Dark Forces at the Tevatron

Matthew R Buckley

TevPa2011

Friday, August 5, 2011

$W^{\pm} + jj$ Anomaly

- Found in CDF's $\ell \nu + jj$ channel
- In $4.3~{
 m fb}$, significance is 3.2σ
- Updated to 4.1σ in 7.3 fb^{-1}
- Consistent with the decay of a narrow resonance at 147 GeV into a pair of jets
- Required cross section of $3.0 \pm 0.7 \text{ pb}$

(before BR & kinematic cuts)

V. Cavaliere Thesis arXiv:1104.0699 http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html ²

DØ Weighs In

- Analysis of 4.3 fb^{-1}
- Disagrees with CDF at $p = 8 \times 10^{-6}$
- Cross section < 1.9 pb at 95% confidence
- Some differences in the two analyses: jet ΔR , and out-of-cone corrections

arXiv:1106.1921

Where do we go next?

- $\bullet\,$ No clear error in either CDF or $D \not O$
- $\sim 4\sigma$ discrepancy between two mature experiments not an acceptable resolution
- New physics not likely to exist only in one channel; can look elsewhere

	$\ell \nu + jj$	$\ell\ell + jj$	$\nu\nu + jj$	$\gamma + jj$	
	2400 fb	$840~{\rm fb}$	840 fb	$420~{\rm fb}$	
Z' left-handed	41 fb	$6.1 { m ~fb}$	23 fb	2.1 fb	assuming
	$S/\sqrt{N} = 6.6$	$S/\sqrt{N} = 2.5$	$S/\sqrt{N} = 1.7$	$S/\sqrt{N}=0.7$	10 fb^{-1}
Z' universal	$2400~{\rm fb}$	$970~{\rm fb}$	$970~{\rm fb}$	$840~{\rm fb}$	
	40 fb	6.9 fb	$25 \mathrm{fb}$	4.0 fb	
	$S/\sqrt{N} = 6.6$	$S/\sqrt{N} = 2.8$	$S/\sqrt{N} = 1.9$	$S/\sqrt{N} = 1.4$	
Technicolor	2310 fb	$530~{ m fb}$	$530~{ m fb}$	541 fb	
	60 fb	6.8 fb	18 fb	$2.8 \mathrm{fb}$	
	$S/\sqrt{N}=9.7$	$S/\sqrt{N}=2.8$	$S/\sqrt{N} = 1.4$	$S/\sqrt{N} = 1.1$	

Friday, August 5, 2011

LHC to the Rescue

- LHC does not yet have sufficient luminosity to test most new physics scenarios
- This will not be true for much longer!

	$\ell \nu + jj$	$\ell\ell + jj$	u u + jj	$\gamma + jj$
	11400 fb	$3400~{\rm fb}$	$3400~{\rm fb}$	$3450~{\rm fb}$
Z' left-handed	$145 {\rm ~fb}$	13.7 fb	99 fb	$5.3~{ m fb}$
	$6.4 { m ~fb^{-1}}$	$75 { m ~fb^{-1}}$	6.5 fb^{-1*}	$170 {\rm ~fb^{-1}}$
	11400 fb	3800 fb	3800 fb	6900 fb
Z' universal	143 fb	14.4 fb	106 fb	11.9 fb
	$6.6 { m ~fb^{-1}}$	$67 { m ~fb^{-1}}$	5.7 fb^{-1^*}	34.4 fb^{-1}
	$7970~{\rm fb}$	2200 fb	2200 fb	1870 fb
Technicolor	188 fb	18.8 fb	$75 \mathrm{fb}$	$6.9~\mathrm{fb}$
	$3.8 { m ~fb^{-1}}$	$40 {\rm ~fb^{-1}}$	11.3 fb^{-1}^*	$103 {\rm ~fb^{-1}}$

New Physics

- If the CDF signal is really new physics, we'll know within the year (maybe sooner)
 - If not, then something subtle has gone wrong with CDF background modeling, figuring this out is important.
- Let's consider the implications of the new physics explanation
- Lots of options, I'll concentrate on one...

New Gauge Boson

- Introduce new broken U(1) which couples to quarks with ~SM gauge strength
 - Resulting in Z' that can be produced in association with W^\pm
- Problems with precision EW
 - Assume no Z Z' mixing
- Anomaly cancellation?
 - We'll come back to that

Fitting the Excess

 Mass fixed, couplings to lefthanded quarks derived directly from CDF data

 $q_{Z'q_L} \sim 0.2 - 0.3$

- This coupling not in violation of the UA2 bounds
 - (Tevatron dijet bounds weaker)

1103.6035 and 1107.5799 1.00 d_L, d_R (UA2) 0.50 u_L, u_R (UA2) 0.20 0.10 eL. eR (LEP II) 0.05 0.02 0.01 150 200 250 300 m_{Z'} (GeV)

g mz'

What's Dark Matter got to do with it?

Or, why am I talking about this at TevPA?

Anomaly Cancellation

- $\bullet~$ B-L the only anomaly-free new U(1) in the SM
- Leptophobic Z' must have new fermions charged under $SU(3)_C$
 - Must be chiral, so can't be arbitrarily heavy
- Among the new fermions, there is often a $SU(3)_C \times U(1)_{EM}$ singlet (X)
- Examples of known gauge groups we don't see large scales between particle's charge assignment

• i.e. $g_{Z'X} \sim g_{Z'q_L}$

Dark Forces

- SM singlet: ideal dark matter candidate
 - Has coupling to nucleons through Z'

Leads to direct detection cross section

$$\sigma_{Xp}^{\rm SI} = \frac{36m_X^2 m_p^2 g_{Z'X}^2 g_{Z'q}^2}{\pi (m_X + m_p)^2 m_{Z'}^4}$$

• For
$$g_{Z'q} = 0.25$$

 $\sigma_{Xp}^{SI} = 2 \times 10^{-40} \text{ cm}^2 \left(\frac{m_X}{m_X + m_p}\right)^2 \left(\frac{g_{Z'X}}{g_{Z'q}}\right)^2$

i.e. DAMA & CoGeNT region

Explicit Example I

1104.3145

- Can't use B-L for CDF excess
 - Gauge B and L separately
- Cancel anomalies through a single generation with B and L charges 3x of SM
- 4th generation decays requires a $SU(3)_C \times U(1)_{\rm EM}$ singlet, stable scalar with B=2/3
- Early Universe relic density cannot just go though Z'_B
 - Loop-induced annihilations involving scalars carrying lepton number

$$XX \to e^-e^+, \mu^-\mu^+, \tau^-\tau^+$$

Explicit Example 2 1106.3583

• Grand Unified E_6 model

- Two new U(1) gauge groups
- Can be broken down to single lowenergy $U(1)_{\eta}$, not leptophobic
- RGE running of $U(1)_{\eta} \times U(1)_{Y}$ mixing can generically lead to (mostly) leptophobic U(1)'

E₆ Particle Content

- Each generation fits into a **27** of E_6
 - 12 new fields, including two SM singlets

 $S_L, \bar{\nu}_R$

• Both have U(1)' charges, $\bar{\nu}_R$ is our DM

	$SU(3)_C$	$SU(2)_L$	$\sqrt{5/3}Y$	$2\sqrt{3/5}Q'(\delta=1/3)$
Q_L	3	2	1/6	-1/3
\overline{u}_R	3	1	-2/3	-2/3
\overline{d}_R	3	1	1/3	1/3
L_L	1	2	-1/2	0
\overline{e}_R	1	1	+1	0
\bar{H}	1	2	+1/2	1
H	1	2	-1/2	0
h_L	3	1	-1/3	2/3
$ar{h}_R$	3	1	1/3	1/3
$ar{ u}_R$	1	1	0	-1
S_L	1	1	0	-1

E₆ Dark Matter

- Pure leptophobic E_6 has zero coupling to protons
- Direct Detection signal close to CoGeNT/DAMA

- As in $U(1)_B$, need additional interactions to get relic density
 - General superpotential contains $\lambda_{11}\bar{H}L\bar{\nu}_R$

$$\langle \sigma v \rangle \approx 2.3 \times 10^{-26} \,\mathrm{cm}^3/\mathrm{s}$$

 $\times \left(\frac{\lambda_{11}}{1}\right)^4 \left(\frac{110 \,\mathrm{GeV}}{m_H}\right)^4 \left(\frac{m_X}{7 \,\mathrm{GeV}}\right)^2 \left(\frac{20}{x_{\mathrm{FO}}}\right)$

15

Conclusions

- CDF W+jj excess still unexplained and interesting
- A simple explanation is a leptophobic Z'
 - UV-completions often require a SM singlet: a Dark Matter candidate
 - Parameters that fit CDF excess also give a CoGeNT-sized direct detection signal.
 - Also contain strongly interacting, TeV-scale fermions
- Could CDF be seeing the mediating force for the dark sector?