbf{n}_{tot}^{\text{IC40}} + \mathbf{n}_{tot}^{\text{IC59}}$

- The signal hypothesis is the same: $\gamma = \gamma_{1C40} = \gamma_{1C59}$
- The expected number of signal events depend on the detector acceptance, livetime and event selection: $n_s = n_s^{IC40} + n_s^{IC59}$

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis

Conclusions

SENSITIVITY IC40+IC59

- ▶The IC59 has a factor ~1.5x better sensitivity compared to IC40.
- We can improve the sensitivity even more by combining the two data sets and reach the IC86 expected sensitivity.

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis Conclusions

IC40+IC59 POINT SOURCES RESULTS

- ▶ Total events: 43339 (upgoing) + 64230 (downgoing)
- Livetime: 348 days (IC59) + 375 days (IC40)

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis

Conclusions

2

22

IC40 ALLSKY RESULTS

- We compare the outcome of the all sky survey with an ensemble of identical (on average) scrambled skymaps.
- For each of the 2000 scrambled trial, the same analysis is performed.
- ▶ 1484 of the 2000 scrambled skymaps had a significance equal or greater than that of the real dataset
 - → all-sky p-value (post-trial) = 74.2%.

IC40+IC59 SOURCE LIST

- We can reduce the number of trials by looking at pre-define directions in the sky.
- A set of candidate source is selected a-priori. The likelihood method is evaluated in position. Posttrial p-value is calculated using scrambled trials.

Source	RA (deg)	Dec (deg)	Туре	Distance	P-value
Cyg OB2	308.08	41.51	UNID	-	
MGRO J2019+37	305.22	36.83	PWN	-	
MGRO J1908+06	286.98	6.27	SNR	-	0.38
Cas A	350.85	58.81	SNR	3.4 kpc	
IC443	94.18	22.53	SNR	1.5 kpc	
Geminga	98.48	17.77	Pulsar	100 pc	
Crab Nebula	83.63	22.01	SNR	2 kpc	
IES 1959+650	300.00	65.15	HBL	z = 0.048	
IES 2344+514	356.77	51.70	HBL	z = 0.044	
3C66A	35.67	43.04	Blazar	z = 0.44	0.42
H 1426+428	217.14	42.67	HBL	z = 0.129	
BL Lac	330.68	42.28	HBL	z = 0.069	0.4
Mrk 501	253.47	39.76	HBL	z = 0.034	0.19
Mrk 421	166.11	38.21	HBL	z = 0.03 I	
W Comae	185.38	28.23	HBL	z = 0.1020	
IES 0229+200	38.20	20.29	HBL	z = 0.139	0.39
M87	187.71	12.39	BL Lac	z = 0.0042	0.38
S5 0716+71	110.47	71.34	LBL	z > 0.3	0.49
M82	148.97	69.68	Starbust	3.86 Mpc	
3C 123.0	69.27	29.67	FRII	1038 Mpc	
3C 454.3	343.49	16.15	FSRQ	z = 0.859	0.48
4C 38.41	248.81	38.13	FSRQ	z = 1.814	0.3

PKS 0235+164	39.66	16.62	LBL	z = 0.94	0.18
PKS 0528+134	82.73	13.53	FSRQ	z = 2.060	0.49
PKS 1502+106	226.10	10.49	FSRQ	z = 0.56/1.839	
3C 273	187.28	2.05	FSRQ	z = 0.158	
NGC 1275	49.95	41.51	Seyfert Galaxy	z = 0.017559	
Cyg A	299.87	40.73	Radio-loud Galaxy	z = 0.056146	0.44
Sgr A*	266.42	-29.01	Galactic Center	8.5 kpc	0.49
PKS 0537-441	84.71	-44.09	LBL	z = 0.896	0.44
Cen A	201.37	-43.02	FRI	3.8 Мрс	0.14
PKS 1454-354	224.36	-35.65	FSRQ	z = 1.42	0.14
PKS 2155-304	329.72	-30.23	HBL	z = 0.116	
PKS 1622-297	246.53	-29.86	FSRQ	z = 0.815	0.27
QSO 1730-130	263.26	-13.08	FSRQ	z = 0.902	
PKS 1406-076	212.24	-7.87	FSRQ	z = 1.494	0.36
QSO 2022-077	306.42	-7.64	FSRQ	z = 1.39	
3C279	194.05	-5.79	FSRQ	z = 0.536	0.45
ТҮСНО	6.36	64.18	SNR	2.4 kpc	
Cyg X-I	299.59	35.20	MQSO	2.5 kpc	
Cyg X-3	308.11	40.96	MQSO	9 kpc	
LSI 303	40.13	61.23	MQSO	2 kpc	
SS433	287.96	4.98	MQSO	1.5 kpc	0.48

- The most significant source is PKS 1454-354: -p-value_{obs} = 0.136
- ► 1431 trials out of 1496 p-value \geq p-value_{obs} -p-value(post) = 95.7%

TIME DEPENDENT ANALYSIS

• Goal: Look for accumulation of events not only in space but also in time.

Method: The analysis method uses the same unbinned maximum likelihood by adding two additional search parameters: the mean and a width of a Gaussian function in time.

$$\log \lambda = \log \left(\frac{L(\hat{\gamma}, \hat{n}_s, \hat{\mu}, \hat{\sigma})}{L(n_s = 0)} \right)$$

At low time scales (< I day) the background depends not only on zenith but on the local coordinates of the arrival track directions.

Introduction IC40+IC59 Steady Analysis IC59 Flare Analysis

Conclusions

FLARE ANALYSIS RESULTS

Only IC59 data was used for the flare analysis. Data from IC40 was analyzed and no significant excess was found.

FLARE ANALYSIS RESULTS

Only IC59 data was used for the flare analysis. Data from IC40 was analyzed and no significant excess was found.

- No correspondence with any known source (SIMBAD catalog)
- Fermi light curve for that period doesn't show any activity.

FLARE ANALYSIS RESULTS

Only IC59 data was used for the flare analysis. Data from IC40 was

FLARE EVENTS

By considering only the spatial and energy S/B ratio, the accumulation of events is only visible in time.

Events that form part of the flare all have fairly low energy and are ~ I degree away, and only stand out in terms of their timing properties.

CONCLUSIONS

- The whole year of IC59 has been analyzed for point-source and no evidence of a neutrino point source has been found.
- ▶ We performed the combination of the IC59 and the previous IC40 data to enhance the discovery potential and sensitivities.
- Time dependent analysis was performed to search for untriggered flares. An excess in significance has been found with a p-value of ~1.4% still compatible with a background fluctuation.
- More analysis (periodic analysis, triggered flares, stacking, and extended sources) are on the way.
- IceCube is finally complete and taking data.