Fermi Bubbles

Galactic Centre Star Formation Writ Large

Roland Crocker MPI-K Heidelberg

Refs and collaborators

The Fermi Bubbles: Giant, Multi-Billion-Year-Old Reservoirs of Galactic Center Cosmic Rays <u>Roland M. Crocker</u> & <u>Felix Aharonian</u> PRL 2011 (<u>arXiv:1008.2658</u>)

Wild at Heart:-The Particle Astrophysics of the Galactic Centre, <u>Roland M. Crocker</u>, <u>David I. Jones</u>, <u>Felix Aharonian</u>, <u>Casey J. Law</u>, <u>Fulvio Melia</u>, <u>Tomoharu Oka</u>, <u>Juergen Ott</u> MNRAS 2011 (<u>arXiv:</u> <u>1011.0206</u>)

Gamma-Rays and the Far-Infrared-Radio Continuum Correlation Reveal a Powerful Galactic Center Wind, Roland M. Crocker, David I. Jones, Felix Aharonian, Casey J. Law, Fulvio Melia, Juergen Ott MNRAS Letters 2011(arXiv:1009.4340)

Fermi Bubbles

Fermi data reveal giant gamma-ray bubbles

Su, Slatyer and Finkbeiner 2010 (ApJ)

Fermi Bubbles

- 4×10^{37} erg/s
- enthalpy ~10⁵⁷ erg
- uniform and hard spectrum, but spectral down-break below ~ GeV in SED
- uniform intensity
- sharp edges
- vast extension: ~10 kpc from plane
- something to do with GC

Mirroring emission at other wavelengths

- in microwaves (WMAP): also hard, nonthermal spectrum, uniform intensity, few x 10³⁶ erg/s
- in soft X-rays (ROSAT): apparently limbbrightened, thermal bremsstrahlung from ~10⁷ K, ≤ 0.01 cm⁻³ plasma, ≥10³⁹ erg/s

'Natural' explanation: HE, primary electrons

- ~GeV γ-ray emission from IC by hypothesised population of hard-spectrum ≥50 GeV electrons
- same population synchrotron-radiates into microwave frequencies

'Natural' explanation: HE, primary electrons

- ~GeV γ-ray emission from IC by hypothesised population of hard-spectrum
 ⇒ GeV electrons
- same population synchrotron-radiates into microwave frequencies

'Natural' explanation: HE, primary electrons

- ~GeV γ-ray emission from IC by hypothesised population of hard-spectrum
 TeV' electrons
- same population synchrotron-radiates into microwave frequencies

Problem with electrons

E/eV

Electron scenarios

Very fast transport (>3% c) ⇒

relativistic outflow \Rightarrow AGN jet from Sgr A*

(Guo and Matthews 2011)

- In situ acceleration;
 - Ist order Fermi, e.g. shocks associated with tidal disruptions of stars near Sgr A* (Cheng, Chernyshov et al 2011)
 - 2nd order Fermi on turbulence (stochastic acceleration; Mertsch and Sarkar 2011)

Electron scenarios

- Very fast transport (>3% c) = de and relativistic outflow ⇒ AGN ir tatitude art (Guo and Matthews 20' Galactic outflow. art A* (Guo and Matthews 20' Galactic outflow. art In situ acceler? with trum
 Ist order F in SPF spectrum
 Ist order F in SPF spectrum
 Ist order F in SPF shocks associated with tir' store of stars near Sgr A* (Ch. variant inyshov et al 2011)
 About sequent inyshov et al 2011)
 About sequent Fermi on turbulence chastic acceleration; Mertsch and varkar 2011)

Jarkar 2011)

What about protons?

- hard spectrum explained if protons
 confined in bubbles → the *in situ* spectrum
 shape = *injection* spectrum shape
- spectral down-turn below I GeV on SED explained by π^0 decay kinematics
- uniform intensity \rightarrow saturation scenario
- secondary electrons generate microwave emission (WMAP haze) of correct luminosity

Secondaries from pp collisions

Proton saturation scenario

- But shouldn't the π^0 decay Y-rays trace the matter column density?
- Not in saturation (= thick target + steady state) $L_Y \approx N_P / t[pp \mapsto \pi^0]$ $t[pp \mapsto \pi^0]_{\propto} I / n_H$ $N_p \approx \partial_t Q_P t[pp]$ $t[pp] \approx t[pp \mapsto \pi^0] / 3$ $\Rightarrow L_Y \approx \partial_t Q_P / 3$

Proton saturation scenario

- But shouldn't the π^0 decay γ -rays trace the matter column density?
- Not in saturation (= thick target + steady state) $L_{Y} \approx N_{P}/t[pp \mapsto \pi^{0}]$ $t[pp \mapsto \pi^{0}] \propto l/n_{H}$ $N_{P} \approx \partial_{t}Q_{P} t[pp]$ $t[pp] \approx t[pp \mapsto \pi^{0}]/3$ $\Rightarrow L_{Y} \approx \partial_{t}Q_{P}/3$...around 1/3 proton power emerges in Y-rays over all

energies independent of n_H

Bubble spectrum

What about protons II?

- BUT gas in bubbles is low-density plasma: nH < 0.01 cm⁻³
- pp loss time is > 5 Gyr (!)
- need a source of hard spectrum CR p's with power ~10³⁹ erg/s that has lasted for > 5 Gyr
- CRAZY

...actually not

- the morphology of the bubbles privileges the GC
- the GC has been sustaining a high level of star formation for Gyrs (~5% Galactic SFR)
- have independent, a priori evidence that the Galactic centre (GC) currently accelerates exactly the required CR proton population
- >95% of these CR p's leave the region on a wind
- slow wind (rather than fast jet) collimated by dense gas in plane explains why Bubbles perpendicular to Galactic disk

2 GeV < E < 5 GeV

Hard spectrum, diffuse TeV emission from the Galactic centre roughly correlated with molecular gas column (Aharonian et al 2006)

2 GeV < E < 5 GeV

Hard spectrum, diffuse TeV emission from the Galactic centre roughly correlated with molecular gas column (Aharonian et al 2006)

FIR-RC

Yun et al. 2001 ApJ 554, 803 fig 5

 $.2 \times 10^{19}$ Watt/Hz

Ш

RC in deficit wrt expectation from FIR

GC is I dex (~4 σ) off correlation

i.e. GHz RC emission of **HESS region only ~10%** expected

FIR-Y-ray Scaling

- SNR also accelerate CR p's (and heavier ions)
- there should exist a global scaling b/w FIR and gamma-ray emission from region (Thompson et al. 2007): $L_{GeV} \sim 10^{-5} L_{TIR}$ (assuming 10^{50} erg per SN in CRs)
- Given scaling (or SN rate):

GeV emission of GC <5% expected TeV emission of GC ~1% expected

Why is GC's non-thermal emission much less than expected given its FIR?

- Explanation I: a star-burst occurred more recently than the lifetime (~10⁷ years) of the massive stars which produce most UV and whose lives end in supernovae
- Explanation 2: GC SNRs are intrinsically lowefficiency CR-accelerators
- Explanation 3: some transport process removing non-thermal particles from system

Explanation I: Starburst?

NO: luminosity function studies of GC stellar population show GC star-formation has been sustained over long timescales (2 Gyr) at more-or-less current rate (Figer et al 2004)

Explanation 2: Low efficiency of SN as CR accelerators in GC?

NO: our detailed modelling shows that GC SN act with *at least* typical efficiency as cosmic ray accelerators

Explanation 3: CR Transport

- Flat spectrum of is-situ electron and proton population → transport is advective not diffusive, i.e. via a *wind*
- [contrast situation in Galactic plane]
- there is much prior evidence for such a wind

HESS TeV data: Aharonian et al 2006

2.7 GHz radio data (unsharp mask) Pohl, Reich & Schlickeiser 1992

Gas/Wind/Mag. Field

Gas/Wind/Mag. Field

Bottom Line:

- Star formation activity in inner 200 pc of MW generates ≈ 1/(3000 yr) x 10⁵¹ erg x 10% = 10³⁹ erg/s is hadronic cosmic rays
- This is precisely enough (in saturation) to sustain the γ-ray luminosity of the Bubbles

Other features

- p's and plasma in Bubbles close to eqprtn
- GC outflow supplies enthalpy $E = L_{jet}t = \frac{\gamma}{\gamma 1}P_{ext}V(t)$ of Bubbles over same few x Gyr timescale
- GC outflow supplies plasma mass of Bubbles (~10⁸ M_{sun}) over same few x Gyr timescale
- plasma density is tightly constrained:
 - $Min[n_H] = 0.004 \text{ cm}^{-3}$ for $t_{pp} = t_{Hubble}$
 - $Max[n_H] = 0.006 \text{ cm}^{-3} \text{ saturates power of}$ outflow (~10⁴⁰ erg/s)

Shortcomings/To Do

- Single zone model \rightarrow CR transport not treated
- In particular, dynamics near edges not addressed
 - \rightarrow edge profile
 - \rightarrow CR trapping
- Hard spectrum of microwave haze
- Can these structures really last so long?

Discussion points

- Results consistent with GC SF in more-orless steady state for >Gyr timescales → self-regulation?
- Our scenario implies that the bubbles are a calorimetric recording of GC activity over the lifetime of the Galaxy
- Bubbles should be good TeV γ-ray sources
- Good neutrino sources: ≤40 signal events above 10 TeV per annum (vs. ~100 background) for northern km³ detector

Extra Slides

• $L_{GeV} \sim 10^{-5} L_{TIR}[GC] \rightarrow L_{GeV} \sim 2 \ 10^{37} \text{ erg/s}$

Problem with electrons II

Porter et al 2008;

SED of the MW ISRF in the Galactic plane: kpc, black; kpc, blue; kpc, red; and kpc, magenta.

Big picture

- GC ISM params extreme wrt Gal disk arguably more akin to a star-burst: energy densities/pressures of ISM comps ~2 orders of magnitude larger than in disk (~100's eV cm⁻³)
- Strong B fields, high H₂ densities and turbulence, very hot plasma, ISRF
- SFR density \geq 3 orders of magnitude larger than in disk ($\partial_t \Sigma_* \sim 2 \ M_\odot \ yr^{-1} \ kpc^{-2}$)

Big picture II

- Claim: GC star-formation drives a super-wind
 → CR transport in GC is advective not diffusive (cf. Disk)
- Claim: HE CRs (GeV⁻ \rightarrow 10 TeV⁺) do not penetrate into the densest molecular gas
- Claim: BUT there is enough power in the CR spectrum to warm/ionize the low density H₂ phase

Big picture III

- Claim: the GC wind advects plasma and cosmic ray ions to large distances from the plane and the γ-ray and microwave signatures of these have recently been detected as the Fermi Bubbles
- Claim: despite similarity to starburst conditions will argue here that GC SF proceeding in more-or-less steady state for ≥ Gyrs

Discussion points

- Star-formation (and concomitant supernovae) sufficient to drive activity of region
- The SMBH is not a significant actor beyond a few pc radius
- SN in GC seem to act with at least typical efficiency (> 10%) as CR accelerators
- GC mag field v. strong (100-200 μG)

Discussion points II

- GC launches a 'super-wind', v_{wind} > 200 km/s
- the wind stops the GC ISM energy density growing too much
- CRs heat/ionize low density, hot (envelope) H₂
- BUT the wind advects even >TeV CRs before they penetrate into dense H₂ cores → role for CRs in modifying conditions for SF seems to be disfavoured (unless *local* acceleration)
- No evidence for/against biasing of IMF
- GC a star-burst analogue ...?

HESS (TeV) GC Data (2005) -50 hours

HESS (TeV) GC Data (2005) -

HESS (TeV) GC Data (2005) -50 hours

Diffuse γs in H.E.S.S. data?

50 hour H.E.S.S. Observation of GC in 2005

Need to subtract the two bright sources Credit: HESS Collab

Diffuse γs in H.E.S.S. data?

50 hour H.E.S.S. Observation of GC in 2005

Need to subtract the two bright sources Credit: HESS Collab

Diffuse γs in H.E.S.S. data?

50 hour H.E.S.S. Observation of GC in 2005

Need to subtract the two bright sources Credit: HESS Collab

CS contours over H.E.S.S. map

Credit: HESS Collab

CS contours from Tsuboi et al. (1999)

GC molecular clouds

GC giant molecular clouds are unusually

- dense (~10⁴ cm⁻³),
- turbulent (velocity dispersion > 15 km/s)
- warm (10's K)

...when compared with Disk clouds

5110 3200

Incols

SEDIN

SE DINE

5 magaziel

58

RÌ

20

NewFeature

Buckstown Collors

Studie

53923390009

Threads

Perfordiculation

Coherent

chire

Ser Ser

51239-1005

Tomato (SNR)

2005

'DNS'

10 GHz Nobeyama data - spectrum is nonthermal up to 10 GHz

'DNS'

10 GHz Nobeyama data - spectrum is nonthermal up to 10 GHz

FIR-RC?

Yun et al. 2001 ApJ 554, 803 fig 5

RC in deficit wrt expectation from FIR

HESS system is I dex (> 4σ) off correlation

i.e. GHz RC emission of HESS region only ~10% expected

 $.2 \times 10^{19}$ Watt/Hz Ш LI.4 GHz

Sidebar: origin of FIR-RC?

- correlation between FRC and RC ultimately tied back to massive star formation (Voelk 1989)
- massive stars \rightarrow UV \rightarrow (dust) \rightarrow IR
- massive stars → supernovae → SNRs → acceleration of CR e's → (B field) → synchrotron

FIR-Y-ray Scaling?

- SNR also accelerate CR p's (and heavier ions)
- there should exist a global scaling b/w FIR and gamma-ray emission from region (Thompson et al. 2007): L_{GeV} ~ 10⁻⁵ L_{TIR} (assuming 10⁵⁰ erg per SN in CRs)
- Given scaling (or SN rate), (GeV and)
 TeV emission of HESS region < few % expected

Why is GC's non-thermal emission much less than expected given its FIR?

- Explanation I: a star-burst occurred more recently than the lifetime (~10⁷ years) of the massive stars which produce most UV and whose lives end in supernovae
- Explanation 2: GC SNRs are intrinsically low-efficiency CR-accelerators
- Explanation 3: some transport process removing non-thermal particles from system

Starburst?

- Star-formation history of GC is a subject of debate and we expect stochastic variation in SFR at some level
- BUT stellar population studies show GC star-formation has been sustained over long timescales (Gyr) at (some authors argue) more-or-less current rate
- Other tracers of supernova rate also show it is more-or-less in steady state

Low efficiency of SN as CR accelerators in GC?

 NO: detailed modelling (see below) shows that GC SN act with at least typical efficiency

CR Transport

- Flat spectrum of is-situ electron and proton population → transport is advective not diffusive (cf. Galactic plane)
- \rightarrow GC wind
- there is much prior evidence for such a wind

GC Wind Evidence

- RC studies show extended emission (1.2°) north of the plane whose spectrum steepens with distance (Law 2010)
- extended NIR emission mirroring RC (Bland-Hawthorn and Cohen 2003)
- X-rays → apparent, diffuse, very hot plasma in inner ~100 pc ... cf. external star-burst systems
- very extended X-ray emission (10's degrees)

GC Wind Evidence

- RC studies show extended emission (1.2°) north of the plane 1.200 with distance (Law 1.000
- extended NIR emi Hawthorn and Col
- X-rays → apparen^a
 in inner ~100 pc ...
 systems
- very extended X-r

GC Wind Evidence

- RC studies show extended emission (1.2°) north of the plane whose spectrum steepens with distance (Law 2010)
- extended NIR emission mirroring RC (Bland-Hawthorn and Cohen 2003)
- X-rays → apparent, diffuse, very hot plasma in inner ~100 pc ... cf. external star-burst systems
- very extended X-ray emission (10's degrees)
Gas/Wind/Mag. Field

Gas/Wind/Mag. Field

Modelling

- One-zone, steady-state modelling of in-situ electron and proton population
- Particle transport advective (wind)
- Try to reproduce observed, broad-band (non-thermal) emission from the region

Timescales: steady state justified

E/eV

Results of Modelling

- 'Pure' hadronic scenarios do not work
- 'Pure' leptonic scenarios do not work
- Get good fits for mixed models

Best-fit broadband spectrum

Best-fit radio spectrum

solid blue curve: total emission curve

solid, purple: total synchrotron

dotted, purple: total synchrotron in absence of free-free absorption

dashed, black: primary electron synchrotron

dotted, red: secondary electron synchrotron

dotted, green: GSB

dot-dashed, brown: free-free emission.

Magnetic field

CRs do not penetrate into densest gas

BUT they can heat/ionize the low-density (warm) H2

Non-thermal power

Self-consistent modelling confirms ≥ 10³⁹ erg/s *independent* of SN rate estimate

Summary thus far...

- Modelling of broadband emission from GC suggests that star-formation-related processes launch ≈ 10³⁹ erg/s in CRs into the Galaxy-at-large on a few 100 km/s wind
- ...Implications of these CRs?